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Abstract

This is the system description of the Harbin Institute of Technology Shenzhen (HITSZ) team
for the first and second subtasks of the fifth Social Media Mining for Health Applications
(SMM4H) shared task in 2020. The first task is automatic classification of tweets that mention
medications and the second task is automatic classification of tweets in English that report
adverse effects. The system we propose for these tasks is based on bidirectional encoder
representations from transformers (BERT) incorporating with knowledge graph and retrieving
evidence from online information. Our system achieves an F1 of 0.7553 in task 1 and an F1 of
0.5455 in task 2.

1 Introduction

With greatly increasing number of social media users, plenty of personal information has been posted
in social networking websites such as Twitter, including massive data about health and medicine.
Social media has attracted more and more attention from researchers and industrials in the health and
medicine domain. To utilize the imbalanced and informal expressions of clinical concepts, a system
should be able to alleviate the noise of social media posts and detect medical mentions which requires
professional knowledge. In 2020, the health language processing lab at University of Pennsylvania
organized the Social Media Mining for Health Applications (SMM4H) shared task about using social
media mining for health monitoring, which includes 5 subtasks. We participate in the first two
subtasks: (1) Automatic classification of tweets that mention medications, and (2) Automatic
classification of tweets in English that report adverse effects (AEs). In this report, we briefly introduce
our system developed for the two subtasks. The system is based on pre-trained language model BERT
(Devlin, Chang, Lee, & Toutanova, 2018) with external knowledge.

2 Data and Pre-processing

The 2020 SMM4H organizers provide a dataset of tweets with a label indicating whether the tweets
mention medications for task1 (1-Yes, 0-No), and a dataset of tweets with a label indicating whether
the tweets mention AEs for task2. Each tweet includes text, a date and an identified ID. Table 1
describes the statistics of the two individual datasets, where #1 and #0 denote the numbers of tweets
that mention medications and not respectively, #all denotes the total number of tweets, and NA
denotes that we do not know the number of those tweets.1

Task Dataset #1 #0 #all

Task1 training set 181 69,091 69,272
test set NA NA 29,687

Task2 training set 2,374 23,298 25,672
test set NA NA 4,659

Table 1: Distribution of label over the training and test datasets of task 1 and task 2.
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For both tasks, we pre-process all tweets via removing the usernames, URLs, emoticons, non-ASCII
characters and repeated punctuations.

3 System Description

Our system for both task 1 and task 2 is based on BERT, which is used to represent tweet. Below we
describe in detail the methods for the two tasks one by one.

3.1 Methods for task1

In this task, we first deploy BERT directly (Shuai Chen, 2019), and then extend it to BERT_Med by
introducing potential medications from DrugBank1. The architecture of BERT_Med is shown in Fig. 1,
where FC is a fully-connected layer. Given a piece of tweet, we first calculate its similarities with
medications, and then select those medications with similarity less than 0.1 as its next tweet, finally
input the tweet and the selected medications into BERT. The similarity between tweets and
medications is measured by cosine using TF-IDF(Term Frequency-Inverse Document Frequency) as
their representations.

Figure 1: BERT with potential drugs (BERT_Med)

3.2 Methods for task2

For task 2, we propose the following two models based on BERT as shown in Fig. 2.
Strategy 1: To extract the internal information of AEs in tweets, we add the potential AEs
corresponding to the drug mentions detected in the tweets. Drug mentions in tweets are detected by
exact matching on Drugbank and the drug dictionary (Azadeh N, Abeed S, O’Connor Karen, et al.
2015), and the AEs come from MedlinePlus2. Similar to BERT_MED in Fig. 1, we treat the potential
AEs as the next tweet of the given tweets and input them into BERT. In addition, we add a self-
attention module (Ashish Vaswani, Noam Shazeer, Niki Parmar and et al. 2017) after BERT to
redistribute representations of the tweet and potential AEs.
Strategy 2: To further integrate external knowledge into strategy 1, we introduce medication
representation learnt from MeSH3 by TransE (Bordes A, Usunier N, Garcia-Duran A, et al. 2013) as
shown in Fig. 2. A similar self-attention module is employed to extract information from the
concatenated entity embeddings learnt by TransE. Finally, we feed combination of the final
representation of the texts and the medication entities into a linear transformation layer for the final
prediction.

1 https://www.drugbank.ca/
2 https://medlineplus.gov/
3 https://www.nlm.nih.gov/mesh/meshhome.html

https://www.drugbank.ca/
https://medlineplus.gov/
https://www.nlm.nih.gov/mesh/meshhome.html


148

Figure 2: Model architectures in task 2.

4 Experiments

For task1, we set batch size to 64, learning rate to 2e-5 and sequence length to 64 when training
models. For task2, the batch size and sequence length of BERT are the same as the ones of task1 while
the learning rates of BERT and attention layer are set to 1e-5 and 5e-5 respectively. We train all models
using 5-fold cross validation on the training set.

5 Results

Task System Training set Test set
F1 P R F1 P R

Task 1 BERT 0.8436 0.9310 0.7714 0.7553 0.8182 0.7013
BERT_Med 0.6667 0.5246 0.9143 NA NA NA

Task 2
BERT_Strategy1 0.6877 0.6501 0.7299 0.5190 0.4393 0.6340
BERT_Strategy2 0.6802 0.6823 0.6741 0.5254 0.4460 0.6392
BERT_Merged 0.6701 0.6177 0.7321 0.5455 0.4701 0.6495

Table 2: Results on training and test sets for task 1 and task 2.
The results of our system provided by the organizers are listed in Table 2, where NA denotes that we
do not submit results as internet problem, BERT_Merged is the model that merges results of
BERT_Strategy1 and BERT_Strategy2 by voting. Our system achieves the highest F-score of 0.7553
on task1 and 0.5455 on task2. For task 1, on the training set, BERT_Med achieves much higher recall,
but much lower precision than BERT. For task2, BERT_Strategy1 and BERT_Strategy2 perform
roughly the same on the training and test sets. BERT_Merged performs slightly worse than them on
the training set, but a little higher on the test set. The difference between performances of our system
on the training set and test set is very large.
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