
Theoretical Limitations of Self-Attention in Neural Sequence Models

Michael Hahn

Stanford University

mhahn2@stanford.edu

Abstract

Transformers are emerging as the new work-

horse of NLP, showing great success across

tasks. Unlike LSTMs, transformers process

input sequences entirely through self-attention.

Previous work has suggested that the compu-

tational capabilities of self-attention to pro-

cess hierarchical structures are limited. In this

work, we mathematically investigate the com-

putational power of self-attention to model

formal languages. Across both soft and hard

attention, we show strong theoretical limita-

tions of the computational abilities of self-

attention, finding that it cannot model periodic

finite-state languages, nor hierarchical struc-

ture, unless the number of layers or heads in-

creases with input length. These limitations

seem surprising given the practical success of

self-attention and the prominent role assigned

to hierarchical structure in linguistics, suggest-

ing that natural language can be approximated

well with models that are too weak for the for-

mal languages typically assumed in theoretical

linguistics.

1 Introduction

Transformers are emerging as the new work-

horse of NLP, achieving the state-of-the-art in

tasks such as language modeling, machine transla-

tion, and creating pretrained contextualized word

embeddings. Eschewing recurrent computations,

transformers are entirely based on self-attention,

performing their computations largely in parallel.

This enables them to scale to very long sequences

(Vaswani et al., 2017; Dai et al., 2019; Child et al.,

2019). On the other hand, it has been suggested

that this limits their expressiveness, as they can-

not process input sequentially (Tran et al., 2018;

Dehghani et al., 2019; Shen et al., 2018a; Chen

et al., 2018; Hao et al., 2019). One aspect thought

to be challenging for sequence models is hierarchi-

cal structure and recursion. Hierarchical structure

is widely thought to be essential to modeling nat-

ural language, in particular its syntax (Everaert

et al., 2015). Consequently, many researchers have

studied the capability of recurrent neural net-

work models to capture context-free languages

(e.g., Kalinke and Lehmann, 1998; Gers and

Schmidhuber, 2001; Grüning, 2006; Weiss et al.,

2018; Sennhauser and Berwick, 2018; Korsky

and Berwick, 2019) and linguistic phenomena

involving hierarchical structure (e.g., Linzen et al.,

2016; Gulordava et al., 2018). Some experimen-

tal evidence suggests that transformers might not

be as strong as LSTMs at modeling hierarchical

structure (Tran et al., 2018), though analysis stud-

ies have shown that transformer-based models

encode a good amount of syntactic knowledge

(e.g., Clark et al., 2019; Lin et al., 2019; Tenney

et al., 2019).

In this work, we examine these questions from

a theoretical perspective, asking whether models

entirely based on self-attention are theoretically

capable of modeling hierarchical structures involv-

ing unbounded recursion. Formally, we study their

ability to perform two computations that are

thought to be essential to hierarchical structure:

First, their ability to correctly close brackets, a

basic problem underlying all nonregular context-free

languages and formalized by the DYCK language

(Chomsky and Schützenberger, 1963). Second,

their ability to evaluate iterated negation, a basic

component of the task of evaluating logical

formulas, amounting to evaluating the PARITY

of bitstrings. We show that neither of these

problems can be solved by transformers and

similar models relying entirely on self-attention,

unless the number or size of parameters increases

with the input length. Besides representing basic

building blocks of hierarchical structure, these

languages also represent large classes of regular

156

Transactions of the Association for Computational Linguistics, vol. 8, pp. 156–171, 2020. https://doi.org/10.1162/tacl a 00306
Action Editor: Yoav Goldberg. Submission batch: 7/2019; Revision batch: 11/2019; Published 2020.

c© 2020 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

https://doi.org/10.1162/tacl_a_00306

and context-free languages, meaning that our

results carry over to classes of other formal

languages. Our results therefore also yield more

generally limitations on the ability of self-attention

to model finite-state languages and context-free

languages.

Although theoretical work has investigated the

power of recurrent neural networks in depth

(e.g., Siegelman and Sontag, 1995; Bengio et al.,

1994; Weiss et al., 2018; Miller and Hardt,

2019, Merrill, 2019), the theoretical study of self-

attention has begun only recently (Pérez et al.,

2019; Hsieh et al., 2019). Our study provides the

first theoretical results on limitations in the power

of self-attention. We will provide results both for

hard and soft attention settings, using different

proof methods. Our results are strongest in the

hard attention setting, holding without further

assumptions on activation functions and parameter

norms. In the soft attention settings, we still ob-

tain results assuming smoothness of activation

functions as used in practical implementations.

After discussing related work (Section 2), we

introduce self-attention (Section 3) and two funda-

mental formal languages representing regular and

context-free languages (Section 4). We then prove

that self-attention cannot model these languages

using either hard (Section 5) or soft (Section 6) at-

tention. Finally, we discuss our results (Section 7).

2 Related Work

Prior Work on Self-Attention Transformers

were proposed by Vaswani et al. (2017), previous

related work using self-attention includes Cheng

et al. (2016), Parikh et al. (2016), Paulus et al.

(2018), and Lin et al. (2017). It has been a recurrent

suggestion in the literature that transformers,

relying entirely on self-attention, are restricted

computationally, as they cannot process their input

sequentially. Dehghani et al. (2019) suggested

that transformers cannot compute functions that

require sequential processing of input, without

providing further details or proofs. Similarly,

Shen et al. (2018a), Chen et al. (2018), Hao et al.

(2019) have introduced extensions of transformers

with recurrence, citing similar intuitions about

limitations of transformers. Our results provide

the first explicit formalization of these limitations.

A few studies have experimentally tested the

abilities of transformers to learn structures. Most

related to our work, Tran et al. (2018) compared

the ability of transformers and LSTMs to

learn hierarchical structure, specifically, English

subject-verb agreement and evaluating logical

formulas. Their experimental results suggested

that LSTMs are better at learning hierarchical

structure. Yang et al. (2019) experimentally

investigated the power of self-attention to extract

word order information, finding differences

between recurrent and self-attention models;

however, these were modulated by the training

objective. Lin et al. (2019) and Tenney et al.

(2019) show that BERT (Devlin et al., 2019)

encodes syntactic information.

Theoretical study of transformers was initiated

by Pérez et al. (2019), who theoretically studied

the ability of Seq2Seq transformers to emulate

the computation of Turing machines. While we

consider incremental modeling of sequences,

where the number of computation steps is

bounded by the input length n, they study the

setting in which the transformer computes an

unbounded number of autoregressive decoding

steps, not bounded in the input length n. Even

more recently, and more closely related to our

interest here, Hsieh et al. (2019) studied the

adversarial robustness of transformers. Although

they focused on experiments on NLP tasks, they

also provided a theoretical analysis, showing that

a single self-attention layer with a single head will

be robust against input perturbations, assuming

that input embeddings are drawn uniformly from

the unit sphere. One of our results, Lemma 5,

can be seen as considerably widening the scope

of their result, both by avoiding distributional

assumptions, and by applying to transformers

with arbitrary numbers of heads and layers.

Investigating the Power of Sequence Modeling

Architectures The computational power of re-

current neural networks has been a focus of study.

A particular focus has been on their ability to

learn non-regular context-free languages, thought

to provide simple models of recursion and hierar-

chical structure as found in natural language.

A range of studies has experimentally examined

the ability of recurrent networks to model coun-

ter languages such as anbn (Kalinke and Lehmann,

1998; Gers and Schmidhuber, 2001; Cartling,

2008; Weiss et al., 2018; Suzgun et al., 2019).

Other work has experimentally studied the per-

formance of recurent architectures on learning

157

to recognize well-bracketed strings, a similar

but more challenging problem (Sennhauser and

Berwick, 2018; Skachkova et al., 2018; Bernardy,

2018). Beyond modeling formal languages, another

line of work has studied the ability of LSTMs

to model hierarchical structure as occurring in

realistic natural language data (Linzen et al., 2016;

Gulordava et al., 2018).

Recently, Merill (2019) and Korsky and Berwick

(2019) theoretically studied several types of recur-

rent networks. Merrill (2019) showed that—in

the finite precision setting—LSTMs recognize a

subset of the counter languages, whereas GRUs

and simple RNNs recognize regular languages.

Korsky and Berwick (2019) showed, among other

results, that arbitrary-precision RNNs can emulate

pushdown automata, and can therefore recognize

all deterministic context-free languages.

A related, though different, strand of research

has investigated the power of neural networks

to model Turing machines. A classical result

(Siegelman and Sontag, 1995) states that—given

unlimited computation time—recurrent networks

can emulate the computation of Turing machines.

Very recently, Pérez et al. (2019) have shown

the same result for both (argmax-attention)

Transformers and Neural GPUs. The crucial

difference between these studies and studies of

language recognition is that, in these studies,

the networks are allowed to perform unbounded

recurrent computations, arbitrarily longer than the

input length.

3 Self-Attention

Here we define self-attention as used in

Transformers, following Vaswani et al. (2017),

with some changes in the notation to simplify

arguments in our proofs. We have an input

x = x1 . . . xn, where all xi come from some finite

alphabet V , and xn is an end-of-sequence symbol.

This input is then encoded into a sequence of input

embeddings v1, . . . , vn using some embedding

map V → R
k. We furthermore have a sequence

p1, p2, . . . of positional embeddings pi ∈ R
k.

These are independent of the input x, and can

be computed through some predefined scheme,

or could be learned for each position occurring

in the training data (Vaswani et al., 2017).

Input and positional embeddings are combined

(e.g., via addition or concatenation) to vectors

y
(0)
i = f(vi, pi) (i = 1, . . . , n), which we will

refer to as Layer 0.

A transformer has a fixed number L of layers;

the activations y
(k)
i at position i of the k-th layer

(k = 1, . . . , L) are defined as follows. Each layer

has a set of H attention heads; we first compute

attention scores for the h-th head:

a
(k,h)
i,j = fatt

k,h

(

y
(k−1)
i , y

(k−1)
j

)

(1)

where fatt
k,h combines the activations from the pre-

vious level into an attention score. This can be

implemented, for example, using dot product or

additive attention. Specifically, the implementa-

tion described by Vaswani et al. (2017, p. 5)

linearly transforms the position-wise activations

y
(k−1)
i separately into ‘query’ vectors Qy

(k−1)
i

and ‘key’ vectors Ky
(k−1)
i (for some parameter

matrices K,Q); the attention score a
(k,h)
i,j is then

implemented as a scaled dot product of query

Qy
(k−1)
i and key Ky

(k−1)
j .

The activation of the head is computed by

weighting according to attention weights â
(k,h)
i,j :

bi,k,h =

n
∑

j=1

â
(k,h)
i,j y

(k−1)
j (2)

We note that the implementation described by

Vaswani et al. (2017) first linearly transforms

the activations y
(k−1)
j into ‘value vectors’ before

multiplying with â
(k,h)
i,j ; this is mathematically

equivalent to applying this linear transformation

to bi,k,h as part of the map fact we describe below.

In the soft attention version, these weights â
(k,h)
i,j

are obtained by the softmax operation: â
(k,h)
i,· =

softmax(a
(k,h)
i,·). In the hard attention variant

(Pérez et al., 2019), one takes the actual maximum

attention values: â
(k,h)
i,j = δ

j,argmaxj′ a
(k,h)

i,j′
.1

The per-position activations are then computed

as

y
(k)
i := fact(y

(k−1)
i , bi,k,1, . . . , bi,k,H) (3)

where fact is implemented as a fully-connected

feedforward network with a skip-connection

(Vaswani et al., 2017) from y
(k−1)
i to y

(k)
i .

1When there are multiple positions with maximal attention

weight, we will assume that the one occurring first in the

sequence is chosen. Our analysis also works under other

schemes of resolving ties, such as random selection.

158

Hard and Soft Attention There is a choice

between soft attention and hard attention (Shen

et al., 2018b; Pérez et al., 2019). The one prior

theoretical study of transformers (Pérez et al.,

2019) assumes hard attention. In practice, soft

attention is easier to train with gradient descent;

however, analysis studies suggest that attention

often concentrates on one or a few positions in

trained transformer models (Voita et al., 2019;

Clark et al., 2019) and that the most important

heads are those that clearly focus on a few

positions (Voita et al., 2019), suggesting that

attention often behaves like hard attention in

practice. We will examine both hard (Section 5)

and soft (Section 6) attention.

Formalizing Language Recognition We con-

sider the problem of language recognition, the

task of classifying input strings as belonging to

or not belonging to a formal language. Follow-

ing Weiss et al. (2018), we formalize this as the

sequence-to-sequence task of mapping words to

labels 1 (‘in the language’) and 0 (‘not in the

language’). Following the construction of trans-

formers in sequence-to-sequence tasks (Vaswani

et al., 2017), we compute a softmax probabil-

ity vector for this label from the last activation

y
(L)
n , obtained after reading the end-of-sequence

symbol.

4 Regular and Context-Free Languages

We will analyze the ability of transformers to

recognize regular and context-free languages,

using two prominent representatives.

PARITY is the set of bit strings such that the

number of 1s is even. This is a very simple regular

language, recognized by a finite-state automaton

with two states. The regular languages form the

lowest layer of the Chomsky hierarchy, and even

simple RNNs can compute all regular languages.

Within the regular languages, a particularly basic

class is formed by the counter-free or star-free

languages (McNaughton and Papert, 1971), which

can be expressed by regular expressions using

only union, complementation, and concatenation.

In some sense, PARITY is the simplest non-counter-

free, or periodic, regular language. This means, if

transformers cannot compute PARITY, they cannot

recognize (almost)2 any regular language that

is not counter-free. In the context of natural

language, PARITY naturally arises in the context of

evaluating logical formulas: Evaluating iterated

negations is tantamount to counting whether the

number of nested negations is even or odd. If

transformers cannot compute parity, they also

cannot evaluate logical formulas accurately.

2DYCK is the languageof correctlybracketed words

consisting of two types of brackets (‘(’, ‘)’ and ‘[’,

‘]’). This language is a very simple model of hier-

archical structure. The Chomsky-Schützenberger

theorem (Chomsky and Schützenberger, 1963)

states that any context-free language arises from a

variant of 2DYCK with multiple types of parenthe-

ses through intersection with a regular language

and homomorphisms. Consequently, the ability of

LSTMs to model languages such as 2DYCK has

been an object of experimental study (Sennhauser

and Berwick, 2018; Skachkova et al., 2018;

Bernardy, 2018). Our theoretical results will show

that transformers are strongly limited in their

ability to model 2DYCK, including variants with

fewer or more types of parentheses.

5 Results for Hard Attention

We will start our analysis with the study of hard

attention (Pérez et al., 2019). We show that hard

attention transformers cannot represent PARITY or

2DYCK. To keep the results maximally general,

our analysis will use combinatorial arguments and

make no assumption about, for example, activation

functions and the norms of parameter matrices.

In fact, we do not even assume that the internal

position-wise representations y
(k)
j in each layer

are vector-valued, as opposed to, say, discrete

structures.

We aim to prove that no hard-attention trans-

former is capable of representing PARITY or

2DYCK, by constructing—for any given candidate

transformer model—a set of input words that this

model will have to misclassify. The basic idea (see

Figure 1) behind the proof is that, by fixing a small

fraction of the input symbols in a particular way,

we can ‘‘capture the attention’’ of the transformer

in such a way that it ends up ignoring almost

all remaining input symbols. This shows that the

2Inability to compute PARITY entails that they cannot

recognize any regular language whose syntactic morphism is

not quasi-aperiodic (Barrington et al., 1992, p. 488).

159

Figure 1: Iteratively reducing the layers of a transformer by fixing a few input symbols. (a) By applying a suitable

input restriction, we fix a small number of input symbols, ‘attracting’ attention from the first layer to a few inputs.

(b) After this step, Lemma 4 ensures that each activation in the first layer only depends on a small number of input

symbols that it can attend to (solid connections), plus the input that feeds into it via a skip connection (dashed

connections). (c) We again fix a few input symbols in such a way as to ‘attract’ attention of layer-2 heads to some

layer-1 activations. As a result, each layer-2 activation only depends on a small number of layer-1 activations,

again by Lemma 4. (d) After this step, each layer-1 activation only depends on a few inputs, and we can remove

layer 1.

transformer could not have solved a problem such

as PARITY, where every single input bit matters.

In order to formalize the idea of ‘‘fixing’’

a few input bits, we introduce the notion of

input restrictions: An input restriction (short:

restriction) ρ is a family of maps ρn :
{1, . . . , n} → {∗, 0, 1} for n ∈ N. An input

restriction ρ is applied to a transformer by fixing,

when the input length is n, the input symbol xi
to the value ρn(i) whenever ρn(i) ∈ {0, 1}. The

output value of the resulting transformer only

depends on those inputs xi such that ρn(i) = ∗.

The idea of using such input restrictions has

been successful in the theory of Boolean circuits

(Furst et al., 1984; Hastad et al., 1994). In

particular, Furst et al. (1984) famously used

it to prove that polynomial-size bounded-depth

Boolean circuits with ∧,∨, and ¬ gates cannot

compute PARITY. We describe a new method to

prove existence of suitable restrictions appropriate

to transformers, as the proof approaches from

the Boolean circuit literature do not seem to gener-

alize to networks with real-valued activations.

The following result formalizes the claim that

any transformer can be forced to ignore input bits

by fixing some inputs in a particular way:

Theorem 1. Let any hard attention transformer

be given, and let C ∈ (0, 1). Then there is a

restriction ρ and an integer c > 0 such that

|{i ≤ n : ρn(i) = ∗}| ≥ Cn

(for all sufficiently large n) and such that the

function computed by the transformer on the

restricted input depends only on ≤ c inputs,

independent of input length n.

We first show how this entails that transformers

do not recognize the two formal languages:

Corollary 2. Transformers with hard attention

cannot model PARITY or 2DYCK.

Proof. For PARITY, after applying a restriction, the

transformer’s output depends on c inputs. An input

of sufficiently large size n thus has unrestricted

inputs that do not influence the output. But flip-

ping a single input bit changes the value, so the

transformer’s output cannot match membership in

PARITY beyond chance for such n.

For 2DYCK, we show that hard attention

transformers cannot even solve the simpler vari-

ant 1DYCK with a single bracket type (‘(’, ‘)’).

We first restrict the first 0.2n input positions to

‘(’ and the last 0.2n positions to ‘)’. After then

applying the restriction provided by the theorem

with C = 0.9, the resulting restricted input will

still be compatible with both well-bracketed and

non-well-bracketed inputs, but the prediction will

depend only on a bounded number of positions.

As the prediction depends on only a bounded num-

ber of positions, this shows the transformer could

not recognize 1DYCK, and thus also not 2DYCK. �

Discussion It may be instructive to compare to

similar languages that can be modeled by hard-

attention transformers. First, 1∗ (over the alphabet

160

{0, 1}) is the regular language of words that have

only ones and no zeroes; its minimal automaton

has two states, like PARITY. A transformer can

recognize this by having an attention head that

attends to a position with zero input if it exists, and

rejects if the head found such a position. Second,

anbn is a very basic context-free language.

It can be recognized using suitable positional

embeddings by (1) having one head attend to the

largest position n, (2) using this information to

attend to any b at position < n/2 or any a at

position ≥ n/2. If such a symbol is found, the

model rejects, else it accepts. A crucial difference

between these languages and PARITY / 2DYCK is that

fixing a few inputs in any part of an input string

can easily force nonmembership, e.g., a single

0 for 1∗, and an a in the second half for anbn.

Therefore, such simple languages are immune to

the depth reduction method, and indeed can be

modeled perfectly with self-attention.

In general, the depth reduction method applies

to languages that are sufficiently sensitive: If, for

some C ∈ (0, 1), fixing Cn input symbols cannot

force a word to be inside or outside of the language,

then hard-attention transformers cannot recognize

this language. Sensitivity of functions has been

studied in computational complexity (Boppana,

1997; Gopalan et al., 2016) and more recently

linked to generalization in feedforward networks

(De Palma et al., 2018). We intend to investigate

these connections in future work.

Proof Idea of the Theorem Our approach for

proving Theorem 1 will be to construct input

restrictions in a layerwise manner, starting from

layer 1. In order for this construction to go through,

the main challenge is to construct a suitable

restriction at a given layer: As shown in Figure 2,

this restriction should only affect a few input

bits (about (1 − C1/L)n many input bits), while

forcing each attention head in the first layer to

ignore all but c input bits. Perhaps surprisingly,

this is possible; the idea is to fix input bits that

achieve high attention scores for several heads,

so that input bits that cannot achieve such high

attention scores will be ignored.

Once we have shown that such a restriction

always exists, we can use this technique to itera-

tively remove layers, as illustrated in Figure 1:

After we have applied the first such restriction,

each of the heads in the first layer will only depend

on a bounded number c of input positions. In the

Figure 2: Finding a good input restriction: (a) Every

attention head in the first layer could potentially attend

to any input bit. (b) Perhaps surprisingly, one can fix

a small number of input bits in such a way that each

layer-1 attention head can only possibly attend to c
(here, c = 1) inputs, and ignores all other inputs. Each

activation vector y
(1)
j in the first layer then only depends

on the H · c inputs that its H (here, H = 1) attention

heads can attend to, plus the input xj that feeds into it

via a skip-connection.

second step, we apply the same argument to the

heads in the second layer, so that each head in the

second layer only depends on a bounded number

c′ of heads in the first layer. After this step, we

can collapse the first layer into a collection of

feedforward networks that transform a bounded

number ≤ cc′ of input positions into an activation

y
(0)
i of the lowest layer. After this step, the first

layer has been entirely removed. Iterating this

argument, we remove all layers until the prediction

output only depends on a bounded number of input

positions, bounded independently of input length.

We now make these ideas formal. After the

removal of the first layer of a transformer, the

resulting structure is not a transformer any more,

as each head in the lowest layer now depends on

a combination of input positions. We introduce a

technical definition to make this concept precise:

Definition 3. (c-Transformer). Let c be a posi-

tive integer. A c-transformer with L layers is one

in which the layer-0 activations y
(0)
j depend on the

embeddings not just at one position j, but are a

function of the embeddings at ≤ c input positions:

y
(0)
j = f inp

n,j ((vij,n1
, pij,n1

), . . . , (vij,nc
, pij,nc

)) (4)

for some indices ij,ns ∈ {1, . . . , n} (s = 1, . . . , c).

With this technical notion, we show that we

can reduce layers, iteratively removing the lowest

layer until no self-attention layer is left:

Lemma 4. (Depth Reduction Lemma). Given a

c-transformer with L layers, and some restriction

ρ such that

|{i ≤ n : ρn(i) = ∗}| ≥ Cn (5)

161

(C ∈ (0, 1]) for all sufficiently large n. Choose

any C ′ < C . Then there is a restriction ρ′ such

that

|{i ≤ n : ρ′n(i) = ∗}| ≥ C ′n (6)

for all sufficiently large n, and such that the

resulting function is computed by a (c · (2ckH +
1))-transformer withL−1 layers, for some integer

k (depending on C ′), where H ≥ 1 is the number

of attention heads at each layer and position.

The lemma implies Theorem 1:

Proof of Theorem 1. The output of the transformer

is determined by the last activation y
(L)
n . Apply

the Depth Reduction Lemma iteratively, choosing

the constants C ′ in the lemma appropriately, until

only the zero-th layer remains. Then, after apply-

ing the resulting restriction, the final activation

y
(L)
n is now computed by y

(0)
n , which is determined

by a bounded number of input bits. �

5.1 Proving the Depth Reduction Lemma

In this section, we will prove the Depth

Reduction Lemma. We construct the restrictions

ρ′n separately for each n, on the basis of the

given restriction ρn. In this process, we will only

restrict additional bits, that is, the only case in

which ρ′n(i) can be different from ρn(i) is that

ρ′n(i) may be 0 or 1 where ρn(i) was ∗. The

construction proceeds in three stages ρ
(1)
n , ρ

(2)
n ,

and ρ
(3)
n = ρ′n, which all may restrict additional

bits. At the end, we verify that the conclusion of

the Depth Reduction Lemma is satisfied for the

resulting restriction ρ′n.

Throughout the proof, we will need a few

parameters independent of n: First, we need an

integer k that has to be sufficiently large for the

proof to succeed, and will be fixed later in the

proof. Second, we need parameters η ∈ (0, 12),
q ∈ (0, 1) and δ > 0; we will also fix the specific

values later in the proof.

Stage 1 We start from ρn and first modify it into

a restriction ρ
(1)
n such that each input bit serves

as an input to at most ≤ 1
η
c/C many different

layer-0 heads, when applying ρ
(1)
n . Assume the

number of input bits feeding into more than 1
η
c/C

different layer-0 activations is ≥ ηCn. Then the

number of pairs of input bits and depending layer-

0 activations is > ηCn · 1
η
c/C = nc. But there

are at most nc such pairs, because there are n
layer-0 activations, each of which depends on ≤ c

inputs. So the number of input bits with > 1
η
c/C

depending layer-0 heads is ≤ ηCn. We can obtain

ρ
(1)
n from ρn by restricting these input bits to some

fixed value in {0, 1} (it doesn’t matter which one),

and the set {i ≤ n : ρ
(1)
n (i) = ∗} still has at least

(1− η)Cn elements, for all sufficiently large n.

Stage 2 We now describe the second stage.

We write (h, i) for a layer-1 attention head h
(h = 1, . . . , H) at position i (i = 1, . . . , n).

Fix such a head (h, i). As y
(0)
i depends on

≤ c input bits, it can take on at most ≤ 2c

possible values. For each possible value z, and

each position j ∈ {1, . . . , n}, we compute the

maximum possible attention value that can be

achieved for this pair:

max
x1...xn : y

(0)
i =z

fatt
1,h(z, y

(0)
j) (7)

considering only inputs x1 . . . xn that are

compatible with the restriction ρ
(1)
n constructed

at Stage 1. For each value z, we order the

positions {1, . . . , n} downwards by this value,

obtaining a sequence j
(z)
1 , . . . , j

(z)
n for each layer-

1 attention head h at a position i and each possible

value z of y
(0)
i (In the case of ties, we order

by position, by Footnote 1). For each layer-1

attention head and each z, we select a sequence

1 ≤ i
(z)
1 < i

(z)
2 < · · · < i

(z)
k ≤ n such that (1)

for each i
(z)
s , there is at least one input xq that

only feeds into the activation at position j
(z)

i(z)s
and

no j
(z)

i(z)
s′

(s 6= s′), and (2) i
(z)
k is minimal, i.e.

there is no subsequence with smaller i
(z)
k that also

satisfies (1). This construction is visualized in an

example in Figure 3. Such a subsequence exists

unless n ≤ ck, in which case the Depth Reduction

Lemma is already satisfied for this input length n.

If z is a possible value of the activation y
(0)
i , then

we say that a pair ((i, h), z), of a head h at position

i and a possible value z of y
(0)
i , is satisfied if one

of the layer-0 activations y
(0)

i
(z)
s

(s ∈ {1, . . . k}) is

fixed by ρ
(1)
n to the value achieving the maximum

attention value (7). Also, we say that (h, i) is

satisfied if each ((h, i), z) is. The idea behind this

definition is: If ((h, i), z) is satisfied, then there

are at most k different layer-0 heads that this

head could attend to when applying ρ′n, assuming

that y
(0)
i takes the value z. As a consequence, a

satisfied head can only depend on c · (2ck + 1)

162

Figure 3: Selecting the sequence i
(z)
1 . . . i

(z)
k : We have

a c-transformer with c = 2, i.e., each Layer 0 activa-

tion only depends on at most two input bits. (a) We

fix a head in Layer 1 at position i (here, i = 5),

and some value z for y
(0)
i (blue activation). For each

other Layer-0 activation y
(0)
j , we compute the maximal

possible attention value between that activation and the

Layer 1 head, assuming the fixed value z for y
(0)
i –

these maximum attention values are visualized by the

thickness of the different lines. (b) We select k = 2
activations from Layer 0, marked in yellow and green.

For each of these, there is at least one (in fact, two in

the example) input bits (also marked in yellow and

green) that feed into this one and no other selected

activation.

many input bits. Our aim will be to construct ρ′n
so that each layer-1 head is satisfied.

A layer-1 head k-depends on some input xi if

ρn(i) = ∗ and xi appears as an input to some j
(z)
r

for r ≤ i
(z)
k , for some z. Because i

(z)
k is minimal,

a layer-1 head k-depends on an input if and only

if that input appears as an input to some j
i
(z)
s

(s ≤ k). In particular, a layer-1 head k-depends

only on ≤ 2cck input variables. Two layer-1 head

are k-neighbors if some j
i(z)s

for one and j
i
(z′)
s′

for

the other both k-depend on some input bit xl.
We will construct ρ′n using probabilistic argu-

ments over randomly chosen restrictions. For

this approach to succeed, we require a sufficient

amount of independence between the activations

of different heads in layer 1. We thus need to

ensure that the number of k-neighbors of each

head is bounded. Recall η ∈ (0, 12), and let H be

the number of attention heads in each position of

layer 1.

We modify ρ
(1)
n into ρ

(2)
n so that each layer-0

head has at most ≤ 2ckH many k-depending

unsatisfied layer-1 heads. Assume that indeed

some layer-0 head has more than 2ckH many

k-depending unsatisfied layer-1 heads. By fixing

≤ c input bits and appealing to the Pigeonhole

principle, we can fix this head to a value that

achieves the maximum attention value for at

least > kH many of these k-depending layer-

1 heads. Let ρ
(2)
n be the restriction resulting

from adding this to ρ
(1)
n . Once we have done

this, {i ≤ n : ρ
(2)
n (i) = ∗} still has at least

(1−η)Cn− c elements, and more than kH many

additional pairs ((h, i), z) are now also satisfied.

We then repeat the selection of the sequence

j
(z)
1 , . . . , j

(z)
n (substituting ρ

(2)
n for ρ

(1)
n in the

definition), and repeat the construction described

here, to restrict additional input bits in ρ
(2)
n . We

iterate this procedure until no layer-0 head has

> 2ckH many k-depending unsatisfied layer-

1 heads (h, i). This procedure can be iterated

at most until each layer-1 head is satisfied,

that is, at most 2cHn
kH = 2cn

k times. Let U be

the number of times this procedure is iterated

(U ≤ 2cn
k). At the end, {i ≤ n : ρ

(2)
n (i) = ∗} has

at least (1 − η)Cn − cU ≥
(

(1− η)C − 2cc
k

)

n
elements. By choosing k so large that 2cc

k ≤ η,

we find that {i ≤ n : ρ
(2)
n (i) = ∗} still has at

least (1 − 2η)Cn many elements. Once this is

completed, each layer-0 head has at most ≤ 2ckH
many k-depending unsatisfied layer-1 heads. Thus

each input bit now has at most ≤ 2c

η
kcH/C

many k-depending unsatisfied layer-1 heads.

Consequently, every unsatisfied layer-1 head

has at most f ≤ 22c

η
c2k2H/C many unsatisfied

k-neighbors.

Stage 3 In order to construct the third and

final restriction ρ
(3)
n , we apply the ‘‘probabilistic

method’’: We define a probability distribution

over restrictions ρ
(3)
n , and show that the probability

assigned to restrictions of the type we require is

strictly greater than zero, showing that such

a restriction exists. For each input length n,

define the distribution over restrictions ρ
(3)
n that

independently assigns to each input position

i ∈ {1, . . . , n} the symbol 1 or 0 with probability

q/2 each (q ∈ (0, 1) chosen later), and ∗ with

probability 1 − q. On those input bits where

ρ
(2)
n (i) 6= ∗, we restrict this random restriction

to agree with ρ
(2)
n (i). For an layer-1 attention head

(h, i) and for each value z (there are at most

2c such), define X
(z)
i,h to be the event that, for

this head, none of y
(0)
j
i
(z)
1

, . . . , y
(0)
j
i
(z)
k

are fixed to the

value that produces the highest attention weight.

Define X0 to be the event that more than (1 + δ)q

of the input bits that ρ
(2)
n maps to ∗ are set to

163

0/1 by ρ
(3)
n (where δ ∈ (0, 1), to be fixed later).

Our goal will be to show that a nonzero amount

of probability mass is assigned to restrictions ρ′n

avoiding all events {X0} ∪ {X
(z)
i,h : i, z}.

First, a Chernoff bound gives (Mitzenmacher

and Upfal, 2017, Theorem 4.4)

P(X0) ≤ exp
(

−δ2q(1− 2η)Cn/3
)

(8)

since ρ
(2)
n had ≥ (1 − 2η)Cn unrestricted input

bits after Stage 2.

Second, we show that the probability of

X
(z)
i,h (i = 1, 2, . . . , n, h = 1, . . . , H) decays

exponentially in k. First, if ((h, i), z) is already

satisfied after Stage 2, then P(X
(z)
i,h) = 0. Else,

fixing z for ease of notation, let Y t
i,h (t = 1, . . . , k)

be the event that the layer-0 activation y
(0)
j
i
(z)
t

is not fixed to the value that produces the

highest attention weight, for the given attention

head (h, i). Note that X
(z)
i,h =

⋂

t Y
t
i,h. We have

P(Y s
i,h) ≤ 1 − (q/2)c ∈ (0, 1). Any Y s

i,h can be

statistically dependent on at most c · 1
η
c/C =

1
η
c2/C other events Y s′

i,h, because each input

bit has at most 1
η
c/C depending layer-0 heads.

Therefore, there is a set of ≥ k
1
η
c2/C

independent

events among these. Call these Y t1
i,h, . . . , Y

k
1
η

c2/C

i,h .

Then X
(z)
i,h ⊆

⋂

k
1
η

c2/C

s=1 Y ts
i,h, and thus

P(X
(z)
i,h) ≤

k
1
η

c2/C
∏

s=1

P(Y ts
i,h) ≤ (1− (q/2)c)

k
1
η

c2/C

(9)

for each i = 1, 2, . . . , n and h = 1, . . . , H .

In order to conclude that there is a restriction

ρ
(3)
n avoiding all events {X0} ∪ {X

(z)
i,h : i, h, z},

we apply the Lovász Local Lemma (Mitzenmacher

and Upfal, 2017, Theorem 6.17). Each event X
(z)
i,h

is statistically independent of the set {X
(z′)
(j,h′) :

heads (j, h′) and (i, h) are not k-neighbors}. The

complement of this set has cardinality ≤ f =
22c

η
c2k2H/C , as concluded at the end of Stage 2.

Set A := 1
k2 , B := 1

2 . By the Lovász Local

Lemma, it is sufficient show the following:

P(X
(z)
i,h) ≤ A(1−B)(1− A)f (10)

P(X0) ≤ B(1− A)2
cHn (11)

The Lovász Local Lemma then guarantees that

there is some input restriction ρ
(3)
n that avoids all

events {X0} ∪ {X
(z)
i,h : i, h, z}. For (10), we need

D ≤ A1/k(1− B)1/k(1− A)f/k (12)

where D = (1− (q/2)c)
1

1
η

c2/C ∈ (0, 1). For the

first term on the right,

lim
k→∞

A1/k = lim
k→∞

exp
(

− log(k2)/k
)

= 1

Also, limk→∞(1−A)f/k equals

lim
k→∞

(

1−
1

k2

)
22c

η
c2kH/C

= lim
k→∞

(

1−
E2

k2

)k

= 1

for E := 22c

η
c2H/C . So, if we choose k large

enough (independently of n), the RHS of (12) can

be made arbitrarily close to 1, in particular, greater

than D. In order to also satisfy (11), we need

exp
(

−δ2q(1− 2η)C/3
)

≤ B1/n(1− A)2
cH

which holds forn, k large enough (again, choosing

k independent of n). In conclusion, there exists,

for each sufficiently-large n, a restriction ρ
(3)
n that

avoids all events {X0} ∪ {X
(z)
i,h : i, z}, for some k

independent of n. For such a ρ(3), we have

|{i ≤n :ρ(3)n (i)=∗}|≥(1−2η)·(1−(1+δ)q)Cn

for all sufficiently large n. Then choose η ∈
(0, 12) small, q ∈ (0, 1), and δ > 0 (such that

(1 + δ)q ∈ (0, 1)) in such a way as to achieve

(1− 2η) · (1− (1 + δ)q) = C ′/C .

After applying ρ
(3)
n , every layer-1 head bj,1,h

depends only on (1) the c input bits feeding into

y
(0)
j , and (2) the ≤ c2ck input bits that the head

k-depends on. Thus, each layer-1 activation y
(1)
j

only depends on ≤ c · (2ckH + 1) input bits:

There are ≤ H · c · 2c · k input bits that the H
different attention heads k-depend on, plus a skip-

connection from y
(0)
j , which itself depends on ≤ c

input bits. We can thus remove layer 0, convert

layer-1 activations y
(1)
j into layer-0 activations

y
(0)
j , and obtain a (c · (2ckH + 1))-transformer

performing the same computation as before when

ρ(3) is applied. This concludes the proof of the

Depth Reduction Lemma.

164

6 Results for Soft Attention

In the previous section, we showed that transform-

ers using hard attention are not able to recognize

a range of core formal languages. In this section,

we study soft attention. It turns out that proving

limitations as strong as what we found in

the hard attention setting would settle a major

open problem in computational complexity, and

may therefore be extremely hard to attain with

currently available mathematical methods.3 This

barrier prevents us from proving bounds on the

accuracy that soft attention transformers can

achieve; nevertheless, we will be able to prove

limitations on the achievable cross-entropy in

modeling distributions over the formal languages.

We will use the smoothness of the operations used

in transformers to show that any transformer, as

inputs get longer, will not be able to robustly

model such distributions. The idea behind the

proof is that the impact of any single input symbol

on the output of the transformer is small if the

input is long:

Lemma 5. Let a soft attention transformer be

given, and let n be the input length. If we exchange

one input symbol xi (i < n), then the change in

the resulting activation y
(L)
n at the decoder layer

is bounded as O(1n) with constants depending on

the parameter matrices.

This contrasts with recurrent networks: Chang-

ing a single input can have nonnegligible impact

on the final state even for very long input. For

example, an RNN recognizing PARITY through a

hidden state that encodes parity of the current

prefix will flip its hidden state if a single input bit

is flipped.

Lemma 5 entails that, as inputs become longer,

soft attention transformers cannot achieve good

cross-entropies on prediction problems that are

very sensitive to individual input symbols: A

Lipschitz-continuous prediction function, such as

a ReLU MLP with a softmax output, will not be

able to make very different predictions for inputs

that are encoded into similar activations y
(L)
n .

To make all our assumptions explicit, we will

assume the following setting, though the results do

not depend on the specific details. For PARITY, we

3Showing that soft attention transformers cannot achieve

perfect accuracy on evaluating Boolean formulas would sep-

arate the complexity classes LTC0 and NC1, a widely con-

jectured but long-open problem in computational complexity.

consider the distribution over bitstrings generated

by a two-state automaton that – if the number

of 1s emitted so far is even – terminates with

probability p, and otherwise emits a 1 or 0

with equal probability each. Given a prefix of

a string drawn from this distribution, we ask

the transformer to predict the next symbol from

Σ = {0, 1,ENDOFSEQUENCE}. Note that the next

symbol can be ENDOFSEQUENCE if and only if the

prefix has an even number of 1s. For 2DYCK, we

follow the experimental study of Skachkova et al.

(2018) and take the distribution generated by a

PCFG that expands S → (S)S or S → [S]S with

probability p/2 each, and S → ǫ with probability

1 − p. We ask the model to predict the next

character among Σ = {(,), [,],ENDOFSEQUENCE}.

Theorem 6. Let a soft attention transformer be

given for PARITY or 2DYCK. As n → ∞, cross-

entropy on predicting the next symbol converges

to unigram chance level (PARITY), or is at least

separated from the optimal cross-entropy by some

constant ǫ > 0 (2DYCK).

Proof. First, let us consider PARITY. Exchanging a

single bit flips membership in PARITY. Thus, for

any x ∈ PARITY, there is a string x′ 6∈ PARITY, diff-

ering only in one bit. As x and x′ differ only in

one bit, the transformer’s output activations

differ by O(1n). Therefore, a Lipschitz-continuous

prediction function cannot robustly assign dif-

ferent next-symbol probabilities after even and

odd numbers of 1s, and cross-entropy will con-

verge to unigram chance level.

For 2DYCK, consider a string x of length n,

known to be the prefix of a word generated by

the PCFG. One can show that there is a constant

P0 ∈ (0, 1) (dependent on p but not n), such

that x both ends with a closing bracket, and is

unbalanced, with probability ≥ P0.4 After such

4One can show this formally using a Markov chain

argument. Let the height H(x) of a word x be the number

of opening brackets minus the number of closing brackets

in x. When iteratively sampling a symbol sequence using

a pushdown automaton for 2DYCK, the height Hn of the

prefix x up to length n forms a Markov chain taking values

in N. The prefix x is unbalanced if and only if Hn > 0,

this is always the case whenever n is odd. Restricting to

even n, the chain {Hn : n = 0, 2, 4, ...} is aperiodic and

takes values in {0, 2, 4, . . . }. It is also positive recurrent,

as words sampled from the PCFG have finite expected

length (Skachkova et al., 2018, 2.2.1). Therefore, the Markov

chain {Hn : n = 0, 2, 4, ...} converges to its stationary

distribution (Mitzenmacher and Upfal, 2017), which – by

positive recurrence – must assign some nonzero weight

165

an x, the next symbol is a closing bracket with

constant nonzero probability (1− p). If x can be

followed by, say, ‘)’ but not ‘]’, then there is a

string x′, differing only in one input position, but

for which the next symbol can be ‘]’ but not ‘)’.

As x was assumed to end with a closing bracket,

the exchanged symbol is not the last symbol of

x, and thus the transformer’s predictions on x
and x′ differ only by O(1n). We can decompose

the prediction task into predicting (1) whether an

opening or closing bracket, or ENDOFSEQUENCE,

follows, and (2) whether a round or square bracket

follows, in case a bracket follows. The cross-

entropy loss is the sum of the cross-entropies in-

curred on these two successive predictions tasks.

Therefore, when such a prefix x is followed by

the correct closing bracket, say ‘)’, the model

will incur, as n → ∞, a cross-entropy loss on

the second task of at least log 2, reflecting at-

chance performance in choosing between the two

possible closing brackets. In contrast, optimal

cross-entropy loss on (2) would be 0, as the

bracket type (round or square) is actually fully

determined by x. Thus, the overall cross-entropy

on all prefixes x of length n is, asymptotically as

n → ∞, at least P0 · (1− p) · log 2 > 0 more than

the optimal cross-entropy. �

We proceed to proving Lemma 5.

Proof of Lemma 5. We compare the activations

at the decoder layer for two inputs that only differ

in the input at the i-th position. LetD = ‖vi−v′i‖2
the norm of the difference of the input embeddings

at this position. We show by induction over

k = 1, . . . , L that, for someC > 0 (chosen below)

the differences between the resulting activations

y
(k)
j , y

(k)
j

′
are bounded as:

‖y
(k)
i − y

(k)
i

′
‖ ≤ C2kD = O(1)

‖y
(k)
j − y

(k)
j

′
‖ ≤

HkC2kD

n
= O(1/n) (j 6= i)

Once we have shown this, we know that the

influence of any individual input on the final

prediction is O(1n), with constants depending on

π2i to each height 2i (i ≥ 0). Hence, even when n is even,

the prefix x is unbalanced with nonzero probability 1 − π0

asymptotically independent of n. Also, since the transition

probabilities P (Hn+1|Hn) are independent of n, there is an

asymptotically constant nonzero probability that x1 . . . x|x|−1

has height larger than x, i.e., the last bracket of x is a closing

one.

the norms of parameter matrices and the number

of layers.

At this point, it is worth remarking that a key

property of transformers for this proof is that the

number L of layers is bounded independently of

the input length. A similar proof strategy can also

be applied to other fixed-depth architectures that

combine unboundedly many inputs in a smooth

manner, such as 1D temporal convolutions with

average pooling.

For k = 0, ‖y
(0)
i − y

(0)
i

′
‖ ≤ D, and ‖y

(0)
j −

y
(0)
j

′
‖ = 0 for j 6= i. For k > 0, we first note that

‖y
(k)
j ‖2 ≤ 2CL

fact(‖pj‖+‖vj‖), whereCfact < ∞
depends on the norms of the parameter matrices

of fact, which is implemented as a ReLU MLP

(Vaswani et al., 2017). We’ll write F for this

upper bound for ‖y
(k)
j ‖2. Attention logits are

bounded by A := F 2Cfatt in the case of dot-

product attention, and A := 2FCfatt in the case

of additive attention. Then any attention weight

âj,i = exp(ai)/
∑

j exp(aj) is upper bounded by
exp(A)

exp(A)+(n−1) exp(−A) ≤
exp(2A)
n−1 .

Choose C := 2 · (1+ exp(2A)+Lfact), where

Lfact is the Lipschitz constant of the ReLU MLP

fact. Recall that activations y
(k)
i are defined as

fact(y
(k−1)
i , bi,k,1, . . . , bi,k,H), where bi,k,h equals

∑n
j=1 â

k,h
i,j y

(k−1)
j . We first calculate

‖bj,k,h − b′j,k,h‖ ≤
n
∑

w=1

âk,hj,w‖y
(k−1)
w − y(k−1)

w

′
‖

= âk,hj,i ‖y
(k−1)
i − y

(k−1)
i

′
‖+

∑

w 6=i

âk,hj,w‖y
(k−1)
w

− y(k−1)
w

′
‖

which, using the induction hypothesis, is at most:

exp(2A)

n− 1
C2(k−1)D +

Hk−1C2(k−1)D

n

≤
Hk−1C2k−1D

n

Plugging this into the definition of y
(k)
i , the diff-

erence ‖y
(k)
j − y

(k)
j ‖ is at most

Lfact·

(

‖y
(k−1)
j − y

(k−1)
j

′
‖+

H
∑

q=1

‖bi,k,q − b′i,k,q‖

)

First, if j = i, this is bounded by (as n → ∞)

≤ Lfact ·
(

C2(k−1)D + o(1)
)

≤ C2kD

166

Second, if j 6= i, it is bounded above by

(1/n) · Lfact ·
(

H(k−1)C2(k−1)D +HkC2k−1D
)

which is bounded by ≤ HkC2kD
n . This proves the

inductive step for k > 0.

7 Discussion

We have shown that, even with infinite precision,

transformers cannot robustly model non-counter-

free regular languages, nor basic hierarchical

structure. In the hard attention setting, our results

hold independently of activation functions and

the magnitude of the parameters, and show that

no transformer can accurately classify strings as

belonging to such languages. In the soft attention

setting, our results are slightly less general, but

still show that transformers cannot achieve perfect

cross-entropies when modeling distributions over

these formal languages.

Our results are asymptotic, in the sense that they

show that any transformer will make mistakes on

modeling PARITY and 2DYCK when the input is

sufficiently long. A transformer may nonetheless

be able to perform well on on short inputs;

indeed, given any bound N on the input length,

it is possible to construct a transformer that

will achieve perfect accuracy or cross-entropy

on all examples of length n ≤ N ; our results

show that the number of heads and layers, or

the parameter norms, will have to increase with

N . Practical implementations of transformers

might thus be able circumvent such asymptotic

limitations by using large numbers of layers and

heads, in relation to the sentence lengths typically

occurring in natural language. Therefore, pend-

ing tighter nonasymptotic bounds, the results

reported here need not constitute conclusive evi-

dence for practical limitations of real-world NLP

systems.

We believe that the most imminent implications

of our results are theoretical in nature. They show-

case mathematical techniques for analyzing the

capabilities of self-attention, an architecture at the

heart of recent advances in NLP. These tools

provide theoretical understanding of differences

between self-attention and theoretically more well-

studied recurrent architectures: Recurrent networks

such as LSTMs can perfectly emulate finite-state

automata, and therefore can model any finite state

language with optimal cross-entropy, as long as the

state transition and symbol emission distributions

are Markovian. In particular, PARITY of i.i.d.

bitstrings can be predicted with perfect accuracy

and cross-entropy, independent of the input

length. Furthermore, infinite-precision RNNs and

LSTMs can model stacks (Tabor, 2000; Grüning,

2006; Kirov and Frank, 2012) and thus are

theoretically capable of modeling 2DYCK and other

deterministic context-free languages perfectly.

The results presented here thus theoretically

confirm the intuition that models entirely built

on self-attention may have restricted expressivity

when compared to recurrent architectures (Tran

et al., 2018; Dehghani et al., 2019; Shen

et al., 2018a; Chen et al., 2018; Hao et al.,

2019). Complementing the asymptotic methods

developed here with empirical studies or non-

asymptotic extensions is an interesting avenue for

future research.

Whilefinite languages are sufficient to model lan-

guage up to any finite bound on sequence length,

it has typically been argued that asymptotically

more powerful formalisms at the level of context-

free grammars or beyond are necessary to properly

capture generalizations about the syntax and mean-

ing of natural language (e.g., Chomsky, 1957;

Shieber, 1985). Our results entail that self-attention

is limited in its ability to model context-free

languagesor evaluate logical formulas. In particular,

self-attention cannot in general emulate stacks

or arbitrary finite-state automata. Whether this

hinders its capacity for syntactic generalization

in practice is an interesting question; empirical

research suggests that models with strong quan-

titative performance—both recurrent and trans-

former models—continue to struggle with syntactic

generalization and that quantitative performance

metrics such as perplexity can partly be dis-

sociated from syntactic knowledge displayed on

more challenging benchmarks (e.g., Kuncoro

et al., 2018; Marvin and Linzen, 2018; Tran et al.,

2018; McCoy et al., 2019).

Nonetheless, the success of transformers across

NLP tasks suggests that many aspects of natural

language can be modeled well with methods that

are formally too weak for the formal languages

typically assumed in theoretical linguistics. Be-

yond general limitations of asymptotic analysis,

a possible reason for this phenomenon is that

language uses recursive structure only in restricted

ways due to cognitive factors. For instance, it

has long been noted that center embeddings,

167

syntactic structures exhibiting iterated bracketing,

are very challenging for humans to process

(Miller and Chomsky, 1963; Gibson and Thomas,

1999). Intriguingly, self-attention bears some

resemblance to psycholinguistic models of

memory in human sentence processing that

assume that humans, while processing a word,

attend to chunks that were stored in memory

when processing some previous words (Lewis

and Vasishth, 2005; Parker et al., 2017). Such

processing models predict difficulty with center

embedding because they cannot count brackets

(Lewis and Vasishth, 2005), akin to what we have

shown theoretically for neural network models

based on self-attention.

8 Conclusion

We formally investigated the capabilities of self-

attention in modeling regular languages and hier-

archical structure. We showed that transformers

cannot model periodic regular languages or basic

recursion, either with hard or soft attention, and

even if infinite precision is allowed. This entails

that self-attention cannot in general emulate stacks

or general finite-state automata. Our results theo-

retically confirm the idea that self-attention, by

avoiding recurrence, has quite limited computa-

tional power.

Acknowledgments

I thank Dan Jurafsky, Yoav Goldberg, the anony-

mous reviewers, and the members of the Stanford

NLP Group for helpful comments.

References

David A. Mix Barrington, Kevin Compton,

Howard Straubing, and Denis Thérien. 1992.

Regular languages in NC1. Journal of Com-

puter and System Sciences, 44(3):478–499.

Yoshua Bengio, Patrice Simard, and Paolo

Frasconi. 1994. Learning long-term depen-

dencies with Gradient Descent is Difficult.

IEEE Transactions on Neural Networks,

5(2):157–166.

Jean-Philippe Bernardy. 2018. Can recurrent neural

networks learnnested recursion? LiLT (Linguistic

Issues in Language Technology), 16(1).

Ravi B. Boppana. 1997. The average sensitivity of

bounded-depth circuits. Information Process-

ing Letters, 63(5):257–261.

Bo Cartling. 2008. On the implicit acquisition of a

context-free grammar by a simple recurrent neural

network. Neurocomputing, 71(7–9):1527–1537.

Mia Xu Chen, Orhan Firat, Ankur Bapna, Melvin

Johnson, Wolfgang Macherey, George Foster,

Llion Jones, Mike Schuster, Noam Shazeer,

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit,

Lukasz Kaiser, Zhifeng Chen, Yonghui Wu,

and Macduff Hughes. 2018, The best of both

worlds: Combining recent advances in neural

machine translation. In Proceedings of the

56th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long

Papers), pages 76–86. Melbourne, Australia.

Association for Computational Linguistics.

Jianpeng Cheng, Li Dong, and Mirella Lapata.

2016. Long short-term memory-networks for

machine reading. In Proceedings of the 2016

Conference on Empirical Methods in Natural

Language Processing, pages 551–561. Austin,

Texas. Association for Computational Linguistics.

Rewon Child, Scott Gray, Alec Radford, and Ilya

Sutskever. 2019. Generating long sequences

with sparse transformers. arXiv preprint arXiv:

1904.10509v1.

NoamChomsky.1957.SyntacticStructures.Mouton,

The Hague.

Noam Chomsky and Marcel P. Schützenberger.

1963. The algebraic theory of context-free lang-

uages. Studies in Logic and the Foundations of

Mathematics, 35, pages 118–161. Elsevier.

Kevin Clark, Urvashi Khandelwal, Omer Levy,

and Christopher D. Manning. 2019. What does

BERT look at? An analysis of BERT’s atten-

tion. In Proceedings of BlackboxNLP 2019.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime

G. Carbonell, Quoc Viet Le, and Ruslan

Salakhutdinov. 2019. Transformer-XL: Atten-

tive language models beyond a fixed-length

context. In Proceedings of the 57th Conference

of the Association for Computational Linguis-

tics, ACL 2019, Florence, Italy, July 28-

August 2, 2019, Volume 1: Long Papers,

pages 2978–2988.

168

Giacomo De Palma, Bobak Toussi Kiani, and

Seth Lloyd. 2018. Deep neural networks are

biased towards simple functions. arXiv preprint

arXiv:1812.10156v2.

Mostafa Dehghani, Stephan Gouws, Oriol

Vinyals, Jakob Uszkoreit, and Lukasz Kaiser.

2019. Universal transformers. In International

Conference on Learning Representations.

Jacob Devlin, Ming-Wei Chang, Kenton Lee,

and Kristina Toutanova. 2019. BERT: Pre-

training of deep bidirectional transformers for

language understanding. In Proceedings of the

2019 Conference of the North American

Chapter of the Association for Computa-

tional Linguistics: Human Language Tech-

nologies, Volume 1 (Long and Short Papers),

pages 4171–4186. Minneapolis, Minnesota. As-

sociation for Computational Linguistics.

Martin B. H. Everaert, Marinus A. C. Huybregts,

Noam Chomsky, Robert C. Berwick, and

Johan J. Bolhuis. 2015. Structures, not strings:

linguistics as part of the cognitive sciences.

Trends in Cognitive Sciences, 19(12):729–743.

Merrick Furst, James B. Saxe, and Michael Sipser.

1984. Parity, circuits, and the polynomial-

time hierarchy. Mathematical Systems Theory,

17(1):13–27.

Felix A. Gers and Jürgen Schmidhuber. 2001.

LSTM recurrent networks learn simple context-

free and context-sensitive languages. IEEE Trans-

actions on Neural Networks, 12(6):1333–1340.

Edward Gibson and James Thomas. 1999. Mem-

ory limitations and structural forgetting: The

perception of complex ungrammatical sen-

tences as grammatical. Language and Cognitive

Processes, 14(3):225–248.

Parikshit Gopalan, Noam Nisan, Rocco A.

Servedio, Kunal Talwar, and Avi Wigderson.

2016. Smooth boolean functions are easy:

Efficient algorithms for low-sensitivity functions.

In Proceedings of the 2016 ACM Conference on

Innovations in Theoretical Computer Science,

pages 59–70. ACM.

André Grüning. 2006. Stack-like and queue-

like dynamics in recurrent neural networks.

Connection Science, 18(1):23–42.

Kristina Gulordava, Piotr Bojanowski, Edouard

Grave, Tal Linzen, and Marco Baroni. 2018.

Colorless green recurrent networks dream

hierarchically. In Proceedings of the 2018 Con-

ference of the North American Chapter of the

Association forComputationalLinguistics: Human

Language Technologies, Volume1 (Long Papers),

pages 1195–1205. New Orleans, Louisiana. As-

sociation for Computational Linguistics.

Jie Hao, Xing Wang, Baosong Yang, Longyue

Wang, Jinfeng Zhang, and Zhaopeng Tu.

2019. Modeling recurrence for transformer. In

Proceedings of the 2019 Conference of the

North American Chapter of the Association for

Computational Linguistics: Human Language

Technologies,Volume1 (Longand Short Papers),

pages 1198–1207. Minneapolis, Minnesota. As-

sociation for Computational Linguistics.

Johan Hastad, Ingo Wegener, Norbert Wurm,

and Sang-Zin Yi. 1994. Optimal depth, very

small size circuits for symmetrical functions

in AC0. Information and Computation, 108(2):

200–211.

Yu-Lun Hsieh, Minhao Cheng, Da-Cheng Juan,

Wei Wei, Wen-Lian Hsu, and Cho-Jui Hsieh.

2019. On the robustness of self-attentive models.

In Proceedings of the 57th Annual Meeting of

the Association for Computational Linguistics,

pages 1520–1529. Florence, Italy. Association

for Computational Linguistics.

Yvonne Kalinke and Helko Lehmann. 1998.

Computation in recurrent neural networks:

From counters to iterated function systems.

In Australian Joint Conference on Artificial

Intelligence, pages179–190. Springer.

Christo Kirov and Robert Frank. 2012. Processing

of nested and cross-serial dependencies: An

automaton perspective on SRN behaviour.

Connection Science, 24(1):1–24.

Samuel A. Korsky and Robert C. Berwick. 2019.

On the computational power of RNNs. arXiv

preprint arXiv:1906.06349v2.

Adhiguna Kuncoro, Chris Dyer, John Hale, Dani

Yogatama, Stephen Clark, and Phil Blunsom.

2018. LSTMS can learn syntax-sensitive

dependencies well, but modeling structure

makes them better. In Proceedings of the 56th

169

Annual Meeting of the Association for Comput-

ational Linguistics (Volume 1: Long Papers),

pages 1426–1436.

Richard L. Lewis and Shravan Vasishth. 2005. An

activation-based model of sentence processing

as skilled memory retrieval. Cognitive Science,

29(3):375–419.

Yongjie Lin, Yi Chern Tan, and Robert Frank.

2019. Open Sesame: Getting inside BERT’s

linguistic knowledge. In Proceedings of the

2019 ACL Workshop BlackboxNLP: Analyzing

and Interpreting Neural Networks for NLP,

pages 241–253, Florence, Italy. Association for

Computational Linguistics.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos

Santos, Mo Yu, Bing Xiang, Bowen Zhou,

and Yoshua Bengio. 2017. A structured self-

attentive sentence embedding. In International

Conference on Learning Representations.

Tal Linzen, Emmanuel Dupoux, and Yoav

Goldberg. 2016. Assessing the ability of LSTMs

to learn syntax-sensitive dependencies. Trans-

actions of the Association for Computational

Linguistics, 4:521–535.

Rebecca Marvin and Tal Linzen. 2018. Targeted

syntactic evaluation of language models. In

Proceedings of the 2018 Conference on Empirical

Methods in Natural Language Processing,

pages 1192–1202. Brussels, Belgium. Associa-

tion for Computational Linguistics.

R. Thomas McCoy, Junghyun Min, and Tal

Linzen. 2019. BERTS of a feather do not

generalize together: Large variability in gener-

alization across models with similar test set per-

formance. arXiv preprint arXiv:1911.02969v1.

Robert McNaughton and Seymour A. Papert.

1971. Counter-Free Automata (MIT Research

Monograph No. 65), The MIT Press.

William Merrill. 2019. Sequential neural networks

as automata. In Proceedings of the Workshop on

Deep Learning and Formal Languages: Building

Bridges, pages1–13. Florence. Association for

Computational Linguistics.

George A. Miller and Noam Chomsky. 1963. Fini-

tary models of language users. In R. Duncan

Luce, Robert R. Bush, and Eugene Galanter,

editors, Handbook of Mathematical Psychology,

pages 419–492. John Wiley.

John Miller and Moritz Hardt. 2019. Stable

recurrent models. In International Conference

on Learning Representations.

Michael Mitzenmacher and Eli Upfal. 2017.

Probability and Computing, 2nd edition,

Cambridge University Press, Cambridge.

Ankur Parikh, Oscar Täckström, Dipanjan Das,

and Jakob Uszkoreit. 2016. A decomposable

attention model for natural language inference.

In Proceedings of the 2016 Conference on

Empirical Methods in Natural Language

Processing, pages 2249–2255. Austin, Texas.

Association for Computational Linguistics.

Dan Parker, Michael Shvartsman, and Julie A.

Van Dyke. 2017. The cue-based retrieval theory

of sentence comprehension: New findings and

new challenges. Language Processing and

Disorders, pages 121–144.

Romain Paulus, Caiming Xiong, and Richard

Socher. 2018. A deep reinforced model for

abstractive summarization. In International

Conference on Learning Representations.

Jorge Pérez, Javier Marinković, and Pablo Barceló.

2019. On the Turing completeness of modern

neural network architectures. In International

Conference on Learning Representations.

Luzi Sennhauser and Robert Berwick. 2018.

Evaluating the ability of LSTMs to learn

context-free grammars. In Proceedings of

the 2018 EMNLP Workshop BlackboxNLP:

Analyzing and Interpreting Neural Networks

for NLP, pages 115–124.

Tao Shen, Tianyi Zhou, Guodong Long, Jing

Jiang, Shirui Pan, and Chengqi Zhang. 2018a.

Disan: Directional self-attention network for

RNN/CNN-free language understanding. In

Thirty-Second AAAI Conference on Artificial

Intelligence.

Tao Shen, Tianyi Zhou, Guodong Long, Jing

Jiang, Sen Wang, and Chengqi Zhang. 2018b.

Reinforced self-attention network: A hybrid

of hard and soft attention for sequence

modeling. In IJCAI’18 Proceedings of the 27th

International Joint Conference on Artificial

Intelligence, pages 4345–4352.

170

Stuart M. Shieber. 1985, Evidence against the

context-freeness of natural language, In Phi-

losophy, Language, and Artificial Intelligence,

pages 79–89. Springer.

Hava Siegelman and Eduardo D. Sontag. 1995. On

the computational power of neural nets. Journal

of Computer and System Sciences, 50:132–150.

Natalia Skachkova, Thomas Trost, and Dietrich

Klakow. 2018. Closing brackets with recurrent

neural networks. In Proceedings of the 2018

EMNLP Workshop BlackboxNLP: Analyzing

and Interpreting Neural Networks for NLP,

pages 232–239.

Mirac Suzgun, Yonatan Belinkov, and Stuart M.

Shieber. 2019. On evaluating the generaliza-

tion of LSTM models in formal languages.

Proceedings of the Society for Computation in

Linguistics (SCiL), pages 277–286.

Whitney Tabor. 2000. Fractal encoding of context-

free grammars in connectionist networks.

Expert Systems, 17(1):41–56.

Ian Tenney, Dipanjan Das, and Ellie Pavlick.

2019. BERT rediscovers the classical NLP pipe-

line. In Proceedings of the 57th Conference

of the Association for Computational Linguis-

tics, ACL 2019, Florence, Italy, July 28-August 2,

2019, Volume 1: Long Papers,pages 4593–4601.

Ke Tran, Arianna Bisazza, and Christof Monz.

2018. The importance of being recurrent

for modeling hierarchical structure. In Proceed-

ings of the 2018 Conference on Empirical

Methods in Natural Language Processing,

pages 4731–4736, Brussels, Belgium. Asso-

ciation for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar,

Jakob Uszkoreit, Llion Jones, Aidan N.

Gomez, Łukasz Kaiser, and Illia Polosukhin.

2017. Attention is all you need. In Advances

in Neural Information Processing Systems,

pages 5998–6008.

Elena Voita, David Talbot, Fedor Moiseev, Rico

Sennrich, and Ivan Titov. 2019. Analyzing

multi-head self-attention: Specialized heads do

the heavy lifting, the rest can be pruned. In

Proceedings of the 57th Conference of the Asso-

ciation for Computational Linguistics, ACL

2019, Florence, Italy, July 28-August 2, 2019,

Volume 1: Long Papers, pages 5797–5808.

Gail Weiss, Yoav Goldberg, and Eran Yahav.

2018. On the practical computational power of

finite precision rnns for language recognition.

In Proceedings of the 56th Annual Meeting of

the Association for Computational Linguistics

(Volume 2: Short Papers), pages 740–745.

Baosong Yang, Longyue Wang, Derek F. Wong,

Lidia S. Chao, and Zhaopeng Tu. 2019.

Assessing the ability of self-attention networks

to learn word order. In Proceedings of the

57th Conference of the Association for Com-

putational Linguistics, ACL 2019, Florence,

Italy, July 28-August 2, 2019, Volume 1: Long

Papers, pages 3635–3644.

171

	Introduction
	Related Work
	Self-Attention
	Regular and Context-Free Languages
	Results for Hard Attention
	Proving the Depth Reduction Lemma

	Results for Soft Attention
	Discussion
	Conclusion

