Proceedings of the Workshop on Social Threats in Online Conversations: Understanding and Management (STOC-2020), pages 48-55
Language Resources and Evaluation Conference (LREC 2020), Marseille, 11-16 May 2020
(© European Language Resources Association (ELRA), licensed under CC-BY-NC

Email Threat Detection Using Distinct Neural Network Approaches

Esteban Castillo', Sreekar Dhaduvai’, Peng Liu?, Kartik-Singh Thakur?,
Adam Dalton® and Tomek Strzalkowski'
IRensselaer Polytechnic Institute, Troy, NY, USA, {castie2, tomek} @rpi.edu
2State University of New York at Albany, Albany, NY, USA, {sdhaduvai, pliu3, kthakur} @albany.edu
3[HMC, Ocala, FL, USA, adalton@ihmc.us

Abstract

This paper describes different approaches to detect malicious content in email interactions through a combination of machine learning
and natural language processing tools. Specifically, several neural network designs are tested on word embedding representations to
detect suspicious messages and separate them from non-suspicious, benign email. The proposed approaches are trained and tested
on distinct email collections, including datasets constructed from publicly available corpora (such as Enron, APWG, etc.) as well as
several smaller, non-public datasets used in recent government evaluations. Experimental results show that back-propagation both with
and without recurrent neural layers outperforms current state of the art techniques that include supervised learning algorithms with
stylometric elements of texts as features. Our results also demonstrate that word embedding vectors are effective means for capturing
certain aspects of text meaning that can be teased out through machine learning in non-linear/complex neural networks, in order to obtain
highly accurate detection of malicious emails based on email text alone.

1. Introduction

Email messages are the dominant way of communica-
tion for many users around the world (Dada et al., 2019).
Among the massive daily email traffic, unsolicited and un-
wanted message have become a growing nuisance and in-
creasingly posing serious threats to users’ privacy and se-
curity by distributing false information, deceptive requests,
as well as malicious links and attachments.

A number of approaches have been used for detection and
removal of malicious messages from email feeds (Mujtabal
et al., 2017). For example, extraction of harmful content
(payload) has solved many obvious problems, as did the
analysis of email headers for sender addresses and delivery
paths, but most of these techniques fail to understand the
content of the message itself: does the message contain a
request (explicit or implicit) for the addressee to perform
an action that would harm them or their organization, e.g.,
by divulging private information? In other words, the mes-
sage itself, and not necessarily any associated metadata, be-
comes a threat because it attempts to break the last line of
defense: the user.

Given the challenging nature of the task, we propose a
novel technique to identify suspicious emails based on the
analysis of email textual content. Our main contribution is
the evaluation of multiple neural network architectures ap-
plied to pre-trained word embedding representation to au-
tomatically acquire accurate indicators of malicious emails.
The papers main hypothesis is that different non-linear
models (neural networks architectures) can learn hidden
correlations between text elements (represented as word
embeddings) that are characteristic of malicious messages
and do so more reliably than classic supervised learning ap-
proaches (bag of words, TD-IDF etc.). Our motivation is to
create reliable content-based models that can classify email
and other types of messages (such as SMS) as suspicious
(spam, phishing, malware, propaganda, etc.) as a first line

!'Social engineering attacks, spam, phishing, malware, propa-
ganda among others.

48

of defense against social engineering attacks (Sawa et al.,
2016).

The remainder of this paper is organized as follows: in Sec-
tion [2.| current approaches to detection of suspicious email
are reviewed. Sections[3]to[6] provide details of our design
and implementation of the neural network architectures. In
Section [/.| the experimental results are presented and dis-
cussed. Finally, implications and conclusions derived from
this work thus far are discussed in Section[81

2. Related Work

In this section, we briefly review the most relevant recent
work in the email analysis and classification, specifically
those that use machine learning, highlighting their main
features and performance.

(Diale et al., 2019) implemented a Support Vector Machine
(SVM), Random Forest and decision tree algorithms for
spam detection with a vector size reduction approach to
eliminate excessive number of features. A distributed bag
of words representation was used for fixed length embed-
ding of email samples. Dimensionality reduction was uti-
lized to capture word ordering and basic semantic meaning
from text messages. Experimental results show an overall
spam detection accuracy of 97% over the Enron dataset.
(Abu-Nimeh et al., 2007) compares distinct supervised
learning algorithms (logistic regression, random forest,
SVM, etc.) for detecting phishing emails. The approach
considers a bag of words model as text representation with
TF-IDF weights for detecting best features in the body of
emails. Experimental results show an average accuracy of
92% over a manually annotated phishing dataset and iden-
tify the logistic regression and SVM algorithms as best op-
tions when text frequency distributions are analyzed.
(Abiodun et al., 2019) used a SVM and Naive Bayes algo-
rithm alongside a feature analysis process to detect phishing
messages. Multiple content and header features were con-
sidered incrementally in order to find the optimal set of fea-
tures that maximizes classification accuracy. Experimental

Sy 8 &

1. Select training
and test collections

2. Pre-process
Email body part

3. Create a word
embedding model

oo -

a) Back Propagation Network

b) Convolutional network

5. Test the

proposed architecture
|
1
1 9
'I q
—

c) Recurrent Network

4., Implement a neural network architecture

Figure 1: Email threat detection process.

results show accuracy around 98% for detecting phishing
texts over messages that contain a verified set of phish-
ing messages and URLs reported by volunteers (Alexa and
PhishTank?] collections).

(Varol and Abdulhadi, 2018)) presented an heuristic spam
filtering approach in which different string matching met-
rics (Levenshtein Edit-Distance, Longest Common Subse-
quence, etc.) are used to compare email text sentences over
manually selected phrases related to spam and propaganda.
Emails are labelled as friend or foe if most comparisons
surpass a predefined numeric threshold. Experiments were
run against the Enron and CSDMC2010 datasets showing
spam detection accuracy around 98%.

(Bahgat et al., 2018)) employed several supervised learning
algorithms (SVM, Bayesian Logistic Regression) along-
side an ontology and text similarity measures for detect-
ing malicious email messages (spam and propaganda).
The proposed approach employs the WordNet ontology to
eliminate words with a similar meaning, then benign/non-
benign emails are compared between each other using
string matching measures where emails are label as foe if
are similar to many malicious messages. Experimental re-
sults show an accuracy above 90% over the Enron dataset.
Finally, (M et al., 2018) describes a set of experiments for
detecting phishing on emails by using a convolutional neu-
ral network with a word embedding approach over email
headers or the messages itself (payload). The experiments
obtained an accuracy around 96% which shows the impor-
tance of neural networks for detecting malicious attacks and
demonstrate that word embeddings are a suitable for detect-
ing fine-grained patterns of users writing style. Important
to mentioned that this paper helps to see that a single model
over spam, phishing, malware, etc. could be created by us-
ing word embedding and neural networks as platform.
Most of the above approaches work reasonably well, al-
though some recent experiments using neural networks
(Smadi et al., 2018; Roy et al., 2020) have been more suc-
cessful, especially for generalizing models across different

% https://www.phishtank.com/

49

threat types and associated topics.

3. Threat Detection Process

In this section we discuss several variants of a new method
for detecting multiple forms of malicious email that include
phishing, spam, malware, propaganda, and also sophisti-
cated forms of social engineering. Our method is tested on
email, but it is general enough to apply to other types of
messaging, including social media private messaging and
chat channels. Figure [T] shows the overall approach with
three alternative training modes with different neural net-
work architectures. The process is explained below:

1. Select appropriate email collections for training and
testing of the prediction models (see Section).

. Pre-process textual information in the body of emails.
This task includes word tokenization, elimination of
punctuation and special symbols, and converting all
text to lowercase.

. Create word embedding models taking as input all
training email collections (see Section[5)).

Implement a neural network architecture that takes
word embeddings obtained in the previous step as in-
put and learns to classify emails into friend/foe or (in
future experiments) more categories (e.g., friend, foe,
undecided; as well as subtypes of foe messages) (see
Section [6.).

Evaluate the trained models using set-aside test collec-
tions (see Section[7)).

4. Datasets Used

The document collections used for training and testing in-
clude benign and malicious email samples obtained from
employees of public companies and government depart-
ments.

Benign emails correspond to internal interactions among
users on day-to-day work issues. On the other hand, most of

suspicious emails are obtained from employees spam boxes
and specific email threat repositories (like APWG dataset).
All emails have been manually labeled at source following
the conventions of the data providers. For training purposes
we converted these into binary suspicious/non-suspicious
labels, but also kept the original labels as additional features
(threat type).

In this application we only consider the (textual) body of
emails; header and other metadata was not usedﬂ We also
note that all personally identifiable information (PII) has
been removed or replaced in the data. Attachments are kept
in most cases, but these containing malware are eliminated
to protect users.

Table [T| summarizes the key details of each collection. En-
ron and APWG (among other collections) are used for
training purposes while Non-public datasets called dry-run

1 and dry-run 2 are used for testing.

Dataset name and/or type

Feature

Training Testing

Enron
(Klimt and Yang, 2004)
Benign emails

Used for word embeddings
Collection type
Number of emails

v
Public available
84111 NA

APWG (Oest et al., 2018)

Used for word embeddings

v

Phishing/Malware Collection type Public available
Non-benign emails Number of emails 30776 NA
BC3 Used for word embeddings v

(Ulrich et al., 2008)
Benign emails

Collection type
Number of emails

Public available
259 NA

Phishinﬂnon-phishing

Non-benign emails

Used for word embeddings
Collection type
Number of emails

v
Non-public available
5338 NA

MalwardInon-malware

Used for word embeddings
Collection type

v
Non-public available

Non-benign emails Number of emails 2914 NA

Propaganda®| Used for word embeddings v

/non-propaganda Collection type Non-public available

Non-benign emails Number of emails 261 NA
Used for word embeddings v

Spanﬂnon-spam

Non-benign emails

Collection type
Number of emails

Non-public available
1294 NA

social engineering®|
/non-social engineering

Used for word embeddings
Collection type

v
Non-public available

Non-benign emails Number of emails 1059 NA
Reconnaissancd’ | Used for word embeddings v
/non-reconnaissance Collection type Non-public available
Non-benign emails Number of emails 173 NA
Dry-run 1 Used for word embeddings X

Benign and Collection type Non-public available
Non-benign emails Number of emails NA 1025
Dry-run 2 Used for word embeddings X

Benign and Collection type Non-public available
Non-benign emails Number of emails NA 3023

Table 1: Datasets used in this study.

From above table, it is important to highlight that dry-run
datasets comprise also email samples of day-to-day interac-
tions in a work environment. This collections are non pub-

3 Header information included in the emails is not always com-
plete due to privacy considerations.

* Email messages often used to steal users data.

5 Emails embedded code designed to cause extensive damage to

users data/systems.

% Email sent to disseminate facts, arguments, rumours related to

a specific topic.

7 Unsolicited, undesired or annoying email messages.

8 Email message used for manipulate users, so they give up con-
fidential information voluntarily.

° Email sent to gain preliminary information about a potential

victim.

50

lic available considering that there are utilize for evaluating
an active social engineering program of the USA govern-
ment. Despite that, it can be mentioned that this datasets
have an unbalanced nature with a proportion of 80% be-
nign samples and 20% non-benign ones which is consistent
with a real world scenario.

5. Word Embeddings

Accurate detection of suspicious emails in the stream of
daily messages, based on email content alone, requires at-
tention to subtle differences in word use, sequencing, and
the “tone” of the message. Unlike most ordinary commu-
nication, malicious messages attempt to produce a reaction
from the recipient in a manner that tends to violate com-
munication norms — the subtleties that we are attempting to
tease out.

Word embeddings (Mikolov et al., 2013} [Bengio et al.,
2006) which capture contextual meaning of words in texts
by creating vector representations, are particularly suitable
for this task. We derive word embeddings from a corpus of
emails, thus capturing what we believe are the contextual
meanings of words use in email genre.

In this paper, a continuous bag-of-word model based on
Gensim-word2vec (Rehtiek and Sojka, 2010) is utilized for
obtaining numerical vectors of words. We use a window of
10 words for analyzing the neighborhood of texts and vec-
tors of different size are created for testing different neural
networks architectures (see Section[7.1)).

In the next section we explain the role of word embedding
vectors as inputs to a supervised learning algorithm imple-
mented with different neural network architectures.

6. Neural Networks Architectures

Neural networks (Goodfellow et al., 2016) are a special
type of classifiers which are strongly tied to supervised
machine learning suitable for modeling of non-linear prob-
lems.

Figure 2] shows the three neural network architectures pro-
posed for training classifiers for suspicious/non-suspicious
emails. All variants are implemented in Keras (Chollet,
2017) as follows:

1. Back-propagation network: A classic feed-forward
network which creates multiple hidden layers between
input and output elements. This architecture adjusts
model efficiency according to a gradient descent tech-
nique (Ruder, 2016) which minimizes the error rate af-
ter multiple back and forth iterations over the network
on training samples.

Figure[3a|highlights how the word embeddings are uti-
lized as input in the back-propagation process. For
each training and test emails, content word embedding
vectors are combined into a single vector by comput-
ing averages across corresponding dimensions. The
objective is to obtain a vector representing the mean-
ing of each email.

2. Convolutional network: A specialization of the
back-propagation model (Indolia et al., 2018) that
employs mathematical transformations (convolutions)

R
\ Y7
N

4‘\\’ 7

N
W) j’;rrh

Input word
vector

Hidden
layers

Prediction:
e *Suspicious
sigmoid = Non-suspicious

L ‘convolution max
Frer pooling
I~
fixed-size
word embedding 4
matrix

Prediction:
/~ =Suspicious
— e
sigmoid *Non-suspicious

Convolutional layer

feed forward hidden layers

(b) Convolutional network.

Sgmoid

fixed-size
word embedding
matrix

0 @

Prediction:
/~ =Suspicious

el .
sigmoid *Non-suspicious

LSTM layer

feed forward hidden layers

(c) Recurrent network (LSTM).

Figure 2: Proposed neural network architectures.

over specific hidden layers for detecting fine grained
features. The combined new features (max pooling),
help capturing patterns related to order and proxim-
ity over the words, increasing the detection of spatio-
temporal aspects of original texts.

Figure [3b] shows how the embeddings are used in this
architecture. A fixed-size matrix is created for each
training and test email taking as input tokens from text.
In this matrix, columns represent features of an em-
bedding vector and rows represent tokens associated
with email samples.

It is important to note that this type of architecture re-
quires matrices of the same size. Accordingly, we take

the first V words from each email as input to the pro-
cesd]

. Recurrent neural network: Another specialization

of back-propagation model (Hochreiter and Schmid-|
lhuber, 1997} [Soutner and Miiller, 2013) where data
sequences are analyzed in order to predict new ones
based on prior knowledge. In this architecture, spe-
cific hidden layers implement neuron loops allowing a
small memory state where previous words are used as
input to current word analysis, this help to relate to-
ken patterns that are syntactically separate in the word

101f an email is shorter than N, all its words are used as rows in a
matrix and the remaining positions are padded with zeros.

Numerical representatjon of a word (vector)

hope
Word _ p
window thi
email
i finds
you
well
regards
Column
average
Syl [P TV
value
(a) Back-propagation network.
Embedding feature Word window
] |
Convolution ‘ ‘ 4 hope
filters T T T
A Start position this
T — email
Max
pooling | | | finds
you
\ - well
End position
i |
regards
{
Numerical representation of a word (vector)
(b) Convolutional network.
Embedding feature—l
+
hope
V,de Start position this
window
email
finds
you
well
¥ End position
regards

Numerical representation of a word (vector)
(¢) LSTM network.

Figure 3: Word embedding matrix representations.

sequence.

In this paper, we used a specific type of recurrent
network called Long Short-Term Memory network
(LSTM). This kind of network expands the idea of a
memory state by creating a complex architecture of
nodes that remember information of correlated ele-
ments that are far away (key difference from a classical
recurrent network). LSTM networks analyze and pre-
dict information considering past knowledge, which
most of the time is omitted or managed independently

52

introducing some bias to the learning algorithms.

Figure [3¢|show how the LSTM network takes consec-
utive word windows in order to analyze past, present
and future words in the email text. As with the con-
volutional network, LSTMs require inputs of the same
size, therefore only the first N email words are used
as input in the network.

7. Experimental Results

Results obtained using the proposed neural network archi-
tectures are discussed in this section. First, the experiments
are described, then the results are shown, and followed by
a discussion of the findings.

7.1.

A series of experiments were performed in order to test the
accuracy of the proposed variants. In total, 60480 experi-
mental runs were performed using multiple combinations
of neural network parameters for each architecture type.
Table [2] summarizes the different configurations that were
tested in a supervised learning fashion.

Experiments Performed

Parameter Possible values
Programming language Python
g g languag https://www.python.org/
Keras
Neural network package hitps://keras.io/
. Gensim
Word embedding package https://radimrehurek.com/gensim/
Emallh words/tokens 10,20, 30, 40
(Matrix rows)
Word .embeddmg features 30,40, 50, 60
(Matrix columns)
Convolutional layer 20, 30, 40,50
(number of neurons)
LSTM layer 30,40, 50, 60

(number of neurons)
Back-propagation neurons
(Multiple hidden layers)
Convolutional word window 3

50-50,32-16-8-3,8-8,4-4,3-3-3

LSTM word window 2
Convolutional network
100

filter number
Convolutional activation

. Relu
function
LSTM activation . .

. Sigmoid
function

Back-propagation
activation function
Batches

Epochs

Relu and Sigmoid

50, 60, 70, 80, 90, 100, 110
2,3,4,5,6,7

Table 2: Experimental parameters.

It is worth noting that parameters were selected according
to a preliminary experimentation and the recommendations
from relevant literature (Lane et al., 2019).

7.2. Experimental Results

Table [3] summarizes the results over dry-run 1 and dry-run
2 test collections. Experimental results obtained from vari-
ants of NN architecture, as explained above, are compared
against traditional classifiers (SVM, NB, and LR) that use

https://www.python.org
https://keras.io/
https://radimrehurek.com/gensim/

Dataset Features Email length

LSTM Convolutional

Back-Propagation

type Approach (Matrix colums) (Matrix rows) Neurons Neurons Neurons Batches Epochs Accuracy
BP 60 40 - - 8-8 70 6 0.9568*
LSTM 50 40 50 - 32-16-8-3 90 7 0.9317
BP 50 50 - - 4-4 100 6 0.9127
CN 20 40 - 40 8-8 50 4 0.9175
LSTM 30 50 60 - 4-4 110 6 09114
BP 40 40 - - 8-8 90 5 0.9031
Dry-Run1 BP 30 60 - - 8-8 50 4 0.9012
LSTM 40 40 50 - 32-16-8-3 60 6 0.8855
LSTM 40 50 60 - 50-50 90 7 0.8821
CN 20 30 - 40 3-3-3 60 4 0.8793
SVM - - - - - - - 0.8137
NB - - - - - - - 0.7915
LR - - - - - - - 0.7824
LSTM 30 40 60 - 3-3-3 60 5 0.9185*
BP 40 60 - - 8-8 70 7 0.9136
BP 30 60 - - 3-3-3 80 5 0.9023
BP 40 40 - - 4-4 70 6 0.9012
CN 20 30 - 40 50-50 50 3 0.8983
BP 30 40 - - 32-16-8-3 70 4 0.8839
Dry-Run2 CN 30 30 - 40 32-16-8-3 50 3 0.8748
LSTM 40 50 60 - 8-8 100 6 0.8612
SVM - - - - - - - 0.8529
BP 40 40 - - 50-50 110 6 0.8512
BP 30 30 - - 3-3-3 80 5 0.8507
LR - - - - - - - 0.8045
NB - - - - - - - 0.7749

BP: Back-propagation

CN: Convolutional Network

LSTM: Long Short-Term Memory Network (recurrent network)
SVM: Support Vector Machine

NB: Naive Bayes

LR: Logistic Regression

Table 3: Summary of best experimental results.

standard bag of words approac (Manning et al., 2008;
Sarah Guido, 2016).

Experimental results demonstrate that the performance of
all neural network variants surpasses baseline techniques
using three main options with customized word embed-
dings over dry-run 1 and 2: back-propagation accuracy
(95%, 91%), convolutional network accuracy (91%, 89%)
and LSTM network accuracy (93%, 91%).

The best results (independently of the test collection) were
obtained using the first 30 to 40 words of each email, which
indicates that the core threat information is included in this
range. For the word embeddings size, relatively small vec-
tors of 40 to 60 features appear to pack the semantic con-
tent of emails to capture the distinctive indicators associ-
ated with email intent (malicious or benign).

The major advantage of the LSTM and convolutional net-
works is the fine grained analysis of word sequences, which
helps to identify subtle textual patterns that are lost when
each word is considered independently. On the other hand,
the major disadvantage is the extra amount of time and re-
sources required for training for relatively modest perfor-
mance gain.

Finally, the obtained results demonstrate that the proposed
neural network configurations can be used to effectively
train accurate classifiers for detecting suspicious emails in-

' Baseline experiments were implemented using the whole set
of words on the training collections as features and the default
parameters for the scikit-learn package for classifiers.

53

dependently of their topic and subject domain. This fact
highlights the relevance of the neural networks created and
the features used as an effective method of capturing the
intent of emails.

8. Conclusions and Future Work

Several neural network architectures were tested in order
to train effective classifiers for identification of malicious
content in email messages, independently of their subject
matter. The results demonstrate viability of the proposed
methods for capturing malicious intent in messages. Our
key findings are summarized below:

1. Datasets selected for this project are shown to be rel-
evant for training and testing the email classifiers.
Taken together, they provide sufficient lexical and syn-
tactic resources for effective learning of textual pat-
terns related to malicious messages.

Word embeddings proved to be an adequate option
for representing the writing style of malicious emails.
This technique helped to capture the context of words
in email messages as well as their relationship with
other words which ultimately lead to an accurate rep-
resentation.

. The back-propagation network obtained the best re-
sults compared with other approaches. This highlights
the ability of the model to learn non-linear and com-
plex relationships between inputs and outputs. Results

obtained also demonstrate that the analysis of dense
feed forward networks helps to generalize textual pat-
terns across multiple email threat types.

The convolutional networks achieved a performance
slightly below baseline results. This reveals that con-
volutions over word embeddings windows of size up
to three are not enough to fully capture the writing
style of malicious email messages. A higher accu-
racy could be obtained if complete word embedding
windows are analyzed although it would consume a
higher number of computational resources due to the
complexity of the network.

. The recurrent neural networks obtained similar results
than baseline techniques. The results demonstrate that
the analysis of words that are dependent of previous
ones is not crucial for detecting suspicious email mes-
sages independently of the threat type.

Overall, our results surpass baseline techniques show-
ing the relevance of the neural networks approach
combined with word embeddings for detecting distinc-
tive elements on email exchanges. Results also show
the effectiveness of the networks in a real world appli-
cation (Non-public datasets) where emails could not
be related to the topics and domains used for training.

Future work includes the following actions:

e Run related work methods (see Section[2)) against test
collections used in this paper (dry-run 1 and 2). The
idea is to compare state of the art accuracy associated
to a specific threat type (spam, or phishing) with the
results obtained in this paper where classifier created

can deal with different types of threats.

Add more public email samples that deal with the
problem in order to enrich the training process over the
neural network architectures that show a better perfor-
mance.

Refine and enrich existing training datasets by careful
manual labelling by multiple annotators.

Apply additional neural networks techniques (Chollet,
2017} [Lane et al., 2019) for improving the approach
accuracy.

Evaluate the proposed approach on different genre of
messaging, e.g. social media channels (Inuwa-Dutse
et al., 2018).

Apply this approach in other languages (e.g., Spanish)
keeping the same neural network parameters but cre-
ating a new word embedding model according to the
language vocabulary.

Acknowledgments

Supported by DARPA FA8650-18-C-7881 and by DARPA
through Army Contract W31P4Q-17-C-0066. All state-
ments are those of the authors, not AFRL, DARPA, Army,
or USG.

54

9. Bibliographical References

Abiodun, O., Sodiya, A., and Akinwale, A. T. (2019). A
predictive model for phishing detection. Journal of King
Saud University - Computer and Information Sciences,
1:1-16.

Abu-Nimeh, S., Nappa, D., Wang, X., and Nair, S. (2007).
A comparison of machine learning techniques for phish-
ing detection. In Proceedings of the Anti-Phishing Work-
ing Groups 2nd Annual ECrime Researchers Summit,
page 60—69. Association for Computing Machinery.

Bahgat, E. M., Rady, S., Gad, W., and Moawa, 1. F. (2018).
Efficient email classification approach based on semantic
methods. Ain Shams Engineering Journal, 9(4):3259 —
3269.

Bengio, Y., Schwenk, H., Senécal, J.-S., Morin, F., and
Gauvain, J.-L., (2006). Neural Probabilistic Language
Models, pages 137-186. Springer Berlin Heidelberg,
Berlin, Heidelberg.

Chollet, F., (2017). Deep Learning with Python, pages
178-232. Manning Publications Co., Shelter Island, NY
11964.

Dada, E. G., Bassi, J. S., Chiroma, H., Abdulhamid, S. M.,
Adetunmbi, A. O., and Ajibuwa, O. E. (2019). Machine
learning for email spam filtering: review, approaches and
open research problems. Heliyon, 5(6):1-23.

Diale, M., Celik, T., and Walt, C. V. D. (2019). Unsuper-
vised feature learning for spam email filtering. Comput-
ers & Electrical Engineering, 74:89—104.

Goodfellow, 1., Bengio, Y., and Courville, A. (2016). Deep
Learning. MIT Press, Cambridge, Massachusetts.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-
term memory. Neural Computation, 9(8):1735-1780.

Indolia, S., Goswami, A. K., Mishra, S. P., and Asopa, P.
(2018). Conceptual understanding of convolutional neu-
ral network- a deep learning approach. Procedia Com-
puter Science, 132:679-688.

Inuwa-Dutse, 1., Liptrott, M., and Korkontzelos, I. (2018).
Detection of spam-posting accounts on twitter. Neuro-
computing, 315:496-511.

Klimt, B. and Yang, Y. (2004). The enron corpus: A
new dataset for email classification research. In Machine
Learning: ECML 2004, pages 217-226. Springer Berlin
Heidelberg.

Lane, H., Howard, C., and Hapke, H., (2019). Natural Lan-
guage Processing in Action, pages 247-273. Manning
Publications Co., Shelter Island, NY 11964.

M, H., Unnithan, N. A., R, V,, and Kp, S. (2018). Deep
learning based phishing e-mail detection cen-deepspam.
In Ist AntiPhishing Shared Pilot 4th ACM Int. Workshop
Secur. Privacy Anal.(IWSPA), pages 1-5.

Manning, C. D., Raghavan, P., and Schiitze, H., (2008). In-
troduction to Information Retrieval, pages 18—43. Cam-
bridge University Press.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and
Dean, J. (2013). Distributed representations of words
and phrases and their compositionality. In Proceedings
of the 26th International Conference on Neural Informa-
tion Processing Systems - Volume 2, pages 3111-3119.
Curran Associates Inc.

Mujtaba, G., Shuib, L., Raj, R. G., Majeed, N., and Al-
Garadi, M. A. (2017). Email classification research
trends: Review and open issues. IEEE Access, 5:9044—
9064.

Oest, A., Safei, Y., Doupe, A., Ahn, G.-J., Wardman, B.,
and Warner, G. (2018). Inside a phisher’s mind: Under-
standing the anti-phishing ecosystem through phishing
kit analysis. In Proceedings of the 2018 APWG Sympo-
sium on Electronic Crime Research, eCrime 2018, pages
1-12. IEEE Computer Society.

Rehtifek, R. and Sojka, P. (2010). Software framework for
topic modelling with large corpora. In Proceedings of
the LREC 2010 Workshop on New Challenges for NLP
Frameworksg, pages 45-50. ELRA.

Roy, P. K., Singh, J. P., and Banerjee, S. (2020). Deep
learning to filter sms spam. Future Generation Com-
puter Systems, 102:524-533.

Ruder, S. (2016). An overview of gradient descent opti-
mization algorithms. CoRR, abs/1609.04747:1-14.

Sarah Guido, A. M., (2016). Introduction to Machine
Learning with Python, pages 27-129. O’Reilly Media.

Sawa, Y., Bhakta, R., Harris, I. G., and Hadnagy, C. (2016).
Detection of social engineering attacks through natu-
ral language processing of conversations. In 2016 IEEE
Tenth International Conference on Semantic Computing
(ICSC), pages 262-265. IEEE.

Smadi, S., Aslam, N., and Zhang, L. (2018). Detection
of online phishing email using dynamic evolving neural
network based on reinforcement learning. Decision Sup-
port Systems, 107:88—102.

Soutner, D. and Miiller, L. (2013). Application of Istm
neural networks in language modelling. In Text, Speech,
and Dialogue, pages 105-112. Springer Berlin Heidel-
berg.

Ulrich, J., Murray, G., , and Carenini, G. (2008). A
publicly available annotated corpus for supervised email
summarization. In AAAIO8 EMAIL Workshop, pages 1—
6. AAAL

Varol, C. and Abdulhadi, H. M. T. (2018). Comparision of
string matching algorithms on spam email detection. In
2018 International Congress on Big Data, Deep Learn-
ing and Fighting Cyber Terrorism (IBIGDELFT), pages
6-11.

55

	Introduction
	Related Work
	Threat Detection Process
	Datasets Used
	Word Embeddings
	Neural Networks Architectures
	Experimental Results
	Experiments Performed
	Experimental Results

	Conclusions and Future Work
	Bibliographical References

