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Abstract

Learning-based slot filling - a key component
of spoken language understanding systems -
typically requires a large amount of in-domain
hand-labeled data for training. In this paper,
we propose a novel two-stage model architec-
ture that can be trained with only a few in-
domain hand-labeled examples. The first step
is designed to remove non-slot tokens (i.e.,
O labeled tokens), as they introduce noise in
the input of slot filling models. This step is
domain-agnostic and therefore, can be trained
by exploiting out-of-domain data. The sec-
ond step identifies slot names only for slot to-
kens by using state-of-the-art pretrained con-
textual embeddings such as ELMO and BERT.
We show that our approach outperforms other
state-of-art systems on the SNIPS benchmark
dataset.

1 Introduction

Slot filling models, which predict task-specific
names (e.g. artist, time) for these slots from user ut-
terances, are a key component of spoken language
understanding (SLU) systems. Deep learning ap-
proaches (Mesnil et al., 2013; Hakkani-Tiir et al.,
2016; Zhang and Wang, 2016; Zhu and Yu, 2018;
Chen et al., 2013; Gupta et al., 2018; Bapna et al.,
2017a) for SLU involve training on a large amount
of annotated training data. Likewise, multi-domain
studies (Hakkani-Tiir et al., 2016; Liu and Lane,
2017) that rely on deep learning methods require
a large amount of data for each domain. However,
slot filling is a very challenging task if only a few
labeled samples are available. Therefore, this pa-
per proposes methods to address the low-resource
domain issue of slot filling.

We aim at improving performance of the slot
filling task in different low-resource scenarios by
exploring the effective usage of a few in-domain
samples with two different scenarios: (1) if data
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from other domains is not possible but a few sam-
ples are available in the current domain (2) if data
from other domains are available and a few sam-
ples are accessible in the current domain. We ex-
ploit domain-agnostic syntactic similarities (e.g.,
the main verb of a sentence cannot be a slot) to
learn the conceptual differences between slot and
non-slot tokens in order to dismiss non-slot tokens
from the input space. Therefore, using labeled data
(SLOT and O labels) across domains can improve
the non-slot token reduction step in the target do-
main and thereby the slot name prediction step.
Therefore, we propose a novel two-stage model
that first reduces this noise by adding a non-slot
detection step and then predicts slot names. The
identified non-slots are then removed from the in-
put space of the name prediction step. Our mod-
eling approach is inspired by (Zhai et al., 2017;
Dauphin et al., 2013; Shah et al., 2019).

We suggest using a few annotated samples as
training input instead of slot descriptions and slot
names as in zero-shot learning studies (Bapna et al.,
2017a; Lee and Jha, 2019; Shah et al., 2019). This
is for two reasons: (1) The creation of slot de-
scriptions needs qualified linguistic expertise and
is thus expensive. (2) The relationship between slot
names and the corresponding tokens is not constant.
To give an example, the relationship between the

‘genre’ slot name and ‘drama’ token is hypernymic

whereas the relationship between the ‘artist’ slot
name and ‘Tarkan’ token is instance based. Hence,
it may not be valid to learn only one function to
represent the different relationships between names
and tokens.

As a classification algorithm, we employ Roc-
chio classification method (Rocchio, 1971) for la-
beling the tokens with their domain specific name
labels after reducing the non-slot tokens from the
input. Rocchio classifier is a very simple classifica-
tion method that separates the inputs into centroids
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put this album in shuffle mood
Slot Labeling O O SLOT O sSsLoT SLOT
Name Labeling music_item  playlist playlist

Figure 1: An example for the two-stage modeling
approach for an example utterance from SNIPS.

computed as the center of mass of all vectors in
the class, i.e., builds a prototype vector for each
class. Decision process is simply made based on
distance metrics. Because of the availability of
only a small amount of data in the current domain
and the semantically rich and robust presentation
in contextual pretrained embeddings, we argue that
Rocchio classifier is sufficient for our task. Further-
more by using this simple classification method,
we show the effectiveness of the non-slot noise
reduction step from the input.

2 Problem Statement

2.1 Problem Definition

We partition the slot filling task in two consecutive
sub-tasks which are called Slot Labeling and Name
Labeling. The Slot Labeling task requires to pre-
dict for each token in a sentence one of classes
S = {O,SLOT} where SLOT corresponds to
slots whereas O represents non-slot tokens. The
Name Labeling task requires to predict one label
from a predefined name label set N = {...} for a
set of candidate slots. This implies that candidate
slots have already been identified as SLOT by Slot
Labeling task as shown in Figure 1.

While S is shared across domains, N is domain-
specific. Therefore, training data can be shared
across domains for the Slot Labeling task, but not
for the Name Labeling task. Thus, we run into the
limited data problem for Name Labeling.

2.2 Evaluation

We state the evaluation of the proposed systems by
computing the average of the precision and recall,
i.e, F1 score, over the results of Name Labeling
task, although the system consists of two consec-
utive models. In order to understand the overall
performance, the average F1 scores of 7 domains
are computed. Additionally, the evaluation values
represent the average F1 over three random data
splits.
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3 Model Architecture

We define our consecutive model structure as fol-
lows: given an utterance with T tokens, first we
employ Slot Labeling model in order to identify
SLOT tokens while eliminating the non-slot to-
kens of input utterance. Consecutively, we predict
the slot name of the SLOT tokens which are re-
ceived from the Slot Labeling model. The Figure 3
illustrates the overview of the consecutive model
architecture with its inputs and outputs while show-
ing the usage of contextualized word embeddings
in order to represent input tokens.

3.1 Inputs

The contextualized word representation methods,
e.g., ELMo (Peters et al., 2018) and BERT (Devlin
et al., 2019), use a pre-trained network over the
sentence in order to produce unique embeddings
based-on the current context, instead of using a
single, fixed vector per word like in Word2Vec
(Mikolov et al., 2013) or GloVe (Pennington et al.,
2014). The pre-trained models, usually an LSTM
(Hochreiter and Schmidhuber, 1997) or a Trans-
former (Vaswani et al., 2017) can be trained for
token-level classification tasks, e.g., named enti-
tity recognition, part-of-speech, or sentence-level
classifications, e.g., text classification, sentiment
analysis. At the same time, they can leverage the
the language modeling (Peters et al., 2018; Devlin
et al., 2019) by fine-tuning (Howard and Ruder,
2018) the trained objectives on domain-specific
dataset as well as they can be used as feature-based
models (Peters et al., 2018; Tenney et al., 2019;
Brunner et al., 2020) for the down-stream tasks.
In this study, we employ feature-based BERT and
ELMo for the slot-filling task in low-resource do-
main.

BERT uses a bidirectional transformer model
which is trained on a masked language modeling
task. It uses WordPiece embeddings (Wu et al.,
2016) which means each word of an input repre-
sented with its sub-tokens. Thus, we use the first
sub-token for representing the word as it turns out
in (Devlin et al., 2019). Additionally, BERT con-
sists of multiple successive layers, i.e., 24 layers
because of preferred BERT-large-cased model, and
each layer represents different linguistic notions of
syntax or semantics (Clark et al., 2019). In order
to find the focused layers on local context (Tenney
etal., 2019) in these linguistic notions, the attention
visualization tool (Vig, 2019) is used on randomly
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Figure 2: Two dimensional representation of ELMo
vectors of randomly selected slot and non-slot to-
ken in two example domains in SNIPS dataset:
GetWeather and SearchScreeningE. s_o (red) = vec-
tors of non-slot tokens of SearchScreeningE.; s_s
(green) = slot tokens of SearchScreeningE.; g_o
(blue) = non-slot tokens of GetWeather; g_s (pur-
ple) = slot tokens of GetWeather.

selected samples. We select 10th, 11th, 12th, and
13th layers and concatenate hidden states of these
layers in order to represent the corresponding word.

ELMo concatenates the output of two LSTM
independently trained on the bidirectional language
modeling task and return the hidden states for the
given input sequence.

The proposed consecutive approach uses two
different label sets S and NV, i.e., as explained in
Section 2.1, which share the same sequences per
domains. We operate the contextual embeddings on
given utterance with the input sequence to assign
the contextual embeddings to their corresponding
input tokens.

3.2 Slot Labeling

Figure 2 shows the domain-agnostic pattern be-
tween non-slot token vectors of GetWeather and
SearchScreeningE., non-slot tokens (g_o) from
GetWeather, and non-slot tokens (s_o) from Search-
ScreeningE. show higher similarity than slot tokens
from both. The Slot Labeling step aims to make ef-
ficient use of the existing slot labeled dataset from
current and different domains in order to exploit
that domain-agnostic semantic frames for the cur-
rent domain. Therefore, we employ two different
Slot Labeling models separately according to data
availability. Thus, we define two common sce-
narios to cope with: (1) the absence of data from
different domains whereas the occurrence of few
labeled samples in the current domain (2) available
data from different domains as well as the presence
of few labeled samples in the current domain. For
the first scenario, we apply Rocchio Slot Labeling
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whereas Neural Slot Labeling is employed as the
solution of the second one.

Rocchio Slot Labeling: It is proposed for uti-
lizing a few available labeled samples from the
current domain and show the performance of non-
slot reduction without any additional samples from
different domain on slot and name labeling. Uti-
lizing only a few samples to build classification
model for slot labeling, we apply a Rocchio clas-
sifier that assigns to observations the label of the
class of training samples whose centroid is closest
to the observation.

d o ()

§ = axgmin 1, — vill, s = -
.8 X1
where X = {vy,va, ..., v, }, v; represents a slot
value. Thus, the Rocchio classifier is trained to
map the given slot value to the slot label by us-
ing the centroid (us) of the prototypes (X) of the
corresponding slot label.

Neural Slot Labeling: We use this with the
purpose of using available labeled data from dif-
ferent domains in addition to a few labeled sam-
ples of the current domain. The availability of
large amount of labeled data from different domain
make use of complex architecture such as neural
networks. Thus, for ELMo embeddings we use
the token classification model proposed by (Pe-
ters et al., 2018) whereas for BERT embeddings
we implement the token classification model pro-
posed by (Devlin et al., 2019). Thus, for the given
X = {wj,ws,...,wr} in order to predict Yy =
(y1,Y2, ..., y7) where T is the token number of the
given input and y; € S,

ELMo embeddings are wused with an
LSTM+CRF which is trained by maximiz-
ing the conditional log-likelihood,

T
Y, = arg max Z In p(yi|wi, X)
i=1
BERT embeddings are used with a Linear layer

and a following softmax function,

2

T
Y, = arg max Z softmax(W xw;)  (3)

i=1
The aim of the Neural Slot model is efficiently
leveraging domain agnostic features of different
task-oriented domains with the networks. Because
the existence of available data lets us train the net-

works in order to find slot/non-slot tokens.
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Figure 3: The overview of proposed model variations with input and output shown for an example utterance
from SNIPS. Name Model represents the baseline without Slot Labeling stage and uses only a few samples
from the current domain. RocchioSlot+Name Model employs Rocchio classifier for Slot Labeling stage
with a few SLOT/O labeled samples from the current domain in order to reduce the non-slot tokens and
then uses the same samples with Name labels to train Name Model. NeuralSlot+Name Model utilizes the
out-domain SLOT/O labeled samples together with a few current domain SLOT/O labeled samples in
order to train Neural Slot Labeling whereas it uses only the current domain samples with Name labels for

Rocchio Name Model.

3.3 Name Labeling

We assume, only a few samples for the current
domain is available for training a model. Thus, the
absence of a huge amount of labeled data for the
current domain makes it impossible for the use of
neural networks. Therefore, we utilize Rocchio
classifier as presented in equation 1 to map the
given slot value to the name label by using the
centroid of the prototypes of the corresponding
name label.

4 Dataset and Experimental Setup

4.1 Resources

We utilize the SNIPS dataset (Coucke et al., 2018)
as a base dataset in our experiment. SNIPS is a
SLU dataset of crowd-sourced user utterances with
39 slots and 7 intents. We split SNIPS with the
purpose of creating a single-domain dataset.

We create Prototype- and Test-data in order to
train the models and evaluate their performance on
each domain. Four Prototype groups are generated
from SNIPS in order to investigate the performance
when the number of samples increases. To ac-
complish this, we randomly select 10 slot samples
embedded in their input sequences (complete sen-
tences) per label in SNIPS. With the initial sample
of 10 slots per label, we increment the previous set
by 5 randomly-selected slot samples up to 2 times,
resulting in 10, 15, and 20 sub-sample groups (10-
Prototype C 15-Prototype C 20-Prototype). Se-
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lected slot phases represent one sample in the label
space even if the token number is greater then 1.
For example, Wind of Change consists of three to-
kens, however, these three tokens represents one
sample. Test data consists of 1000 randomly se-
lected sentences. Prototype and Test include two
annotation sets, Name and Slot.

Name Set: Provides annotation for the sentences
with labels such as artist, object_name and O tags
for the input sequences.

Slot Set: We convert the labels in the Name Set to
SLOT tags while keeping the O tags the same.
Auxiliary Slot Set: We utilize the slot filling
dataset of different domains in order to reduce
non-slot tokens by exploiting syntactic similari-
ties between domains. For example, the verb of a
sentences does not represent a slot in any domain.
Therefore, instead of trying to leverage the seman-
tic similarity between the slot tokens in different
domains, we use non-slot token similarity to reduce
them from the input space. We obtain this dataset
with the same process that converting Name Set to
Slot Set.

4.1.1 Proposed Systems
4.2 Experimental Setup

We design our experimental settings to investigate
the following research questions. The first ques-
tion focuses on exploring the impact of existing
annotated data from different domains on the per-
formance of the slot/non-slot classification step.



Table 1: Name F1 scores. The results of previous studies, the baseline Name and proposed Roc-
chioSlot+Name and NeuralSlot+Name models in different sample size. The values represent the average
F1 over 3 data splits. ‘Domain Avg.’ represents the average values across sample sizes.

BERT ELMo BERT ELMo
Previous Systems BERT Name ELMo Name RocchioSlot+Name | RocchioSlot+Name | NeuralSlot+Name | NeuralSlot+Name
Data CT ZAT | CDS 10 15 20 10 15 20 10 15 20 10 15 20 10 15 20 10 15 20
AddToPlaylist 74 73 76 45 46 47 45 46 48 62 62 63 57 59 63 66 67 67 63 65 67
PlayMusic 56 56 58 56 56 55 59 59 59 70 70 72 65 66 66 72 73 74 72 73 74
BookRestaurant 63 63 63 55 56 56 58 59 59 63 64 65 64 65 66 67 68 69 70 71 73
GetWeather 72 71 77 46 47 46 49 49 49 66 66 66 64 66 67 75 75 75 73 75 76
RateBook 82 83 82 73 74 73 64 65 66 90 92 92 81 82 82 95 96 97 89 91 92
SearchCreativeW. 62 63 65 45 46 46 45 44 44 79 81 81 81 82 82 80 87 89 83 84 86
SearchScreeningE. | 64 64 67 38 40 40 61 61 60 50 55 55 69 71 72 65 64 65 78 78 81
Domain Avg. 68.2 | 68.0 | 70.1 51.1 | 52.1 | 51.8 | 544 | 547 | 55.0 | 68.5 | 70.0 70.5 68.7 | 70.1 71.1 742 | 75.7 76.5 754 | 76.7 784

Table 2: F1 scores for BERT slot/non-slot classifi-
cation.

Rocchio Slot Neural Slot

Domain 10 15 20 10 15 20

AddToPlaylist 933 | 933 | 93.7 | 97.3 | 982 | 97.5
PlayMusic 93.7 | 945 | 944 | 98.1 | 98.8 | 98.8
BookRestaurant 922 | 92.1 | 91.8 | 98.5 | 99.0 | 99.2
GetWeather 94.3 | 943 | 942 | 989 | 99.0 | 98.8
RateBook 94.7 | 96.5 | 96.0 | 98.7 | 98.6 | 98.7
SearchCreativeW. 96.4 | 96.4 | 96.3 | 96.4 | 974 | 98.4
SearchScreeningE. | 90.7 | 91.8 | 91.7 | 99.1 | 99.1 | 99.1

Table 3: F1 scores for ELMo slot/non-slot classifi-
cation.

Rocchio Slot Neural Slot

Domain 10 15 20 10 15 20

AddToPlaylist 91.1 | 91.6 | 91.7 | 94.8 | 95.7 | 96.6
PlayMusic 91.1 | 91.1 | 909 | 97.1 | 97.2 | 97.9
BookRestaurant 88.5 | 87.7 | 879 | 96.6 | 98.2 | 98.5
GetWeather 92.7 | 92.8 | 93.0 | 98.0 | 98.7 | 98.7
RateBook 93.1 | 934 | 935 | 96.8 | 974 | 97.8
SearchCreativeW. 96.8 | 96.4 | 964 | 97.2 | 97.7 | 98.0
SearchScreeningE. | 90.7 | 91.1 | 91.3 | 97.8 | 98.0 | 98.4

We assume that we have sufficient training data for
different domains but not for a target domain. The
second question aims at exploring the effectiveness
of exploiting Prototypes with respect to example
sizes. The third question focuses on the comparison
between the two contextual embeddings, ELMO
and BERT.

4.2.1 Baseline

Name Model: In order to examine the effect of
low-resource domain in slot tagging, we train the
Name Labeling by using Prototype Name Set. Then,
we test the model with Test Name Set that includes
1000 samples with corresponding Name labels N.
We use contextual embeddings, either ELMO or
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BERT, as input representation, resulting in two
main baseline models without using the non-slot
reduction step. We employ Name Model to show
to performance of a few samples.
RocchioSlot+Name Model: We use Prototype
Slot Set to make use of Rocchio Slot Labeling
whereas we utilize Prototype Name Set to train
Name Model. Here, we aim to understand the effi-
ciency of non-slot reduction with only a few current
domain samples. The Slot Set from Prototype that
includes only a few samples with the correspond-
ing Slot labels S is used to train the Rocchio Slot
Labeling model. This trained Rocchio Slot Label-
ing (RocchioSlot) model then reduces the non-slot
tokens from the input of the Name Labeling model.
The Name Labeling model then predicts the token
labels N.

NeuralSlot+Name Model: The process of us-
ing this model is identical to RocchioSlot+Name
Model. The only difference is that we add Slot Sets
from other domains - Auxiliary Slot Set- and train
the Neural Slot Labeling model in order to analyze
the impact of out-domain samples on the perfor-
mance of non-slot reduction and Name Model .
An example of this would be the usage of anno-
tated “AddToPlaylist” and “GetWeather” domains
data converting the labels to SLOT labels for “Play-
Music” in order to train the Neural Slot Labeling
model.

5 Results

Non-slot/slot Classification Results Table 2 and
3 show the results from the Rocchio Slot Labeling
and Neural Slot Labeling models for both BERT
and ELMo. According to the overall results, we
strongly claim that SLOT label for a token is a
domain-agnostic feature. Moreover, BERT embed-
dings show better performance then ELMo on Slot
Labeling task in both model setups.



Two-stage Slot Name Labeling Results Table 1
shows that the proposed models outperforms the
baseline across domains and sample sizes. It is
apparent that the increase of samples sizes largely
improves F1 score per domain. As can be seen in
Domain Avg., our non-slot reduction models Roc-
chioSlot+Name and NeuralSlot+Name outperform
the baseline Name Model with > 20%. In addi-
tion, by comparing NeuralSlot+Name and Roc-
chioSlot+ Name, we see that NeuralSlot+Name
model results in an > 6% percent increase in the
average performance.

Impact of Different Contextualized Embed-
dings ELMo and BERT have comparable perfor-
mance, with ELMo slightly better on most tasks,
e.g., as expected after the study of (Tenney et al.,
2019), but the Transformer scoring higher on Rate-
Book and SearchCreativeW. consistently with all
the models.

Comparisons with State-of-art Systems We
compared our systems with the three following
studies: (1) Zero-shot Adaptive Transfer (ZAT)
(Lee and Jha, 2019) that used condition slot filling
on slot descriptions with hierarchical six LSTM
and CRF layers; (2) Concept Tagger (CT) (Bapna
et al., 2017b) by exploiting multi-task bidirectional
stacked LSTM ; (3) Cross Domain Slot filling
study (CDS) (Shah et al., 2019) that used a condi-
tional sequence tagging model by utilizing BiGRU-
BiLSTM model. The results of previous studies
are taken from (Shah et al., 2019)). Table 1 demon-
strates that even though the previous systems use a
large amount of data with the neural networks, Roc-
chioSlot+Name outperforms the best performance
of previous system (CDS) with up to 1% with 20
training examples, whereas the NeuralSlot+Name
model outperforms them with up to 8.3% improve-
ment.

6 Qualitative Analysis

We analyzed the results on individual slots by com-
paring them according to contextualized embed-
dings and proposed models. We observed that
BERT shows consistent lower results for the to-
kens like city, state from BookResteurant, and
location_name, object_location _type from Search-
ScreeningE whereas it outperforms ELMo for
proper name detection like object_name from Rate-
Book and SearchCreativeW. domains.

The wrong predictions of Name Labeling, e.g.,
false-positive rates of names (e.g., object_select,
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cuisine, spatial_relation) for O label, draw the atten-
tion. An extreme difference between low precision
and relatively high recall is observed. However,
the precision results are drastically improved when
RocchioSlot+ and NeuralSlot+Name models are
employed. For example, RateBook domain’s slot
object_select has 0.41 precision with Name Model
whereas the precision of it is 0.69 and 0.93 with
RocchioSlot+ and NeuralSlot+Name models re-
spectively.

On the other hand, when the timeRange label
of GetWeather is reviewed, RocchioSlot+Name as
well as Name Model failed. Due to leak of non-
slot tokens, timmeRange values labeled as O’. Roc-
chioSlot fails for labeling the values (e.g., eleven
months from now) of timeRange with S, because
it is a clustering-based method and is not able
to capture the sequential dependencies. Neural-
Slot+Name models, however, shows significant
increases. The comparison of the results from
both models indicates that the wrong predictions
of the O’ label drastically reduced with Neural-
Slot+Name model.

Similar proper nouns, e.g., album and track, in
the same domain denote the weakness of the pro-
posed systems. NeuralSlot+Name model is not
able to distinguish similar proper nouns. For ex-
ample, the highest false-negative rate for album is
track while it is album for track.

7 Related Work

7.1 Low-resource Domain in NLP

Typically in NLP, the domain is meant to refer to
some coherent type of dataset that related to the
underlying linguistic distribution (Ramponi and
Plank, 2020). When the linguistic distribution be-
tween target and source domain differ, the per-
formance drops on the target domain. Therefore,
hand-labeled samples are needed for many NLP
applications even though they are expensive to cre-
ate and often not available for low-resource lan-
guages or domains. Many studies have recently
been proposed to tackle the low-resource issue by
using different approaches such as transfer learn-
ing for domain adaptation (Daume III and Marcu,
2006; Pan and Yang, 2009), and multi-task learn-
ing (Peng and Dredze, 2017a). Here, we review
the slot filling like sequence labeling studies such
as part-of-speech tagging (POS) and named entity
recognition (NER) within domain adaptation and
multi-task learning.



The domain adaptation approach is used to trans-
fer the domain-general feature space from source
tasks as “prior knowledge” to the target task in
order to overcome the hand-labeled data scarcity
(Blitzer et al., 2006; Daume III and Marcu, 2006;
Ramponi and Plank, 2020). For POS tagging,
Jiang and Zhai (2007) propose a supervised in-
stance weighting technique with or without labeled
instances in target domain, whereas Kann et al.
(2018) use character-level and subword-level su-
pervision. However, Han and Eisenstein (2019)
demonstrate unsupervised multi-task learning with
the domain-adaptive fine-tuning method by utiliz-
ing contextualized word embeddings for the new
domains. Similarly, NER is a sequence labeling
task that is often addressed by domain adaptation
and multi-task learning because of the low-resource
domain. But, most of the NER tasks consist of
different label spaces. Jia et al. (2019) use cross-
domain language modeling for performing cross-
task knowledge transfer by extracting knowledge
of domain differences from raw text, while Peng
and Dredze (2017b) utilize multi-task learning ap-
proach for shared representations in multiple tasks
simultaneously to have better generalize for domain
adaptation.

As examined here, most existing work in NLP
considers the low-resource issue as a problem of
shared feature spaces. The main consideration is
always augmenting the most similar feature inter-
section of source and target domains and use this
feature space to improve the low-resource target
domain (Daumé III, 2009; Ruder and Plank, 2017;
Ramponi and Plank, 2020).

7.2 Low-resource Domain in Slot Filling

In a broader sense, two ways of training model have
often been applied to slot filling in low-resource do-
main scenario: (1) use a multi-task learning method
(Jaech et al., 2016a; Bingel and Sggaard, 2017) (2)
train a model that performs well across domains
using domain adaptation or transfer learning tech-
niques e.g., based on external memory (Peng and
Yao, 2015), ranking loss (Vu et al., 2016), encoder
(Kurata et al., 2016), attention (Zhu and Yu, 2017),
multi-task modeling (Jaech et al., 2016b), adver-
sarial training (Kim et al., 2017), pointer networks
(Zhai et al., 2017) have recently been proposed.
These methods, however, still require a substantial
amount of data for adaptation. Additionally, Lou-
van and Magnini (2018) propose to joint learning
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with NER as an auxiliary task through a multi-task
learning setup and show improvement in slot filling
with low-resource scenarios.

Another direction relies on zero-shot learning ap-
proaches, i.e., learning method with label descrip-
tions or label names, which have recently been pop-
ular in slot filling task. Zero-shot learning (Socher
et al., 2013) is a classification setup in learning
systems, where the model predict samples from
classes that were not seen during training at test
time. Zero-shot slot filling, i,e., either relies on
slot names or slot descriptions, has been influenced
the studies of the domain scaling problem for slots
prediction. (Bapna et al., 2017b) leverage the en-
coding of the slot names and descriptions within a
multi-task deep learned slot filling model, to align
slots across domains with shared feature extraction.
Likewise, (Lee and Jha, 2019) propose a zero-shot
adaptive transfer method for slot tagging that uti-
lizes the slot description for transferring reusable
concepts across domains for eliminating the need
of labeled examples for transferring reusable con-
cepts whereas (Shah et al., 2019) add the a target
domain samples to slot descriptions for conveying
the domain-agnostic concepts between the intents.

8 Conclusion and Future Work

We propose a novel two-stage model for slot filling
in low-resource domains. Our results demonstrate
the importance of non-slot token reduction on slot
filling with resource constraints by using a simple
classification method. Furthermore, the benefit of
employing slot filling data from other different do-
mains for non-slot reduction is demonstrated. In
addition, increasing sample sizes for the Prototypes
shows significant improvements. Base on our find-
ings, future usage of multi-domain or limited data
could be effective in improving slot filling methods
from a non-slot reduction perspective. Additionally,
the outcomes of the multi-domain data usage in our
study contributes a new perspective in supervised
domain adaptation and generalization studies.
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