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Abstract
Extracting biomedical relations from large cor-
pora of scientific documents is a challenging
natural language processing task. Existing ap-
proaches usually focus on identifying a rela-
tion either in a single sentence (mention-level)
or across an entire corpus (pair-level). In both
cases, recent methods have achieved strong re-
sults by learning a point estimate to represent
the relation; this is then used as the input to
a relation classifier. However, the relation ex-
pressed in text between a pair of biomedical
entities is often more complex than can be cap-
tured by a point estimate. To address this is-
sue, we propose a latent variable model with
an arbitrarily flexible distribution to represent
the relation between an entity pair. Addition-
ally, our model provides a unified architecture
for both mention-level and pair-level relation
extraction. We demonstrate that our model
achieves results competitive with strong base-
lines for both tasks while having fewer param-
eters and being significantly faster to train. We
make our code publicly available.

1 Introduction

The vast amounts of scientific literature can provide
a significant source of information for biomedical
research. Using this literature to identify relations
between entities is an important task in various
applications (van Mulligen et al., 2012; Segura-
Bedmar et al., 2013; Bravo et al., 2015; Krallinger
et al., 2017).

Existing approaches to biomedical relation ex-
traction usually fall into one of two categories.
Mention-level extraction aims to classify the re-
lation between a pair of entities within a short span
of text (usually a sentence). In contrast, pair-level
extraction aims to classify the relation between a
pair of entities across an entire paragraph, docu-
ment or corpus.

∗Work completed during internship at BenevolentAI.

For both mention-level and pair-level relation
extraction, recent work has been focused on repre-
sentation learning. This is considered to be one of
the major steps towards making progress in artifi-
cial intelligence (Bengio et al., 2013). Represen-
tations of relations which understand their context
are particularly important in biomedical research,
where identifying fruitful targets is crucial due to
the high costs of experimentation. Learning such
representations is likely to require large amounts
of unsupervised data due to the scarcity of labelled
data in this domain.

Recent mention-level methods have been based
on using large unsupervised models with Trans-
former networks (Vaswani et al., 2017) to learn
representations of sentences containing pairs of en-
tities. These representations are then used as the
inputs to much smaller models, which perform su-
pervised relation classification (Lee et al., 2019;
Beltagy et al., 2019).

Recent pair-level methods have been based on
encoding each mention of a pair of entities, and
designing a mechanism to pool these encodings
(across a paragraph, document, or corpus) into a
single representation. This representation is then
used to classify the relation between the entity pair
(Verga et al., 2018; Jia et al., 2019).

However, representation learning methods for
both mention-level and pair-level extraction typi-
cally use a point estimate for each representation.
As a result, they may struggle to capture the nature
of the true, potentially complex relations between
each pair of entities. For example, Figure 1 shows
sentences for two entity pairs which demonstrate
that relation statements can be very different, typi-
cally depending on biological circumstances (e.g.
anatomical location, experimental details, presence
of a disease, etc). Such nuanced relations can be
difficult to capture with a single point estimate.

We hypothesise that there is a true underlying



20

Protein Akt and protein GSK3β:

“. . . Akt negatively regulates GSK3β activity. . . ”
“. . . Akt phosphorylates GSK3β. . . ”

Protein EAAT2 and disease ALS:

“EAAT2/C1-4 were found to be equally expressed
in ALS patients and controls.”
“EAAT2 protein is significantly reduced in ALS in
the motor cortex and spinal cord.”

Figure 1: Two sets of sentences demonstrating the po-
tentially complex nature of the relation between a pair
of entities.

relation for each entity pair, and that this relation
can be multimodal (because of the aforementioned
complexities). The sentences containing each pair
are textual observations of these underlying rela-
tions.

We therefore propose a probabilistic model
which uses a continuous latent variable to represent
the true relation between each entity pair. The dis-
tribution of a sentence containing that pair is then
conditioned on this latent variable. In order to be
able to model the complex relations between each
entity pair, we use an infinite mixture distribution
for the latent representation.

Our model provides a unified architecture for
learning representations of relations between entity
pairs both at mention and pair level. We show that
(an approximation to) the posterior distribution of
the latent variable can be used for mention-level
relation classification. We also demonstrate that
the prior distribution from the same model can be
used for pair-level classification. On both tasks, we
achieve results competitive with strong baselines
with a model which has fewer parameters and is
significantly faster to train.

The code is released at https://github.com/
BenevolentAI/RELVM

2 Model

In this section, we introduce our unified architec-
ture for both mention-level and pair-level relation
extraction. Throughout, we use the following nota-
tion:

• c represents a ‘context’, i.e. a sentence (or se-
quence of tokens) containing a pair of entities.
c has tokens c1, . . . , cT .

– ctx and cty are the tokens representing

the two entities. We replace the actual
tokens denoting the two entities with
generic <ENT> tokens. Therefore, a
context is given by:

c = c1, . . . , ctx−1, <ENT>, ctx+1, . . . ,

cty−1, <ENT>, cty+1, . . . , cT

• x and y are the input representations of the
two entities.

– For pair-level classification, x and y will
be unique identifiers for the two entities.

– For mention-level classification, x and
y will be the types of the two entities,
e.g. GENE and DISEASE. This is done
in order to allow for fair comparisons
with previous methods, which use the en-
tity types for mention-level classification
(see Section 4.2 for further details).

– x and y always refer to the first and sec-
ond entities in c respectively.

• e(ct) is the embedding of token ct. e(x) and
e(y) are the embeddings of the entities x and
y.

• r represents the relation label.

Approach Large corpora of labelled relation
statements are often scarce, whereas unlabelled
sentences are usually plentiful. In order to lever-
age these unlabelled sentences, we first train an
unsupervised model to learn representations of en-
tity pairs and the contexts in which they occur. We
then train much smaller models to classify relations
using the representations from the unsupervised
model.

2.1 Representation learning model
When training the unsupervised representation
learning model, we assume access to a corpus of
sentences in which entities have been tagged but
there are no relation labels. We train the repre-
sentation model to maximise the conditional log-
likelihood log p(c|x, y). θ will refer to the set of
parameters of the representation model which we
wish to optimise. A graph of the representation
model is shown in Figure 2 and a more detailed
explanation is given below.

There are many ways to express the same rela-
tion between a given pair of entities. For example,
the sentences “John is Mary’s brother” and “Mary

 https://github.com/BenevolentAI/RELVM
 https://github.com/BenevolentAI/RELVM
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Figure 2: A graph depicting our unsupervised repre-
sentation learning model. Clear nodes denote latent
variables and shaded nodes denote observed variables.
Representations from this model are used for both
mention-level and pair-level relation classification.

is John’s sister” express the same relation in dif-
ferent ways. In order to capture this phenomenon,
we introduce a latent variable, z, to represent the
true underlying relation. This will be the represen-
tation used for mention-level and pair-level rela-
tion classification. The conditional distribution is
parametrised as:

p(c|x, y) =
∫
z
pθ(z|x, y)pθ(c|z) (1)

Intuitively, pθ(z|x, y) captures the true underly-
ing relation between the two entities x and y, and
pθ(c|z) captures the variation in the multiple possi-
ble ways of expressing that relation.

For computational simplicity, we could choose
pθ(z|x, y) to be Gaussian. However in reality, the
true relation between a pair of entities is proba-
bly more complex than can be modelled well with
a unimodal distribution. We therefore introduce
another latent variable u such that:

pθ(z|x, y) =
∫
u
p(u)pθ(z|x, y,u) (2)

For p(u), we use a standard Gaussian distribution,
N (0, I). For pθ(z|x, y,u), we again use a Gaus-
sian distribution whose mean and variance are a
function of x, y and u. We concatenate together
e(x), e(y), e(x)� e(y) and u, and pass the result-
ing vector into a feedforward network to output
the mean and variance of pθ(z|x, y,u) (� denotes
element-wise multiplication). Using a nonlinear
network allows the marginal distribution pθ(z|x, y)
to be an infinite mixture distribution (Mattei and
Frellsen, 2018). The objective becomes:

log p(c|x, y) = log

∫
u,z

p(u)pθ(z|x, y,u)pθ(c|z)

(3)

We parametrise pθ(c|z) with an LSTM, due to its
strong performance in language modelling (Graves,
2013; Bowman et al., 2016; Melis et al., 2018). The
conditional probabilities for t = 1, . . . , T are:

pθ(ct = v|c1:t−1, z) ∝ exp((Whpt ) · e(v)) (4)

where W is a learnable parameter of the model,
and hpt is computed as:

hpt = LSTM(z,hpt−1, e(ct−1)) (5)

Complete hyperparameter details are provided in
Section 4.1.

2.1.1 Training
Because of the nonlinear functions involved in
pθ(z|x, y,u) and pθ(c|z), the integral in Equa-
tion (3) is intractable. We therefore perform
approximate maximum likelihood estimation us-
ing stochastic gradient variational Bayes (SGVB)
(Kingma and Welling, 2014; Rezende et al., 2014).

To do this, we parametrise a Gaussian infer-
ence distribution qφ(u|x, y, c) (referred to as qφ(u)
henceforth, for brevity) with trainable parameters
φ. This allows us to maximise the following lower
bound on the log-likelihood:

log p(c|x, y)≥ Eqφ(u)pθ(z|x,y,u)
[
log

p(u)pθ(c|z)
qφ(u)

]
≡ Lθ,φ(c, x, y) (6)

This bound can be approximated using Monte
Carlo integration. It is optimised with respect to θ
and φ jointly.

To parametrise qφ(u), we use a bidirectional
LSTM to encode the context. This is due to its
ability to capture useful sentence level information
into a low-dimensional vector (Zhou et al., 2016;
Peters et al., 2018). It is computed as:

−→
hqt = LSTM(e(ct),

−−→
hqt−1) (7)

←−
hqt = LSTM(e(ct),

←−−
hqt+1) (8)

hq = [
−→
hqT ;
←−
hq1] (9)

We concatenate hq to e(x), e(y) and e(x)� e(y)
and pass the resulting vector into a feedforward
network to output the mean and variance of qφ(u).

2.2 Mention-level classification
In this section, we assume that the unsupervised
representation model from Section 2.1 has been
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trained with x and y being the types of the two
entities. The representations z can now be used as
the inputs to a supervised mention-level relation
classification model.

For mention-level classification, we assume ac-
cess to a corpus of sentences in which entities have
been tagged and there are labels classifying the type
of relation between the entity pair in each sentence.
We train the mention-level classification model to
maximise p(r|x, y, c). λ will refer to the set of pa-
rameters of the mention-level classification model
which we wish to optimise.

The representation z of the entity pair and con-
text would ideally be distributed according to
the posterior p(z|x, y, c) from the representation
model. We would then optimise the parameters λ
using the following objective:

p(r|x, y, c) =
∫
z
p(z|x, y, c)pλ(r|z) (10)

However:

p(z|x, y, c) = pθ(z, c|x, y)
p(c|x, y)

(11)

=
pθ(z, c|x, y)∫

u,z p(u)pθ(z|x, y,u)pθ(c|z)
(12)

As mentioned in Section 2.1.1, the integral in the
denominator is intractable. Instead, the following
approximation to the posterior can be used:

p(z|x, y, c) '
∫
u
qφ(u)pθ(z|x, y,u) (13)

This is an approximation to the posterior be-
cause maximising the objective in Equation (6) is
equivalent to minimising the KL divergence from
qφ(u)pθ(z|x, y,u) to p(z,u|x, y, c) (Kingma and
Welling, 2014):

Lθ,φ(c, x, y) = log p(c|x, y)−
DKL[qφ(u)pθ(z|x, y,u)||p(z,u|x, y, c)] (14)

Using this approximation, the mention-level classi-
fication objective becomes:

p(r|x, y, c)'
∫
u,z

qφ(u)pθ(z|x, y,u)pλ(r|z) (15)

= Eqφ(u)pθ(z|x,y,u)[pλ(r|z)] (16)

Empirically, however, we find that the model trains
much more easily using the following objective:

Eqφ(u)pθ(z|x,y,u)[log pλ(r|z)]≡Lλ(r, c, x, y) (17)

This is due, particularly at the start of training,
to the values of pλ(r|z) being very small. Note
that, due to Jensen’s inequality, the objective in
Equation (17) is in fact a lower bound on the log
of the objective in Equation (16):

Lλ(r, c, x, y)≤ logEqφ(u)pθ(z|x,y,u)[pλ(r|z)] (18)

To parametrise pλ(r|z), we use a shallow feedfor-
ward network with a softmax function at the output.
Complete hyperparameter details are provided in
Section 4.2.

2.3 Pair-level classification
In this section, we assume that the unsupervised
representation model from Section 2.1 has been
trained with x and y being unique identifiers for
the two entities. The representations z can now be
used as the inputs to a supervised pair-level relation
classification model.

For pair-level classification, we assume access to
a dataset with pairs of entity identifiers, and labels
classifying the type of relation between each pair.
Instead of learning p(r|x, y, c) as in mention-level
classification, we now learn p(r|x, y).

Intuitively, for pair-level classification, we wish
to classify the relation between a pair of entities
based on everything that the unsupervised model
has learned about those entities (through the sen-
tences containing them). This is unlike mention-
level classification, where we classify the relation
described in a specific sentence.

For pair-level classification, we follow a very
similar approach to that described in Section 2.2
for mention-level classification. However we no
longer base the input representation on the pos-
terior distribution from the unsupervised model,
p(z|x, y, c). Instead, the representation used will
be distributed according to:

pθ(z|x, y) =
∫
u
p(u)pθ(z|x, y,u) (19)

Intuitively, this is the natural distribution to use,
because we are interested in the relation between
the entities x and y, without a specific context to
condition on.

We denote ψ as the parameters of the pair-level
supervised model. Then, following the same rea-
soning as Section 2.2, the objective for the pair-
level supervised model is:

Ep(u)pθ(z|x,y,u)[log pψ(r|z)] ≡ Lψ(r, x, y) (20)
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To parametrise pψ(r|z), we use a shallow feedfor-
ward network with a softmax function at the output.
Complete hyperparameter details are provided in
Section 4.3.

3 Related work

Mention-level relation extraction is typically per-
formed using supervised learning. In the general
domain, Zhang et al. (2017) combine an LSTM
with a position-aware attention mechanism to per-
form multiclass relation extraction. Soares et al.
(2019) fine-tune the BERT (Devlin et al., 2019)
architecture to relation extraction tasks by enforc-
ing similarity between representations of sentences
containing the same pair of entities across a corpus.
(Zhang et al., 2020) construct a teacher model to
generate soft labels which guide the optimisation of
a student network via knowledge distillation. In the
biomedical and scientific domains, BioBERT (Lee
et al., 2019) and SciBERT (Beltagy et al., 2019)
train the BERT architecture on domain-specific cor-
pora, achieving state of the art results on mention-
level relation extraction tasks. Zhang et al. (2018)
combine an RNN over the sentence’s words and a
CNN over its dependency graph to classify drug-
drug and protein-protein interactions.

Pair-level relation extraction usually relies on
distant supervision (Mintz et al., 2009). In the
general domain, Hoffmann et al. (2011) develop
a latent variable model to perform multi-instance
learning while handling overlapping relations. Lin
et al. (2016) use an attention mechanism to pool
the representations of sentences containing a given
pair into a single representation, which is then used
as the input to a classifier. Quirk and Poon (2017)
capture relations across sentences by linking depen-
dency graphs between sentences. Other pair-level
methods build representations using unsupervised
models. Camacho-Collados et al. (2019) use a
latent variable model to learn a point-estimate rep-
resentation from the unigram distribution of tokens
co-occurring in sentences with the given pair. Joshi
et al. (2019) learn representations of pairs of en-
tities by maximising their pointwise mutual infor-
mation (PMI) with the contexts that the entities
appear in. In the biomedical domain, Verga et al.
(2018) build a paragraph-level representation us-
ing a modified Transformer network, and aggregate
over mentions using a softmax function. Liang et al.
(2019) combine knowledge embeddings and graph
embeddings using a cascade learning framework

to predict links in biochemical networks. Percha
and Altman (2015) use a distributional semantics
approach to cluster together drug-gene pairs which
are related in similar ways.

Contrary to our work, there does not appear to be
prior research performing both mention-level and
pair-level relation extraction with a unified model.

4 Experiments

4.1 Representation learning model
We train the unsupervised representation model
described in Section 2.1 using sentences from
PubMed abstracts, PubMed Central (PMC) open-
access full-text articles, and licensed full-text arti-
cles from Wiley and Springer. We take sentences
with a maximum length of 140 tokens and tag the
entities with their type using a dictionary-based
method. Entities are linked to unique identifiers
by first disambiguating entity types using a bidi-
rectional LSTM sentence classifier, followed by
type-specific term lookups. Note that if a sentence
contains three or more entities, it is repeated in
order to account for each possible pair of entities.

4.1.1 Architectures and training
To parametrise pθ(z|x, y,u), we use a 2-layer feed-
forward network with the ReLU nonlinearity. To
parametrise pθ(c|z), we use a 1-layer LSTM. To
parametrise qφ(u), we use a 1-layer bidirectional
LSTM, the output of which is passed to a 2-layer
feedforward network with the ReLU nonlinearity.

In order to evaluate the effect of the number of
parameters on performance, we train four differ-
ent versions of our representation learning model:
{X-SMALL, SMALL, MEDIUM, LARGE}. These
correspond to respective hidden state sizes of {128,
256, 512, 1024} in the networks. For all of the
models, both u and z, as well as all embeddings,
are 300-dimensional.

We train the unsupervised representation models
using a single sample approximation of the objec-
tive in Equation (6). We train for 400,000 iterations,
using a minibatch size of 192 and optimising the
parameters using Adam (Kingma and Ba, 2015)
with a learning rate of 0.0001.

4.1.2 Optimisation challenges
The unsupervised objective in Equation (6) can be
expressed as:

Lθ,φ(c, x, y) = Eqφ(u)pθ(z|x,y,u)[log pθ(c|z)]
−DKL[qφ(u)||p(u)] (21)
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When training latent variable models with autore-
gressive observation distributions (such as that in
Equation (4)), this objective can induce local op-
tima where qφ(u) = p(u). This results in the KL
divergence term in Equation (21) collapsing to 0,
meaning the model ignores the latent variable al-
together. To avoid such local optima, we use the
following two methods (Bowman et al., 2016):

KL annealing We multiply the KL divergence
term by a constant weight which is linearly an-
nealed from 0 to 1 over the first 10,000 iterations
of training. This helps the model to escape local
optima whereDKL[qφ(u)||p(u)] = 0 early in train-
ing.

Token dropout In Equation (5), we randomly
drop the token embedding being passed to the next
LSTM hidden state. We use a dropout rate of 50%.
This encourages the LSTM to rely more on the
representation z than the previous tokens when
modelling the context.

4.1.3 Computational costs
We show the computational costs of our unsuper-
vised representation models in Table 1. We com-
pare against BioBERT (Lee et al., 2019), a lan-
guage model with state-of-the-art performance on
relation extraction.

All versions of our model have significantly
fewer parameters than BioBERT. In terms of ‘GPU
days’1, training BioBERT is approximately 25 to
40 times slower than training our model. In addi-
tion, inference is an order of magnitude faster with
our model compared to BioBERT.

4.2 Mention-level classification

After training the unsupervised representation
model (using the entity types for x and y), we use it
to perform supervised mention-level relation clas-
sification, as described in Section 2.2. We use the
EU-ADR (van Mulligen et al., 2012) and GAD
(Bravo et al., 2015) datasets. In both datasets, each
sentence contains a gene and disease. The task is to
classify whether the given sentence either does or
does not exhibit a relation between the gene and the
disease. Examples from both datasets are shown in
Table 2 and dataset statistics are shown in Table 3.
As per previous work, we report the performance
using 10-fold cross validation on each dataset (Lee
et al., 2019).

1GPU days = No. of GPUs × training time (in days).

We compare our results with those of BioBERT
as reported by Lee et al. (2019). For a fair compari-
son, we use the same classifier architecture. This is
a single layer network with a softmax nonlinearity.
As well as training the parameters λ of the classi-
fier, we also fine tune the parameters θ and φ of
the representation model. Again, this is done to
allow for a fair comparison with BioBERT (which
follows the same procedure).

We approximate the objective in Equation (17)
using 4 samples during training. We use a mini-
batch size of 8 and update the parameters using
Adam with a learning rate of 0.00001. We train on
EU-ADR for 200 iterations and on GAD for 3,000
iterations.

Note that the representations for BioBERT are
768-dimensional. This is in contrast to ours which
are 300-dimensional.

4.2.1 Results
We perform 10-fold cross validation, and report
the mean precision, recall and F1-score in Table
4. On EU-ADR, all versions of our model outper-
form BioBERT, with our LARGE model achieving
a significantly higher F1-score. On this task, all
versions of our model have significantly higher
recall than BioBERT, with the precision being sim-
ilar. On GAD, BioBERT slightly outperforms our
LARGE model, thanks to its higher precision. In
addition, we find that, on both tasks, the perfor-
mance monotonically increases with the size of the
unsupervised representation model.

These results show that it is possible to achieve
results competitive with the state-of-the-art while
making significant efficiency gains, both in terms
of memory and time.

4.3 Pair-level classification

In this section, we use the LARGE representation
model from Section 4.1, trained using the unique
entity identifiers for x and y. We fix the parameters
of the unsupervised representation model and use
it to perform supervised pair-level classification, as
described in Section 2.3.

We construct a multiclass classification dataset
by combining multiple third-party biomedical
datasets. These datasets only provide pairs of
entities which are related. Therefore, if an entity
pair does not appear in any of the datasets, they
are assumed to be unrelated and given the label
NO-RELATION. If two entities are related, the
label is given by the concatenation of the two
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TRAINING INFERENCE

MODEL PARAMS HARDWARE TIME HARDWARE TIME

BioBERT 110M 8 x V100 GPUs 10 days 1 x V100 GPU 0.0087s/sent.
Ours (X-SMALL) 2M 1 x V100 GPU 2 days 1 x V100 GPU 0.0004s/sent.
Ours (SMALL) 4M 1 x V100 GPU 2 days 1 x V100 GPU 0.0004s/sent.
Ours (MEDIUM) 10M 1 x V100 GPU 3 days 1 x V100 GPU 0.0005s/sent.
Ours (LARGE) 30M 1 x V100 GPU 3 days 1 x V100 GPU 0.0007s/sent.

Table 1: The computational costs of each of the unsupervised representation models we train. The inference time
for each model is computed on a V100 GPU.

DATASET x y c r

EU-ADR

GENE DISEASE Based on <ENT> analyses, 41 <ENT> patients and 12
healthy controls were studied.

0

DISEASE GENE <ENT> is associated with decreased expression of mu-
cosal <ENT> .

1

GAD

GENE DISEASE A broad protective effect of <ENT> S180L against
<ENT> per se is not discernible.

0

GENE DISEASE The <ENT> polymorphism Tyr402His appears indica-
tive of <ENT> pathogenesis.

1

Table 2: Positive (r = 1) and negative (r = 0) examples from the EU-ADR and GAD datasets.

DATASET EU-ADR GAD

# relations 355 5330

Table 3: Number of relations for the EU-ADR and
GAD datasets.

entity types. This is therefore a multiclass classi-
fication problem, with the set of possible classes
being {NO-RELATION, DISEASE-GENE,
GENE-GENE, CHEMICAL-GENE,
CHEMICAL-DISEASE}. Note that we only
include entity pairs that occur in at least one sen-
tence in the dataset used to train the representation
learning model.

We randomly split the related entity pairs into
training, validation and test sets. The set of entity
pairs with label NO-RELATION is extremely large.
We randomly assign a proportion of these to the
validation and test sets. During training, we ran-
domly sample a proportion of each minibatch from
the remaining unrelated entity pairs. The dataset
statistics are shown in Table 5.

For the pair-level classifier, we train a 2-layer
model which has a 300-dimensional hidden layer
with a skip connection. We approximate the ob-
jective in Equation (20) using 4 samples during
training. We train for 100,000 iterations, using a

minibatch size of 512 (of which 448 are sampled
from the NO-RELATION set). We optimise the pa-
rameters using Adam with a learning rate of 0.0001.
When making predictions on unseen data points,
we only predict a label other than NO-RELATION
if the predicted probability is higher than a thresh-
old. This threshold is tuned to maximise the F1-
score on the validation set.

4.3.1 Baselines
We compare our method with the following two
baselines:

Co-occurrences For every entity pair that occurs
in at least one sentence in the dataset used to train
the representation learning model, we predict the
relation to be positive (i.e. the concatenation of the
types of the two entities). By design, this method
will have perfect recall.

Attention This method is similar to those pre-
sented by Lin et al. (2016) and Verga et al. (2018).
For a given pair of entities, we collect every sen-
tence containing the pair from the dataset used to
train the representation learning model. Each sen-
tence is passed to an LSTM whose final state is
taken as the sentence representation. The represen-
tations for all sentences for the given entity pair
are pooled together into a single representation us-
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MODEL
EU-ADR GAD

P R F P R F

BioBERT 80.92 90.81 84.83 75.95 88.08 81.52
Ours (X-SMALL) 79.62 98.08 87.71 67.83 90.76 77.45
Ours (SMALL) 80.35 98.09 88.14 68.31 91.75 78.16
Ours (MEDIUM) 80.72 98.46 88.59 69.68 91.82 78.72
Ours (LARGE) 82.34 98.85 89.67 72.26 92.00 80.79

Table 4: Results using 10-fold cross validation on the EU-ADR and GAD classification tasks. We report the mean
precision (P), recall (R) and F1-score (F) over the 10 folds. For all metrics, higher is better.

DATASET PAIR-LEVEL

Train (excl. NO-RELATION) 263,112
Validation 691,627
Test 692,534

Table 5: Total counts across all relation types for the
pair-level classification dataset. The training set ex-
cludes NO-RELATION types, as these are sampled dur-
ing training.

MODEL P R F

Co-occurrences 3.10 100.00 6.02
Attention 11.06 26.97 15.69
Ours 12.54 25.91 16.90

Table 6: Results on the test set of the pair-level classifi-
cation task. We report the precision (P), recall (R) and
the F1-score (F). For all metrics, higher is better.

ing an attention mechanism. This representation
is then used as the input to a feedforward network
with a softmax function at the output. This method
is therefore trained on exactly the same dataset as
our pair-level classifier.

The attention model is trained for 1,000,000 it-
erations using a minibatch size of 100 (of which
50 are sampled from the NO-RELATION set). The
parameters are optimised using Adam with a learn-
ing rate of 0.000005. As with our model, when
making predictions on unseen data points, we only
predict a label other than NO-RELATION if the
predicted probability is higher than a threshold.
This threshold is tuned to maximise the F1-score
on the validation set.

4.3.2 Results
The precision, recall, and F1-score on the test set
are reported in Table 6. Our model achieves a
higher F1-score than the attention model. Unsur-
prisingly, both the attention model and our model

achieve significantly higher precision than the co-
occurrence baseline at the expense of lower recall.

In contrast to the attention model, when classify-
ing a new pair, our model does not need to encode
all of the sentences containing that pair. This pro-
vides significant computational advantages, both in
terms of memory and time.

5 Conclusion

We have presented a model for learning representa-
tions of pairs of biomedical entities from unlabelled
text corpora. We use a latent variable with an ar-
bitrarily flexible distribution in order to be able to
capture the complex relations between each pair of
entities. The unified architecture can be used for
both mention-level and pair-level relation extrac-
tion. On both tasks, we achieve results competitive
with strong baselines. We also show significant
computational gains in terms of the number of pa-
rameters and training times.

Our model presents many avenues for future
work. The results in Table 4 show that the model’s
performance improves with the size of the hidden
states in the networks; this suggests that there are
further gains achievable simply by providing the
model with more parameters. The model could
be further scaled up by using a hierarchy of latent
variables to increase the expressive power of the
representations.

Other directions include evaluating the benefits
of having a representation which explicitly captures
uncertainty about the relations. For example, this
can be done by assessing if the model is less con-
fident when making predictions about entity pairs
which do not occur frequently in the unlabelled
corpus. Additionally, since our model can produce
a representation for any pair of entities (even those
which do not occur together in the unlabelled cor-
pus), it could be used in a link prediction setting to
score unseen entity pairs.
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