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Abstract

We compare three solutions to UKARA 1.0
challenge on automated short-answer scoring:
single classical, ensemble classical, and deep
learning. The task is to classify given answers
to two questions, whether they are right or
wrong. While recent development shows in-
creasing model complexity to push the bench-
mark performances, they tend to be resource-
demanding with mundane improvement. For
the UKARA task, we found that bag-of-words
and classical machine learning approaches can
compete with ensemble models and Bi-LSTM
model with pre-trained word2vec embedding
from 200 million words. In this case, the sin-
gle classical machine learning achieved less
than 2% difference in F1 compared to the
deep learning approach with Tls time for model
training.

1 Introduction

Automated short-answer scoring is the application
of computer technologies to assist human grader
in evaluating the score of written answers (Dikli,
2006). The first track of UKARA 1.0 is the bi-
nary classification version of short-answer scoring,
where participants are expected to develop a model
that can distinguish right and wrong answers in free
text format. The organizer published the questions,
the labels’ responses, and the guideline on how to
determine whether an answer is acceptable.

During a period of five weeks, the training set
and the development set were available, and we
could validate our model through the score of the
development set in a leaderboard. Subsequently,
the test set was released, which consists of roughly
four times the size of the development set. We
are required to submit predicted labels based on
the model that we have developed, and the winner
was determined by the F1 score of the submitted
prediction.

Our final submission to this task consists of fea-
ture extraction, such as n-grams and TF-IDF, and
classical machine learning algorithms, namely lo-
gistic regression and random forest. Moreover,
we tested a combination of classical algorithms
through ensemble learning and deep learning ap-
proach. We have published our implementation
for reproduction'. We discuss the dataset and our
approach in the following sections.

2 Datasets

The dataset consists of two questions and the re-
spective responses collected by the organizer of
the challenge. All questions and responses are in
Indonesian. The first question (“Task A”) asked
about the consequence of climate change. Con-
cretely, what are the potential problems faced by a
climate refugee when they migrate to a new place?
The second question, referred to as task B, is based
on an experiment. Potential customers initially
wanted to buy clothes, prefer to donate the money
instead, when they are presented with videos of
the clothes manufacturing worker condition before
paying. The respondents were required to give their
opinion on why do people decided to change their
minds. The responses statistics for both tasks are
shown in Table 1.

Task A Task B
#Right Ans. Train | 191(71%) 168(55%)
#Wrong Ans. Train | 77(29%)  137(45%)
Avg. #Char 87.23 97.33
#Dev 215 244
#Test 855 974

Table 1: Summary statistics of the dataset.
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3 Methodology

We split our approach into three categories. Firstly,
we have a single classical approach, where we em-
ployed simple logistic regression and random for-
est. Next, we experimented with ensemble learn-
ing by combining four different classical machine
learning algorithms. Finally, an LSTM-based neu-
ral network model is applied. We elaborate on the
preprocessing and modeling steps in the following
paragraphs.

3.1 Preprocessing

For the preprocessing steps, we first tokenized and
lemmatized the text using Bahasa Indonesia tok-
enizer provided by spaCy (Honnibal and Montani,
2017). We then extracted the features using bag-of-
words or TF-IDF. Since the resulting matrix from
this feature extraction method tends to be sparse
and to encode token relations, we applied Latent
Semantic Analysis (LSA) using Singular Value De-
composition (SVD) (Deerwester et al., 1990) on
the matrix.

Based on our observation, we noticed that the la-
bels of the provided training set are highly inconsis-
tent. Some responses are clearly labeled incorrectly.
For illustration, in task A we found “untuk pindah
ke daerah yang aman” (to move to a safe place)
labelled as 1 (correct) while clearly it does not fit
the criteria based on the guideline. The mislabel-
ing was even more prominent in task B: “karana
dengan menyumbang kita bisa membuat produksi
pakaian menjadi lebih beretika” (By donating, we
can make clothes production becomes more ethi-
cal) is considered wrong while agar upaya untuk
membuat produksi pakaian menjadi lebih beretika.”
(As an effort to make clothes production becomes
more ethical) is approved. To alleviate this issue,
we decided to prepare a separate training set with
manually corrected labels based on our own judg-
ment. The correction result is shown in Table 2.

Finally, as the responses contain a lot of mis-
spelled and slang words, we also experimented
with simple spelling corrector using python dif-
flib package and Indonesian colloquial dictionary
(Salsabila et al., 2018). We tried every possible
combination of preprocessing steps and whether
to use an altered version of the training set with
a parameter optimization library described in the
following subsection.

Original Corrected Count
Label Label
Task A | Vrong right 10
right wrong 4
Task B | Wrong right 46
right wrong 13

Table 2: Corrected labels of the training set

3.2 Single Classical

After trying several machine learning algorithms,
such as k-Nearest Neighbors, Naive Bayes, logistic
regression, and random forest, we found that ran-
dom forest was the best model for task A. This cor-
roborates what was found by Ferndndez-Delgado
et al. (2014) in their comprehensive comparisons
among several machine learning algorithms on dif-
ferent datasets. On the other hand, logistic regres-
sion with L2 regularization was the best for task
B. The machine learning library used in this study
is scikit-learn (Pedregosa et al., 2011). Since the
dataset is quite small, we used 10-fold cross valida-
tion on the training set to avoid overfitting.

3.3 Ensemble Classical

In parallel, we experimented with ensemble model
with a combination logistic regression, random
forest, gradient boosting tree, and support vector
machine. To find the best configuration for each
model, we used hyperopt” library, which utilizes se-
quential model-based optimization (Bergstra et al.,
2011). We trained separate voting-based ensem-
ble models for task A and task B. The evaluation
metric used for the optimization, including for the
voting-ensemble model, is F1 score.

3.4 Deep Learning

Word embedding We pretrained Word2vec
(Mikolov et al., 2013) 100 dimension word em-
bedding using Gensim (Rehtifek and Sojka, 2010)
on Indonesian text from Wikipedia dumps>, Open-
subs (Lison and Tiedemann, 2016), and the prepro-
cessed UKARA dataset. For the word count details,
see Table 3. The addition of text from Opensubs
and UKARA dataset helps in providing informal
words that are usually absent in Wikipedia articles.
With the additional datasets, we ended up with a
total of 420,024 unique vocabularies.

http://hyperopt.github.io/hyperopt/
‘https://dumps.wikimedia.org
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Data Source | Word Count
Opensubs 105,348,108
Wikipedia 101,251,643
UKARA 36,930

Total 206,636,681

Table 3: Word counts for each data source

Modelling We used Keras (Chollet et al., 2015)
with Tensorflow (Abadi et al., 2015) as the back-
end to build the model. The text was tokenized
and padded into maximum length of 43 (90th per-
centile of all short-answer length) before it goes
into the model. In order to build the embedding
layer, we performed a multi-stage text processing
using PySastrawi* stemmer and a normalizer func-
tion (removing duplicate adjacent characters) to
minimize the amount of unknown vocabularies. For
the known word counts found in each stage, see
Table 4. This multi-stage process yields a total of
2.426 known vocabularies and 390 unknown vo-
cabularies. We fit the model with EarlyStopping
and ReduceLROnPlateau callbacks and Adam opti-
mizer.

Experiment We ran the experiment on Repeat-
edStratifiedKFold with 10 split and 10 repeats. For
each split and repeat, we predicted the validation
and test set. We later normalized the result ac-
cording to how many predictions made, essentially
performing ensemble of 100 different models.

Stage Known Word Count
1: Raw Word | 2310

2: Stemmed 65

3: Normalized | 48

4: Stemmed 3

Table 4: The count of known word found in each stage
of building the word embedding layer

4 Results

Best Configuration For the single classical ap-
proach, we found that setting the n_estimators
to 200 yielded the best result on the development
set. The rest of the hyperparameters followed the
default values from the sklearn implementation,
including for the logistic regression model. For
the ensemble, we used four different algorithms:
logistic regression, random forest, XGBoost, and
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SVM. In this approach, we leave all the hyperpa-
rameters as optimized using hyperopt. We found
that hard voting mechanism (weighing based on
the binary class) provides better results compared
to soft mechanism (weighted average of the pre-
dicted probability). Finally, for the deep learning
approach, we altered the probability threshold for
Task B to 0.48 as they gave better F1 for the devel-
opment set.

Different preprocessing methods resulted in dif-
ferent performances in the two tasks. Therefore, we
varied the use of unigram or TF-IDF, and whether
we should apply SVD to the resulting matrix. On
the other hand, we found that it is always better
to use the lemmatizer built on top of spaCy in this
task. Moreover, removing stopwords did not con-
tribute much to the performance on the training
set.

Performance The local CV results can be seen in
Table 5 and Table 6. As the primary metric of this
challenge is the F1 score, it is clear from Table 5
that we should employ the TF-IDF weighting with
random forest algorithm for task A. From what we
can see in Table 6, TF-IDF + SVD with logistic re-
gression works better for task B. Table 7 shows the
performance of our best single models compared
to the ensemble approach. We used the optimized
ensemble model trained on the original and also
the label-corrected training set (Ens+Upd).

Training Time To quantify the required re-
sources of each model, we include the total training
time of each method in Table 8. We conducted the
training for all models in the following specifica-
tion: 2-core Intel(R) Xeon(R) CPU @ 2.20GHz
and 16GB RAM. As expected, the deep learning
method demanded the longest time, almost 6 hours
for training word2vec, task A, and task B. Mean-
while, we needed less than 20 minutes to find the
best performing single classical models for both
tasks.

5 Discussion

Based on the results shown in Table 7, all models
perform almost equally well for task A. For task B,
the label correction in the Ens+Upd model gives
a definite boost on the training set F1 score. This
improvement indicates conflicting labeling for task
B. However, the difference for the uncorrected de-
velopment set is just 0.003: even with the corrected
labels, the model still perform similarly for the
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Precision Recall F1
1-gram+RF 0.830 £0.082  0.916 +0.057  0.870 + 0.063
1-gram-+logreg 0.850 +20.093  0.890 +=0.084  0.868 £ 0.081
1-gram+SVD+RF 0.794 £0.030 0.984 +0.025 0.879 £ 0.021
1-gram+SVD+logreg | 0.858 + 0.080 0.884 £0.074  0.869 + 0.065
TF-IDF+RF 0.833 £0.066  0.963 +0.036  0.892 + 0.045**
TF-IDF+logreg 0.743 £0.040  0.979 £0.037  0.844 + 0.035
TF-IDF+SVD+RF 0.778 £0.030 0.984 +0.025 0.869 £ 0.020
TF-IDF+SVD+logreg | 0.746 +0.040  0.979 £0.037  0.846 + 0.036
word2vec+BiLSTM 0.856 +0.063  0.934 +0.045  0.900 + 0.034*

Table 5: 10-fold cross validation results from task A

Precision Recall F1
1-gram+RF 0.699 £0.081  0.649+£0.123  0.667 £ 0.086
1-gram+logreg 0.724£0.072 0.732£0.135  0.723 £ 0.087
1-gram+SVD+RF 0.655£0.077  0.768 £0.094  0.703 £ 0.065
1-gram+SVD+logreg | 0.706 +0.055  0.714 £0.117  0.707 £ 0.074
TF-IDF+RF 0.693 £0.059  0.697+£0.125  0.691 + 0.084
TF-IDF+logreg 0.708 £0.082  0.845£0.118  0.767 £ 0.080
TF-IDF+SVD+RF 0.671£0.077  0.850£0.100  0.744 + 0.047
TF-IDF+SVD+logreg | 0.715£0.083  0.839£0.110  0.768 + 0.075**
word2vec+BiLSTM | 0.705 £ 0.077  0.884 £ 0.086 0.778 + 0.048"

Table 6: 10-fold cross validation results from task B

Train A Train B Dev Test
Single 0.892 0.768 0.793  0.800
Ens+Ori 0.885 0.764 0.799  0.802
Ens+Upd 0.898 0.831 0.802 0.804
Deep learning | 0.900 0.772 0.806 0.811

Table 7: F1 score comparison with the alternative ensemble models

Word2Vec Task A Task B Total
Single - 8.98 10.07 19.05
Ens+Ori — 36.53 36.70  73.23
Ens+Upd — 44.45 45.78  90.23
Deep Learning | 79.15 13242  132.06 343.63

Table 8: Total training time for each method (in minutes)



holdout datasets. Since we did not observe signifi-
cant improvement, we used only original labels to
train the deep learning model.

To analyze how hard it is to separate the right
from the wrong answers, we reduced the dimen-
sionality of the data into 2D using 1-gram, SVD,
and t-SNE (Maaten and Hinton, 2008). Figure 1
suggests that it is harder to separate the two an-
swers in task B. On the other hand, we see more
concentrated data points from wrong answers in
task A. A similar phenomenon can also be observed
in Figure 2 and Figure 3. We can see a lot more data
points in the 0.4-0.6 prediction range in Figure 3.

Figure 1: t-SNE visualisation
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Figure 2: Single model prediction (random forest) with
probability on Task A

right
wrong
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Figure 3: Single model prediction (logistic regression)
with probability on Task B

6 Related Work

Studies of short-answer scoring methods range
from using pattern matching (Mitchell et al., 2002;
Leacock and Chodorow, 2003; Sukkarieh et al.,
2004; Nielsen et al., 2009), semantic similarity
(Mohler and Mihalcea, 2009; Mohler et al., 2011;
Heilman and Madnani, 2013; Jimenez et al., 2013),
to neural architectures (Riordan et al., 2017). Note
that short-answer scoring tasks usually have shorter
response length compared to essay scoring tasks
(Riordan et al., 2017). Short-answer scoring fo-
cuses on content only instead of broader writ-
ing quality, such as elaboration, organization, and
grammar (Burstein et al., 2013).

In semantic similarity, Mohler and Mihalcea
(2009) compared TF-IDF, WordNet, and LSA-
based models for short-answer scoring. Mohler
et al. (2011) added graph alignment scores to add
syntactic knowledge to improve the LSA-based
model in the prior study. Sultan et al. (2016) and
Baroni et al. (2014) introduced the use of word
embedding using word2vec for this task. Our
word2vec model is pretrained using a large col-
lection of Indonesian text from Wikipedia dumps,
Opensubs, and the preprocessed UKARA dataset.
This makes our word embedding model different
from what can be found in the previous work by
Riordan et al. (2017).

In this study, we did not use WordNet due to the
unavailability of a rich lexical similarity database
in bahasa Indonesia. Moreover, in our shared task,
the organiser also gave the binary labels for each an-
swer and coding guidelines instead of the expected
right answers.

7 Conclusions

In this report, we compare three approaches for
automatic Indonesian short-answer scoring using
the UKARA 1.0 dataset: single, ensemble, and
deep learning. Albeit being more sophisticated, we
found that the F1 score difference is insignificant
when we compare the single model to the ensemble
and the deep learning approach. The 1.1% incre-
ment in the deep learning model can help clinch
the top position in a competition, but it is not worth
the required resources for practical settings. We
posit that the primary reason is due to the noisy
labels. As the classical models require only Tls of
the total time to train deep learning models, we
should use simple models and allocate more time
for improving dataset quality.
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