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Abstract

Humans rarely perform better than chance

at lie detection. To better understand human

perception of deception, we created a game

framework, LieCatcher, to collect ratings of

perceived deception using a large corpus

of deceptive and truthful interviews. We

analyzed the acoustic-prosodic and linguistic

characteristics of language trusted and mis-

trusted by raters and compared these to char-

acteristics of actual truthful and deceptive

language to understand how perception aligns

with reality. With this data we built classifiers

to automatically distinguish trusted from mis-

trusted speech, achieving an F1 of 66.1%.

We next evaluated whether the strategies

raters said they used to discriminate between

truthful and deceptive responses were in fact

useful. Our results show that, although several

prosodic and lexical features were consistently

perceived as trustworthy, they were not reliable

cues. Also, the strategies that judges reported

using in deception detection were not helpful

for the task. Our work sheds light on the nature

of trusted language and provides insight into

the challenging problem of human deception

detection.

1 Introduction

Humans are notoriously poor lie detectors, most

performing at chance level or worse (Bond Jr and

DePaulo, 2006). This result has been found across

a wide variety of deception detection tasks, in

multiple modalities, and in different cultures. Al-

though poor performance has been well-attested,

very little work has been done to understand why

humans perform so poorly at detecting lies.

Because humans are so poor at deception detec-

tion, there have been many efforts to develop

automated methods to detect deception in multiple

modalities. Biometric indicators, typically mea-

sured by the polygraph (a device used to detect lies

by measuring blood pressure, pulse, respiration,

and skin conductivity), have been shown to

perform poorly at deception detection (Eriksson

and Lacerda, 2007). Facial expressions (Ekman,

2009a), gestures and body posture (Lu et al., 2005;

Tsechpenakis et al., 2005), and even brain imaging

(Meijer and Verschuere, 2017) have been explored

as potential indicators of deception. Some of these

features are difficult or expensive to capture auto-

matically, or are too invasive to be practical for

general use. In recent years, automatic deception

detection has gained popularity in the speech and

NLP communities. Language cues have the advan-

tage of being inexpensive, non-invasive, and easy

to collect automatically. More importantly, prior

research examining linguistic cues to deception

has been promising. Researchers have used ma-

chine learning to identify deceptive language in

various domains, including court testimonies

(Fornaciari and Poesio, 2013), hotel reviews (Ott

et al., 2011), and interview dialogues (Levitan

et al., 2018b). These automated methods have

demonstrated that machine learning classifiers

can indeed identify deceptive language with

accuracy between 70% and 90%, depending on

the task—much better than human performance on

the same task. These studies have also identified

specific characteristics of deceptive language.

Despite these important advances in under-

standing and automatically identifying deception,

there has been little work investigating human per-

ception of deception. What linguistic and prosodic

characteristics of an utterance lead listeners to
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believe that it is true—to trust it—regardless of

whether it is true or not? Why do people frequently

believe lies? How do the strategies humans use

in lie detection align with actual indicators of de-

ception and how do they relate to people’s per-

formance in lie detection? Can we in fact train

machine learning classifiers to automatically iden-

tify speech that will be perceived as truth (trusted)

or lie (mistrusted) by humans?

To investigate these questions, we created a

lie detection game, LieCatcher, to conduct a

large-scale study of human perception of decep-

tion. The stimuli for this game were drawn from

a large corpus of previously collected truthful

and deceptive dialogues; players were asked to

judge whether single utterance spoken responses

to written questions were truthful or deceptive.

We distributed the game on Amazon’s Mechani-

cal Turk crowd-sourcing platform to collect large

scale judgments of deceptive or true responses

to a set of biographical questions. We systemati-

cally analyzed a number of linguistic and prosodic

features in the rated responses to understand the

characteristics of trusted vs. mistrusted speech.

We compared these features to the actual char-

acteristics of truthful and deceptive responses pre-

sented in the game to identify the similarities and

differences between human perception of decep-

tion and the actual production of deception. We

also examined player-reported strategies to dis-

cover which the raters believed to be useful

and which were in fact useful or not useful for

detecting deception. Finally, we trained machine

learning classifiers using a large set of lexi-

cal and speech features to automatically identify

human-trusted speech.

The contributions of this paper include: 1) A

large-scale analysis of linguistic and prosodic cues

to trust compared with cues to deception; this adds

considerably to our scientific understanding of

human perception of deception. Our results show

that there are several prosodic and lexical features

that were consistently perceived as trustworthy,

but that these were not reliable cues to deceptive

speech. 2) A game framework for studying decep-

tion perception, which can be extended to other

speech and language perception studies. 3) A clas-

sifier that uses lexical and acoustic-prosodic fea-

tures to identify speech that was trusted by humans,

achieving an F1 of 66.1%. 4) An analysis of suc-

cessful and unsuccessful human strategies for de-

tecting deception, showing that strategies that

judges reported using in deception detection were

not helpful for the task. We further believe that this

latter analysis may be useful for training humans

to detect lies more successfully.

2 Related Work

Previous studies have examined deceptive lan-

guage in various domains, including fake reviews

(Ott et al., 2011), public trials (Pérez-Rosas et al.,

2015), TVshows (Pérez-Rosas et al., 2015), Twitter

(Addawood et al., 2019), opinions on controversial

topics (Mihalcea and Strapparava, 2009), online

games (Zhou et al., 2004), and interviews (Levitan

et al., 2018a, b). Machine learning classifiers have

been shown to outperform human judges by a large

margin. For example, Ott et al. (2011) trained a

deception classifier that achieved nearly 90% ac-

curacy on a corpus of fake hotel reviews, whereas

human accuracy was about 60%.

Researchers have also examined various fea-

tures that are characteristic of truthful vs. decep-

tive language. A meta-study by Bond Jr and

DePaulo (2006) highlighted several patterns of

deceptive language found in multiple studies, such

as shorter responses, fewer details, and more neg-

ative emotions. Other cues to deception that have

been identified include language that is less sen-

sory or concrete (Ott et al., 2011; Vrij et al.,

2006). Truthful language has been found to con-

tain more linguistic markers of certainty (Levitan

et al., 2018b; Rubin et al., 2006). Syntactic features

such as lexicalized production rules and part of

speech tags have also been shown to be useful

in predicting deception (Feng et al., 2012; Pérez-

Rosas and Mihalcea, 2015). Linguistic Inquiry

and Word Count (LIWC) (Pennebaker and King,

1999), which groups words into psychologically

meaningful dimensions, has also been used exten-

sively in deception studies (Ott et al., 2011; Pérez-

Rosas and Mihalcea, 2015; Pérez-Rosas et al.,

2015). Prosodic cues to deception have also been

identified; for example, Levitan et al. (2018a)

found increased pitch maximum and intensity max-

imum are indicators of deception. Though these

studies are critical for advancing the state of

machine deception detection and for understand-

ing the nature of deceptive language, they do

not address the question of human perception of

deception, which is the focus of this work. We aim

to gain insight into why humans are poor judges
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T my dad works i don’t i never really know how to say it he works with computers um in information

technology

T he’s a technical engineer at draper laboratory

F he works for um it’s like um a subsidiary of walgreens kind of it’s very it’s very corporate it’s like

a big big very impersonal company which is i think he doesn’t like about it

F uh my dad is an official in uh in the government system

Table 1: CXD corpus example responses to the question, ‘‘What is your father’s job?’’

of deception by comparing actual cues to decep-

tion with characteristics of language trusted and

mistrusted by humans.

Psychology research of human deception detec-

tion has traditionally focused on facial expression

cues (Ekman et al., 1991; Frank et al., 2008) and

personal beliefs about what characterizes decep-

tive behavior (The Global Deception Research

Team, 2006; Granhag and Strömwall, 2004;

Wright et al., 2014). Based on worldwide survey

studies, The Global Deception Research Team

(2006) found pan-cultural deception stereotypes

that liars tend to be nervous with flawed speech.

However, Hartwig and Bond (2011) pointed out

the methodological limitation of such studies: We

cannot be certain that what people report reflects

their actual decision process (Nisbett and Wilson,

1977). Our work attempts to decipher the cues

people actually use to detect lies by examining

features of utterances that are labeled as true by

participants, compared with features of utterances

rated as lies.

3 CXD Corpus

We used deceptive and truthful utterances from

the Columbia X-Cultural (CXD) Corpus for our

deception perception study (Levitan et al., 2015).

The CXD Corpus is a collection of interviews be-

tween native speakers of Standard American English

and Mandarin Chinese, all speaking in English. It

contains 122 hours of conversational speech be-

tween 340 individuals. Previously unacquainted

pairs of participants were brought into the lab to

interview one another. They were first surveyed

for gender and native language and asked to com-

plete theNEO-FFI personality inventory (Costa and

McCrae, 1989). They were then asked to provide

true answers to a set of 24 biographical questions

and then to provide false answers for a random

half we chose. Interviews took place in a sound-

proof booth and each pair of participants took turns

playing the role of interviewer and interviewee.

During the game, the interviewer asked the 24

questions in any order and was encouraged to ask

follow-up questions to help determine whether the

interviewee was lying or telling the truth about

each question. Participants were financially com-

pensated for both successful deception and suc-

cessful deception detection. Table 1 provides sample

responses to one of the questions.

The recorded interviews were orthographically

transcribed using Amazon Mechanical Turk

(AMT) crowd-sourcing and the transcripts were

force-aligned with the audio recordings using the

Kaldi Speech Recognition Toolkit (Povey et al.,

2011). The interviews were segmented using a

question identification classifier (Maredia et al.,

2017). All interviewee turns were automatically

identified using the question identification system

and subsequently hand-corrected. The corpus was

segmented into: 1) question responses: The single

interviewee turn directly following the question;

2) question chunks: All interviewee turns in (1)

plus answers to subsequent follow-up questions.

We used the single turn question response

segmentation for our deception perception study,

so as not to influence raters’ responses with

interviewers’ follow-up questions.

4 LieCatcher

Using the data described in Section 3, we created a

lie detection game called LieCatcher.1 LieCatcher

is a Game With A Purpose that allows players

to assess their overall ability to detect lies,

while simultaneously providing deceptive speech

judgments that we then use to study deception

perception. We developed LieCatcher in Unity2

and hosted the game on the Web. Figure 1 shows

a screenshot from the game. In the game, players

are shown a text version of a question asked

1The LieCatcher game framework is publicly available at

https://github.com/sarahita/LieCatcherGame.
2https://unity.com.
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Figure 1: Screenshot from LieCatcher gameplay.

by one interviewer and then listen to the single-

turn spoken interviewee response. After listening,

the player selects a ‘‘Truth’’ or ‘‘Lie’’ button,

indicating their perception of the speech sample

as truthful or deceptive. The game was designed

so that players could submit their decision only

after the audio had finished playing, so they could

not make a judgment without hearing the full

response. This feature of the game also provided

information about raters’ behavior when making

judgments, as we recorded the time interval

between the end of the audio clip and the time that

the player entered their response for each decision.

After the gameplay, a score report is displayed

summarizing all their judgments for that task,

giving players feedback about their performance

at the end of each multi-question task.

4.1 Crowdsourcing Experiment

We used the game to collect deception judgments

via crowd-sourcing on AMT. On AMT we first

vetted potential raters by giving them a language

background questionnaire and restricting raters to

those who had spoken English fluently since the

age of 5 years. In the game, each player was

shown a series of 13 questions, one at a time, with

the audio recording of the interviewee response.

Audio samples were balanced by gender, native

language of speaker, and question number (there

were no duplicate questions within a game), with

half of the responses true and half false. For

quality control, we included a randomly placed

check question instructing the annotator to select

a certain answer for that question (e.g., ‘‘wait 5

seconds and then press False’’) to help ensure that

raters were actually paying attention to the game

with their audio on. Annotators were also given a

post-game survey including questions on previous

experience in jobs related to deception detection,

their gender, their own confidence level in spotting

lies, and the strategies they used in making

judgments. We manually filtered out annotators

who answered the check question incorrectly or

who failed to finish the game or survey. We

obtained institutional review board approval for

our deception perception study and followed all

human subject protection guidelines.

Each response was rated by three annotators

and each annotator was limited to a maximum

of 10 total tasks of 13 questions each. In total,

5340 utterances were annotated by 431 total

annotators; 4.8% of the raters said they had

had previous experience in law enforcement.

In our sample, 38.9% of the annotators self-

identified as male, 59.1% female, and 2.1% other.

On average, annotators judged 49.93% of the

utterances correctly, roughly at chance. In cases

where all three annotators agreed on a judgment,

the accuracy was 50.75%, slightly higher than

the overall accuracy but still at chance. This is

consistent with decades of research in deception

detection (Bond Jr and DePaulo, 2006).

4.2 Inter-annotator Agreement

We used Fleiss’ kappa to measure inter-annotator

agreement on whether an utterance was truthful or

deceptive. The annotators had a Fleiss’ kappa of

0.135, indicating slight agreement as Landis and

Koch (1977) suggests, showingthat this task ishighly

subjective. We also computed inter-annotator

agreement across utterances from female vs. male

speakers and from native English versus native

Mandarin speakers. We found only slight agree-

ment (Fleiss’ kappa in the range (0.10, 0.15))

across all speaker traits, indicating that people did

not agree more on speakers with certain traits.

Lastly, we considered whether inter-annotator

agreement might be affected by utterance length,

since annotators might find it more difficult to

judge short utterances (e.g., one word utterances

like ‘‘yes’’ or ‘‘no’’) for lack of sufficient infor-

mation. However, we found that agreement was

uniformly low across all utterance lengths and that

longer utterance length tended to result in even

lower agreement (Fleiss’ kappa: 0.138 for length

≤ 5 words vs. 0.067 for length ≥ 30 words).

We plotted the distribution of trust levels over

all responses (Figure 2) and found that the dis-

tribution is skewed toward trust, indicating that
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Figure 2: Distribution of utterance trust levels.

annotators tend to be more trusting than mistrust-

ing, with 33% of utterances trusted by all anno-

tators and 70% trusted by at least two, consistent

with the Truth Default Theory (Levine, 2014),

which posits that humans operate on a default

presumption that others are basically honest.

5 Textual and Prosodic Indicators of

Trust and Deception

In this section, we consider the following ques-

tions: What are the characteristics of trusted

and mistrusted speech? How do these compare

with the characteristics of truthful and deceptive

speech? Of all features raters believed to indicate

lies, which are valid cues and which not? Also,

what are the deceptive cues that raters failed to

perceive? We compared features of trusted and

mistrusted utterances and features of truthful and

deceptive utterances using paired t-tests. Labels

for trust were computed using majority vote (i.e.,

an utterance is considered trusted if at least 2 anno-

tators believed it is true, otherwise mistrusted).

We also compared utterances trusted by all and

mistrusted by all, observing differences in com-

plexity and prosodic features. For complexity fea-

tures, #verbs, #nouns, #num, concreteness ceased

to be significant, and type-token became signif-

icant with p < 0.05. For prosodic features, pitch

mean and pitch std ceased to be significant, and

intensity max became significant with p < 0.05.

Notice that all features that differ had relative

small significance levels p > 0.001. To prevent the

inflation of false positive errors caused by con-

ducting multiple comparisons, we present only

features that are statistically significant after

Benjamini–Hochberg correction (Benjamini and

Hochberg, 1995).

Disfluency

Social psychologists hypothesize that telling a lie

can be more cognitively demanding than truth-

telling (Hauch et al., 2015; M DePaulo et al.,

2003). False responses are hypothesized to be

less fluent than true responses because fabricating

a story takes more mental effort than recalling

an actual event. We considered a wide range

of features indicative of disfluencies and report

those that were statistically significant in either

the responses raters labeled as lies or those that

actually appear in lying responses in the corpus:

Filled Pauses: We curated a list of filler words

based on previous studies of deception (Enos,

2009; Bachenko et al., 2008); we included the

binary indicator and the total count.

Response Latency: For deception, this is defined

as the time span between the interviewer question

and the first non-filler word of the interviewee

response; for trust, it is defined as the time span

between the start of the audio and the first non-

filler word of the interviewee response. Note

that latency is defined differently for trust since

annotators only heard the segmented version of

the response which did not include the silence

between the question and the response.

False Starts: A type of speech disfluency where

a speaker begins an utterance or a phrase and then

self-corrects it; annotation of disfluencies was

included in the corpus transcription.

Repetitions: The number of identical, consecutive

words or bigrams (e.g., ‘‘he he has a...’’).

Table 2 shows which features appeared in

responses raters believed to be deceptive (Column

Trust) and which appeared in responses that

actually were deceptive (Column Deception).

Overall, our findings are consistent with

Zuckerman et al. (1981): Speech hesitations and

errors are perceived as signs for incompetence and

cues for deception. Of all the disfluency features,

filled pauses proved to be the strongest reliable

indicator of deception and this feature was also

perceived correctly by raters. For raters, response

latency was the strongest cue for mistrust among
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Feature name Trust Deception

has filled pause ↓↓↓↓ ↑↑↑↑
#filled pauses ↓↓↓↓ ↑↑↑↑
has false start ↓↓↓ ↑↑
response latency ↓↓↓↓
repetitions ↓↓↓↓ ↑

Table 2: Statistically significant indicators of trust

and deception for disfluency features. For this

and subsequent tables, the direction of the arrow

indicates whether the relationship is positive or

negative. The number of arrows indicates the

significance level, ↓: < 0.05, ↓↓: < 0.01, ↓↓↓:

< 0.001, ↓↓↓↓: < 0.0001.

all disfluency features; however, this was not a

reliable indicator of lies. This is also consistent

with the findings of Zuckerman et al. (1981) and

of Hartwig and Bond (2011). Word and bigram

repetition, as well as false starts, were traits of

speech raters mistrusted, even though they were

only weak cues to deception.

Complexity

Previous research suggests that deceptive state-

ments tend to be simpler and less complex than

true ones. This is because of the theory that cogni-

tive load is increased during deception, which can

limit creative and complex utterance production

(Hauch et al., 2015; M DePaulo et al., 2003;

Hartwig and Bond, 2011). Based on these findings,

one might expect lies to be less lexically diverse,

shorter, and less elaborate than true responses.

Do raters appear to use these cues in judging

deception? We used utterance length as the most

direct indicator of response complexity and also

counted the number of words with more than six

characters and the number of content words in

the utterance as a more fine-grained indication of

complexity. We used type-token ratio to capture

lexical diversity. We also considered word entropy

but found it to be strongly correlated with number

of words so decided not to include it as a separate

feature. In addition, we used Flesch reading ease

(Kincaid et al., 1975) to identify readability,

specificity score (Li and Nenkova, 2015) as an

indication of the level of detail on the sentence

level, and concreteness score (Brysbaert et al.,

2014) as an indicator of the level of details of the

speakers’ visual and haptic experiences. We also

used discourse markers (causation and conjunc-

Features Trust Deception

#sent ↓↓↓↓ ↑↑↑↑
#word ↓↓↓ ↑↑↑↑
#word per sent ↓↓↓ ↑↑↑↑
#word>6 ↓↓ ↑↑↑↑
type-token ↑↑↑
#verb ↓↓ ↑↑↑↑
#noun ↓↓ ↑↑↑↑
#adj ↑↑↑↑
#num ↓ ↑↑↑
#proper nouns ↓
concreteness ↓↓ ↑↑↑↑
specificity ↓↓ ↑↑↑↑
#conj ↑↑

Table 3: Statistically significant indicators of trust

and deception for complexity features.

tion) extracted from LIWC (Pennebaker and King,

1999), inspired by the hypothesis that liars might

use fewer discourse markers in their utterances

(Newman et al., 2003).

As shown in Table 3, overall, raters were more

likely to judge longer and more complex responses

as deceptive. Contrary to previous research, we

found that lies tended to be more complex

than true utterances: they tended to be longer,

included more specific Language, and were more

lexically diverse. They were also more concrete

and contained higher numbers of verbs, nouns,

adjectives, numbers, and conjunctions. Although

raters were apparently using these cues to predict

lies, they were relatively weak ones.

Sentiment

When lying, people may experience feelings of

guilt and fear of being caught, which may result

in their use of more negative words (M DePaulo

et al., 2003; Hauch et al., 2015; Ekman, 1988,

2009b). Abe et al. (2007) also found that the act of

deceiving is uniquely associated with neural struc-

tures associated with heightened emotion. We ex-

tracted positive emotion and negative emotion

using LIWC (Pennebaker and King, 1999). We

also extracted Pleasantness, Activation, and Imagery

scores for each utterance from the Dictionary of

Affect (DAL) (Whissell, 1989) by summing up the

scores of all words. We normalized all features to

reduce length effect.

As shown in Table 4, truthful utterances in

the corpus contained more visually descriptive
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Features Trust Deception

DAL-imagery ↑↑↑↑ ↓↓↓↓
DAL-activation ↑↑↑↑ ↓↓↓↓
DAL-pleasant ↑↑↑↑

Table 4: Statistically significant indica-

tors of trust and deception on sentiment

features.

Features Trust Deception

has hedge phrase ↓↓↓↓ ↑↑↑
#hedge phrases ↓ ↑↑↑↑
certain ↓↓↓

Table 5: Statistically significant indica-

tors of trust and deception on uncertainty

features.

words than deceptive utterances, and listeners

were more apt to rate utterances with descriptive

words as truthful. This is consistent with findings

in Masip et al. (2005) that providing sensory

details is more difficult when fabricating a story.

Truthful utterances also contained words with

higher activation scores than deceptive utterances,

and trusted utterances also had higher activation

scores than mistrusted ones. Consistent with

Hartwig and Bond (2011), raters judged more

pleasant utterances as truthful, although this was

not a valid cue in the CXD corpus.

Uncertainty

Our previous research (Levitan et al., 2018b) has

found that linguistic markers of certainty and un-

certainty are significant indicators of deception. So

we measured certainty and uncertainty in two ways:

words from LIWC’s ‘‘certainty’’ category as lin-

guistic markers of certainty (e.g., always, never)

and hedge words and phrases (e.g., possible,

sort of) (Ulinski et al., 2018) as indicators of

uncertainty. As shown in Table 5, there was a

match between rater trust and true responses for

hedge words and phrases. In the CXD corpus,

lies included hedge phrases more often than

true responses did, and we found that listeners

did mistrust responses containing hedge phrases.

However, although linguistic markers of certainty

in the corpus (e.g., ‘‘always,’’ ‘‘never’’—which

are the opposite of hedge words) were indicators

of truth, raters failed to perceive this.

Creativity

Do liars tend to rely upon certain ‘‘templates’’ or

generic responses when answering questions for

lack of a more detailed story to present? Do truth-

tellers provide more creative responses based on

reality? To measure creativity of responses, we

examined how similar a response was to other re-

sponses to the same question. For each question,

we converted all responses to TF-IDF vectors on

unigrams and bigrams. We built a lexical graph for

each question with responses as nodes and cosine

similaritiesbetweenTF-IDFvectorsasedgeweights.

Then we computed the eigenvalue centrality for

each node and used its negative value as the

measure of creativity. The intuition here is that

the more central a response is, the more similar it

is to its neighbors and thus less "creative."

We found liars to be more creative than truth-

tellers. We verified this result by counting the

number of neighbors within a certain cosine

distance in the TD-IDF space. This result is

robust against various threshold of cosine distance

(0.1–0.9 with 0.1 as the step size). The difference

was not due to response length, as we found

no correlation between creativity and response

length (spearman, ρ = 0.007, p > 0.05). However,

we did find that judgments were not influenced by

whether the response was creative or not. Perhaps

when people lie they try to tell a compelling

story, which results in a more creative response

regardless of length.

Prosody

Previous studies have shown that pitch maximum

and intensity maximum are significant indicators

of deception (Levitan et al., 2018a). We examined

whether prosodic features impacted listeners’

trust. We extracted a set of 14 features from Praat

(Boersma and Weenink, 2009), an open-source

audio processing toolkit, and z-score normalized

the features by gender. We used the total number

of words divided by duration of utterance as a

measure of speaking rate. As shown in Table 6,

raters judged speech that was loud (high intensity

min and mean) and had less variation in intensity

(low std) as trustworthy, perhaps because louder

speech can sound more confident. Trusted speech

also had higher degrees of jitter, shimmer, and

noise to harmonics ratio (NHR), which are mea-

sures of voice quality. Though not a valid indica-

tion of truth, faster speaking rate was also trusted,
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Features Trust Deception

speaking rate ↑↑↑↑
pitch max ↑↑↑↑ ↑↑↑↑
pitch min ↑↑↑↑ ↓↓
pitch mean ↑↑
pitch std ↑↑ ↑↑
intensity max ↑↑↑
intensity min ↑↑↑↑ ↓
intensity mean ↑↑↑↑
intensity std ↓↓↓↓ ↑
NHR ↑↑↑↑
jitter ↑↑↑↑
shimmer ↑↑↑↑

Table 6: Statistically significant indicators of trust

and deception on prosodic features.

perhaps because raters expected speakers to speak

more slowly when lying. This is consistent with

previous findings that, while faster speaking rate

is trusted, it is not an actual cue to trustworthiness

(Zuckerman et al., 1981; Hartwig and Bond,

2011). Listeners also trusted speech with higher

pitch (max, min, and mean) and greater pitch

variance (std). However, a higher pitch max and

greater pitch std were in fact signs of deception.

Of the 11 prosodic cues of mistrust, only 3

(27%) are actually valid indicators of deception;

of the 6 prosodic cues of deception, 3 (50%) are

also valid indicators of mistrust. This is in contrast

to the overlap we see across all features reported.

Of the 31 cues that are significant indicators of

mistrust, 20 (65%) are also valid indicators of de-

ception; of the 28 cues that are indicative of

deception in the data, 20 (71%) are actually indic-

ative of mistrust. This suggests that, although

there were several characteristics of trusted speech

that were in fact associated with truth, and also

many characteristics of mistrusted speech that were

associated with deception, prosodic cues to decep-

tion are far more difficult for humans to correctly

perceive than other cues.

5.1 Can We Predict Trust and Deception?

Based upon the analysis of the linguistic and

prosodic characteristics of trusted and deceptive

utterances above, we developed predictive models

of trust and deception to identify the relative

strengths of each type of feature. In addition, we

included additional speaker traits (gender, native

language, personality), which have also been shown

to identify significant differences in speaker trust

(Levitan et al., 2018a). We observed several dif-

ferences in trust behavior across these speaker

traits.

• Gender: We observed a gender difference

in trust (χ2(1) = 5.16, N = 5340, p < 0.05)

with female speakers trusted (71.50% of all

utterances) more than males (68.61%).

• Native language: We observed a native

language difference in speaker trust by raters

(χ2(1) = 30.22, N = 5340, p < 0.0001) with

native American English speakers trusted

(73.52% of all utterances) more than native

Chinese speakers (66.59%).

• Personality: We partitioned CXD speakers

into the NEO-FFI Five Factor personality

groups by binning personality scores into

"high,‘‘ ’’average,‘‘ and ’’low" in each

dimension as described in Levitan (2019).

We observed significant differences in

speakers’ responses trusted by raters in the

following dimensions:

– Conscientiousness: Speakers with low

scores (71.91%) were more trusted than

people with neutral (69.12%) or high

scores (67.66%). (χ2(2) = 7.22, N =
5340, p < 0.05)

– Openness: Speakers with high scores

(71.55%) were more trusted than people

with neutral (68.64%) or low scores

(67.40%). (χ2(2) = 6.40, N = 5340,

p < 0.05)

– Neuroticism: Speakers with high scores

(71.75%) were more trusted than people

with neutral (68.65%) or low scores

(66.48%). (χ2(2) = 8.93, N = 5340,

p < 0.05)

In addition, we included a large number of data-

driven features extracted from the spoken utter-

ances and from their text transcripts. In contrast to

the features that were analyzed in Section 5, which

were specifically motivated by the deception de-

tection literature, these data-driven features were

chosen because of their usefulness for a wide range

of NLP and speech processing tasks. Data-driven

features included: dependency triples backed off
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Feature Sets Precision Recall macro-F1

random 50.19 50.29 44.97

majority 40.27 50.00 44.61

data-driven (9538) 73.45 59.72 61.51

disfluency (5) 76.83 56.73 57.28

+ prosody (16) 78.90 (80.14) 60.52 (58.66) 62.74 (60.20)

+ sentiment (5) 78.75 (40.27) 61.19 (50.00) 63.61 (44.61)

+ uncertainty (3) 78.11 (40.27) 61.80 (50.00) 64.36 (44.61)

+ creativity (1) 77.94 (40.27) 61.90 (50.00) 64.48 (44.61)

+ complexity (16) 77.71 (55.86) 62.24 (50.31) 64.87 (45.77)

+ speaker traits (7) 77.55 (40.27) 63.34 (50.00) 66.10 (44.61)

all (9591) 74.26 60.34 62.37

Table 7: Prediction results for trust averaged over 5 cross-validation

splits. The number of features in each set is included in parentheses

in the feature set column. We incrementally added each feature set

and also included the individual performance of each feature set in

parentheses in the precision/recall/macro-F1 columns.

to parts of speech; one-hot encoded unigrams and

bigrams; average of word vectors using GloVe

embedding pretrained on Twitter; Interspeech

2013 (IS13) ComParE Challenge baseline feature

set, which contains 6373 features resulting from

the computation of functionals over low-level de-

scriptor contoursextracted fromopenSMILE (Eyben

et al., 2010). The prosodic feature analysis in

Section 5 was conducted on a small set of prosodic

features extracted using Praat. These were a subset

of the openSMILE feature set and were used for

clarity and interpretability, while the openSMILE

features used here are a larger set for classification

experiment.

Because of the low agreement of the annota-

tions, we took an approach similar to Danescu-

Niculescu-Mizil et al. (2013) and considered only

utterances that annotators reached consensus on

for experiments on trust. In total, 1762 utterances

were trusted by all annotators and 427 utterances

were mistrusted by all annotators. Due to the

small size of this dataset, we randomly divided

the speakers into five bins of similar size and

performed cross-validation with utterances from

speakers in each bin as the test data and the rest

as the training data; thus, learned models were

always evaluated on unseen speakers. On each

speaker split, we trained logistic regression models

and tuned penalty parameter C and the type of

regularization using five cross-validation folds on

the training data. We also experimented with linear

SVM, gradient boosting classifier, and random

forest classifier and found no improvement. We

normalized all features to have zero mean and unit-

variance. For data-driven features, feature selec-

tion was performed to prune the feature space.

Because this is an unbalanced task, we evaluated

our models using precision, recall, and macro-F1

score.

As shown in Table 7, we can predict whether

an utterance is trusted with an average macro-F1

score of 66.10%. We found that 5 disfluency fea-

tures combined with 16 prosody features outper-

formed 9538 data-driven features, demonstrating

the efficacy of the feature sets specifically de-

signed for this task. Prosody (macro-F1, 60.20%)

is the strongest feature set that is predicative of

trust, with intensity mean as the strongest feature

(45.50%) within that set. Disfluency (57.28%)

is the next strongest feature set, with response

latency (58.40%) as the strongest feature. Of the

individual feature sets, we found that speaker

traits, sentiment, uncertainty, and creativity did

not perform better than the random baseline, which

suggested they are not useful cues on their own

for predicting rater trust. However, we found that

including speaker traits helped improving the clas-

sifier’s performance when combined with other

features.

In addition to classifying trust, we trained a log-

istic regression model using these same features

to classify deception. Our best model achieved
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Figure 3: The most important 10 features for predicting

trust. The x-axis denotes the absolute values of the

feature weights averaged over 5 cross-validation splits.

Figure 4: The most important 10 features for predicting

deception. The x-axis denotes the absolute values of the

feature weights averaged over 5 cross-validation splits.

an F1 score of 55.5% using a combination of

disfluency, prosody, and uncertainty features. We

note that this performance is substantially lower

than the trust classification results, suggesting

that distinguishing between truthful and deceptive

utterances is much harder than distinguishing

between utterances trusted and mistrusted by all

annotators. However, we also note that this model

was not optimized for deception classification

(e.g., no feature selection or parameter tuning)

and was trained on a very small amount of data.

Our previous work obtained better performance

at deception detection (69.8 F1) using more data

and using models that were optimized for the

task (Levitan, 2019). The purpose of this current

experiment was to directly compare trust and

deception classification using the same data and

features.

Figures 3 and 4 show the most important 10 fea-

tures for predicting trust and deception. To com-

pute feature importance, we averaged the absolute

values of the feature weights across the 5 cross-

validation splits. We found that DAL-pleasant,

has filled pauses, intensity mean, and type-token

Features Successful?

1. #sent ↓↓↓↓
2. response latency ↓↓↓↓
3. has filled pause ↓↓↓↓
4. #filled pauses ↓↓↓↓
5. repetitions ↓↓↓↓
6. intensity min ↑↑↑↑
7. intensity mean ↑↑↑↑
8. intensity std ↓↓↓↓
9. speaking rate ↑↑↑↑
10. shimmer ↑↑↑↑

Table 8: Top 10 statistically significant

features for lies that successfully deceived

human judges.

are important for both prediction tasks. Of the

top three features in either task, speaking rate and

response latency are only important for predicting

trust, and DAL-activation and creativity are only

important for predicting deception.

5.2 The Mechanism Behind a Successful Lie

To better understand why people are ‘‘vulnerable’’

to deceptive utterances, and to understand the

characteristics of successful lies, we ran paired

t-tests with Benjamini–Hochberg correction to

compare the linguistic and prosodic features of

successful vs. unsuccessful lies. As shown in

Table 8, we found that successful lies differed

most from unsuccessful lies in that they contained

fewer sentences (1) and were shorter in duration

(2). Successful lies were also louder (6, 7), faster

(9), had fewer filled pauses (3, 4), varied less

in intensity (8), and were harsher (10) in voice

quality. When people were more successful at

lying, they tended to respond quicker (2) and did

not repeat themselves (5).

We also conducted this analysis for classifier

judgments, to understand the characteristics of lies

that successfully deceived a lie detection classifier.

Table 9 shows the top features that discrimi-

nate between successful and unsuccessful lies.

There are several features that were similar for

both human and machine judgments. For example,

successful lies had fewer filled pauses (2, 3) and

were shorter in duration (5) and number of sen-

tences (9). Some features, however, were unique to

deceiving a classifier. For example, lies that suc-

cessfully deceived the deception classifier were
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Features Successful?

1. creativity ↓↓↓↓
2. has filled pause ↓↓↓↓
3. #filled pauses ↓↓↓↓
4. specificity ↓↓↓↓
5. duration ↓↓↓↓
6. pitch max ↓↓↓↓
7. #word ↓↓↓↓
8. #word per sent ↓↓↓↓
9. #sent ↓↓↓↓
10. concreteness ↓↓↓↓

Table 9: Top 10 statistically significant

features for lies that successfully deceived

a deception classifer.

less creative (1) and less specific (4). It seems that

different kinds of lies were successful at deceiving

humans and an automated deception classifier.

5.3 Individual Differences in Lie

Detection Ability

We found that gender was not significantly

related to accuracy (Mann–Whitney U, p > 0.05),

but female participants took longer to judge

(Mann–Whitney U, p < 1e-20). In addition,

we did not observe female participants to be

more or less trusting than male participants

(Mann–Whitney U, p > 0.05) or significantly

different from male participants in their level

of confidence (Mann–Whitney U, p > 0.05).

Raters with previous job experience related to

lie detection did not perform better than those

without such experience (1-sample t-test, p >

0.05), but they did take longer to make judgments

(1-sample t-test, p < 0.05). They were at the same

level of trust (1-sample t-test, p > 0.05) and same

level of confidence (1-sample t-test, p > 0.05) as

those without prior experience. This is consistent

with previous findings that persons in the legal

professions are no better at detecting deception

than others (Aamodt and Custer, 2006).

6 Characterizing Strategies for

Detecting Lies

We summarized annotator-provided strategies for

detecting lies based on previous work in deception

detection (Hauch et al., 2015; M DePaulo et al.,

2003; Albrechtsen et al., 2009; Blair et al., 2010;

Vrij et al., 2006) and annotators’ responses.

The strategies were manually labeled by domain

experts with previous research experience in

deception detection and all ambiguities were

discussed by three people. For each strategy, we

computed the average percentage of utterances

judged correctly by annotators who reported using

this strategy and compared it with the average

percentage of utterances judged correctly across

all annotators. We performed the same analysis

for the percent of utterances the raters believed

to be true (trusted). In addition, we reported the

percentage of annotators who claimed to have used

these strategies in Table 10. Prosody, response

latency, pauses, disfluency, and intuition were the

top five strategies mentioned by annotators, and

in Section 5 we verified that the set of features

related to prosody, response latency, pauses, and

disfluency were indeed significant indications of

trust. As shown in Table 10, none of the reported

strategies was associated with an improved de-

ception detection performance. However, we did

find that using speaker ‘‘confidence’’ as a cue

to deception was negatively associated with the

annotators’ performance.

Which strategies are reported by raters who

are more or less trusting over all?

We found that people who reported using re-

sponse latency, pauses, and disfluency when judg-

ing deception trusted a smaller percentage of

utterances. This could be because of the high

prevalence of disfluencies in spontaneous speech,

regardless of whether the utterance was deceptive

or not. We also found that raters who used the

level of detail in a response as a cue were more

mistrusting in their judgments. Conversely, those

who used clarity of a response and prior domain

knowledge were more trusting.

Does complex reasoning correlate with

accuracy in lie detection or trust level?

We examined two measures of player behavior

that approximate complex reasoning: How long do

people take to make judgments? How many strat-

egies do they report in total?

We measured how long people took to judge

responses using the time interval between the end

of the audio clip and the time that annotator

entered his/her response. We found no correlation

between response time and the percentage of
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Strategy %Correct %Trust %Used Example

Prosody −0.25 −0.17 45.74% voice tone and pattern

Response latency +0.11 −2.13∗∗ 30.71% listened for delays in the speakers response

Pauses −0.52 −2.95∗∗ 24.66% I listened for pauses to see...

Disfluency −0.59 −1.88∗ 22.87% If they said ‘‘um’’ I thought they were lying

Intuition +1.09 +0.52 22.87% My gut instinct...

Details +0.81 −2.95∗ 17.26% ...how much or how little detail they used...

Prior +1.95 +2.85∗ 13.90% How realistic the answers were

Style −0.65 +0.86 11.88% Anxiety in voice

Confidence −2.83∗ −1.60 11.21% paying attention to the person’s confidence..

Duration −0.94 −2.80 9.41% length of answer

Speaking rate +0.39 −0.64 6.72% Speed of answer

Speaker traits +0.07 −0.00 6.05% how relaxed they were

Lexical +1.53 +1.00 5.16% Look for context around the words

Laughter +1.04 +0.40 1.79% if they laugh its false

Clarity +2.52 +9.71∗ 1.35% People usually give more and clearer details...

Breathing +5.33 −2.73 1.12% I tried to notice when they breathe so deeply..

Repeat question +0.36 +6.10 0.67% I id notice one person repeat the question..

Contradictions +0.04 +1.24 0.67% ...the person blatantly contradicted themselves...

Repetition +1.24 +6.52 0.44% repetition when lying

Table 10: For each strategy, we show the increase or decrease in the average percentage of utterances

trusted/judged correctly for annotators reporting that strategy compared with all annotators. We

also show percentage of annotators reporting the strategy and a sample response from one. For %

correct and % trust, the statistical significance is computed by comparing the annotators who said

they used the strategy and annotators who did not with a Mann–Whitney–Wilcoxon U test. * p <

0.05; **; p < 0.01; ***; p < 0.001.

answers correct. However, we did find a neg-

ative correlation between response time and the

percentage of answers trusted (spearman, ρ =
−0.101, p < 0.0001). We found a similar result

using the number of strategies as a proxy for

complex reasoning. There was no correlation

between the number of strategies reported and

the accuracy score, but we did discover a negative

correlation between the percentage of answers

trusted and the number of strategies raters reported

using (spearman, ρ = −0.133, p < 0.01). These

findings indicate that complexity of reasoning

process does not correlate with lie detection per-

formance but negatively correlates with trust level.

7 Conclusion

In this paper we presented a framework for

understanding human deception perception. We

created a lie detection game, LieCatcher, and used

it to collect large-scale judgments of deceptive

speech. We analyzed a large set of linguistic

and prosodic cues to deception and identified

some mismatches between the responses people

perceived as deceptive and those that were actual

deceptive responses. Particularly notable in these

mismatches were prosodic features, suggesting

that humans have difficulty interpreting prosodic

cues to deception.

We built a predictive model of trust with a

macro-F1 score of 66.1%, and showed that

disfluencies and prosody were most useful for

predicting trust. We summarized and manually

annotated annotator-provided strategies and

found that none of them were associated with

an improvement in lie detection ability; however,

some were associated with raters’ tendency to

trust. The identified mismatches between features

of trusted vs. deceptive speech, as well as the

lack of useful strategies reported by raters, shed

new light on the poor performance of humans at

deception detection. In addition, we showed that

complex reasoning did not correlate with accuracy

in deception detection but negatively correlated

with trust level.

This work has implications for several appli-

cations in multiple disciplines. In business, poli-

tics, and interpersonal relationships, it is critical

to cultivate the trust of others. Our empirically

identified characteristics of trusted language

provide useful information for training individuals
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who want to speak in a more trustworthy manner.

Furthermore, we are interested in using these

findings to synthesize voices that are likely to

be trusted by others and we have already begun

that process. Potential applications that can benefit

from trustworthy voices include dialogue systems

and robots, especially for assistive technologies

(e.g., for individuals with disabilities, elderly

individuals) where trust is crucial for successful

interactions. Our LieCatcher game was a useful

framework for studying perceived deception in

an engaging format. The experiments presented

in this paper were conducted using stimuli from

the CXD corpus. In future experiments, we plan

to conduct a cross domain analysis to see if

these findings generalize to other domains and

corpora. Because of the lack of corpora with

annotations of human perceptions of deception,

we plan to conduct similar perception studies

using the LieCatcher framework to enable this

cross-domain analysis. In addition, the LieCatcher

game can be extended to explore the perception of

other aspects of spoken language. We are currently

exploring its use for training purposes. In the

future, we will provide more immediate feedback

to players about their judgments for each response,

with the goal of training practitioners to improve

their performance at deception detection.
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