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Abstract

Identifying and extracting reports of medications, their abuse or adverse effects from social me-
dia is a challenging task. In social media, relevant reports are very infrequent, causes imbalanced
class distribution for machine learning algorithms. Learning algorithms typically designed to
optimize the overall accuracy without considering the relative distribution of each class. Thus,
imbalanced class distribution is problematic as learning algorithms have low predictive accuracy
for the infrequent class. Moreover, social media represents natural linguistic variation in creative
language expressions. In this paper, we have used a combination of data balancing and neural
language representation techniques to address the challenges. Specifically, we participated the
shared tasks 1, 2 (all languages), 4, and 3 (only the span detection, no normalization was at-
tempted) in Social Media Mining for Health applications (SMM4H) 2020 (Klein et al., 2020).
The results show that with the proposed methodology recall scores are better than the precision
scores for the shared tasks. The recall score is also better compared to the mean score of the total
submissions. However, the F1-score is worse than the mean score except for task 2 (French).

1 Introduction

Advances in representation learning that attempts to automatically learn features for natural language
processing (Young et al., 2018) present the possibility of utilizing social media (i.e. Twitter) data source
for public health applications such as health monitoring and surveillance. Several ethical, legal and
methodological challenges need to be addressed that are unique to Twitter data source (Ahmed et al.,
2017). The ongoing shared tasks in Social Media Mining for Health applications (SMM4H) define
evolving challenges specific to the Twitter data source for health domain (Weissenbacher et al., 2019).
To address the methodological challenges, in recent years, several techniques have been proposed based
on the SMM4H shared tasks (Sarker et al., 2018; Weissenbacher et al., 2019).

Epidemiologists intend to detect mentions of health issues related to medications early on Twitter. The
adverse effect of medications is one of the leading causes of post-therapeutic deaths (Saha et al., 2018).
One of the challenges of detecting real reports on medications, their abuse or adverse effects is to distin-
guish the relevant true reports from other general statements, news, and institutional advice. Reports on
health issues (i.e. abuse or adverse effects of a medication) in social media are rare instances (i.e. very
small percentage contain relevant information) (Weiss, 2004; Batista et al., 2004). This causes a major
machine learning methodological challenges called imbalanced learning problem (He and Garcia, 2009;
Ling and Sheng, 2010). The learning problem happens in the presence of underrepresented data and
severely skewed class distribution, the situation where one of the class categories comprises a signifi-
cantly larger proportion of the dataset than the other classes. Imbalanced class distribution is a practical
issue in most real-world datasets (e.g. fraud detection, disease detection) and complicates learning when
the identification of the minority class is of specific importance. This is a general problem for health
domain with medical data utilizing machine learning methods (Rahman and Davis, 2013).
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When dealing with imbalanced data, model evaluation is different than typical class-balanced loss
based machine learning framework (Cui et al., 2019; Marchand and Strawderman, 2020). Models
that trained by minimizing errors on imbalanced datasets, tend to frequently predict the majority class;
achieving high overall accuracy in such cases can be misleading. As class imbalance is a widespread
issue, multiple techniques have been developed that help alleviate the issue (Buda et al., 2018; Haixiang
et al., 2017), by either adjusting the model (e.g. changing the performance metric) or changing the data
distribution (e.g. oversampling the minority class or undersampling the majority class). In this paper, we
have explored novel strategies to handle extreme imbalanced class distribution.

Another challenge is representing informal Twitter text efficiently for health monitoring. Tweets con-
tain misspelled unnormalized health concepts, expressed in a noisy, ungrammatical, multilingual, and
ambiguous way. Moreover, creative and colloquial language expressions are prevalent in Twitter text.
In this paper, advanced preprocessing and feature learning techniques were utilized to efficiently capture
syntactic and semantic regularities of the substantially informal Twitter data. Overall, several techniques
were explored to address challenges in Twitter data source for health monitoring and surveillance. The
paper is organized as follows: section 2 describes data and problem statement, section 3 and 4 include
the methodology used to model the datasets, and section 5 contains a discussion of the obtained results
to understand the challenges specifically related to imbalanced dataset.

2 Problem Statement and Data Description

In this paper, six datasets from the Social Media Mining for Health application (SMM4H) 2020 Shared
tasks were used for health monitoring and surveillance challenges. All the shared task datasets are
labeled and can be modeled in one of three popular types of supervised classification problems. Binary
(B) classification is the task of classifying the elements of a given set into two groups whereas multi-
class (M) classification generalizes into more than two groups. Span detection (D) and normalization (N)
task is defined as D+N which can be modeled as multi-class classification task followed by named-entity
recognition modeling (Nadeau and Sekine, 2007; Lample et al., 2016).

Task ID: description Type IR (%) # (*) #Train #Valid. #Test

T1: Med. Mention B 0.26 181 (1)
69,091 (0) 55419 13853 29687

T2 (En): AE in English B 9.25 2,374 (1)
23,298(0) 20544 5134 4759

T2 (Fr): AE in French B 1.61 39(1)
2,387(0) 1941 485 607

T2 (Ru): AE in Russian B 8.75 666 (1)
6,946(0) 6090 1522 1903

T3: AE D+N 51.20 1,212 (1)
1,155(0) 2246 560 976

T4: Med. Abuse M 15.99

1685(’a’)
5488(’m’)
2940(’c’)
424(’u’)

10537 2635 3271

Table 1: Brief data description: rows correspond to the datasets and columns correspond to various
attributes related to the datasets. The first column describes the task with an identifier. The second
column denotes a classification type for the task (i.e. binary, multi-class and span-detection). The third
column describes the imbalance ratio (IR), defined as the ratio of the minority class examples to the total
number of examples, in percentage. The fourth column (# (*)) has the class/label distribution over the
training dataset where #(*) denotes the number of Tweets labeled with *. Each dataset is comprised of
three splits: training, validation and testing set. The fifth (i.e. #Train), sixth (i.e. #Valid.) and seventh
(i.e. #Test) column correspond to the number of Tweets available for training, validation and testing set.

Table 1 shows a brief description of the datasets from the SMM4H 2020 shared tasks (Klein et al.,
2020). Task 1 requires distinguishing between two classes of Tweets and modeled as a binary classi-
fication task. Positive Tweets that mention a medication or dietary supplement are labeled as “1” and
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negative Tweets that do not mention are labeled as “0”. The dataset consists of Tweets posted by 112
women during pregnancy, with approximately 0.26% (see column IR%) of the training Tweets men-
tioning a medication or dietary supplement. The data set represents an extremely1 imbalanced class
distribution.

Task 2 is another binary classification task that involves classifying Tweets based on the mentions of
adverse effect (AE) of a medication. This task includes distinct sets of Tweets posted in three languages:
English (En), French (Fr) and Russian (Ru). In Tab. 1, rows corresponding to task id T2 (En), T2 (Fr)
and T2 (Ru) refer to sub-tasks in three languages. Tweets that mention an adverse effect of medications
are labeled as “1” and those that do not have mention are labeled as “0”. The tasks require taking into
account subtle linguistic and semantic variations between AEs and indications (i.e. the reason for using
the medication). The T2 (Fr), T2 (En) and T2 (Ru) datasets represent moderately imbalanced class
distribution with IR of 1.61%, 9.25% and 8.75% respectively.

Task 3 involves detecting the span of Tweet containing an adverse effect (AE) of a medication and then
mapping the extracted AE to a standard concept identifier (ID) in the MedDRA vocabulary (preferred
terms). The training data includes Tweets that report or indicate an AE that are labeled as “1” and those
that do not mention are labeled as “0”. The detection task thus requires a model to distinguish between
AEs and indications. The class distribution of the dataset is balanced (IR=51.20%) for the detection
task. The normalization task involves classification to multiple classes where each class can be defined
as a standard MedDRA ID. We have not attempted the normalization part of the task and left for future
work.

Task 4 requires distinguishing between more than two classes of Tweets and can be modeled as a
multi-class classification problem. The task involves distinguishing among Tweets that mention at least
one prescription opioid, benzodiazepine, atypical anti-psychotic, central nervous system stimulant or
GABA analogue. Tweets that report potential abuse/misuse are labeled as “A” from those that report
non-abuse/-misuse consumption which are labeled as “C”, merely mention of the medication are labeled
as “M”, and unrelated are labeled as “U”. The task has moderately imbalanced class distribution with IR
of 15.99%.

3 Methodology for Classification Tasks

We have developed systems for shared tasks 1, 2 (all languages), 4, and 3 (only the span detection, no
normalization was attempted). The main focus was towards the imbalanced classification tasks. In this
section, we will describe the methods used for five classification tasks and in the next section, we will
describe the method developed for the span-detection part of task 3. The models were trained on the
training dataset and evaluated on validation dataset; test data was not available when the methods were
being developed. Each solution of the binary and multi-class classification task can be subdivided into
four common steps and these steps will be elaborated in the following subsections.

3.1 Preprocessing

Tweet language processing is challenging compared to the standard text found in the news, journals and
books (Balahur, 2013). For example, Twitter users use an informal language (Tan et al., 2015) that uses
special expressions, such as “lol”, “omg”, emoticons (Derks et al., 2008), and emphasize or exaggerate
the underlying meaning of the root word by using stretched words like ‘heellllp’ or ‘heyyyyy’. Using
the stretched word is common in spoken language but Tweets can have them in written format. The
traditional mainstream natural language processing tools were not designed to include the syntactic reg-
ularities of informal language (Kong et al., 2014). Additionally, Twitter language has specific metadata,
such as “RT” defines Tweets that reposted by other users, the markup of topics using the hashtag (“#”)
sign and defining other Twitter users by “@” sign. In this paper, we have considered the Tweet specific
characteristics when preprocessing the Tweets so that the language can be normalized — converting them
into a more standard form of language — efficiently. Normalization of Twitter posts enable us to apply
standard natural language processing (NLP) techniques more effectively.

1https://developers.google.com/machine-learning/data-prep/construct/sampling-splitting/imbalanced-data
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A basic normalization (Kaufmann and Kalita, 2010; Declerck and Lendvai, 2015; Beckley, 2015) was
employed as part of advanced preprocessing step for the datasets. The preprocessing stage includes the
following steps: separating hyperlinks from the adjacent text, normalize twitter-specific tokens, extract-
ing text from ’*’ (e.g. *good* � > good), replacing & symbol, lower-casing the text, normalize multiple
occurrences of vowels and consonants, normalize emojis and numbers, spiting ‘number’ and ‘emoji’
when adjacent to text, removing non-alphanumeric characters, removing very long words >= 15 and
short words < 2 to reduce sparsity, removing multiple sequential occurrences of the same token.

3.2 Under-sampling

As one of the main focus of this paper is to model imbalanced dataset, we have utilized random re-
sampling (Napierała et al., 2010; Johnson and Khoshgoftaar, 2019) to balance the class distribution.
After Tweet preprocessing, we have used random under-sampling of the majority class. Oversampling is
another approach to balance the training dataset, however, often oversampling minority class instances
does not fully balance the training data whereas under-sampling of majority class is found to be better
at balancing the training data (Jamil, 2017). We have left experiments involving oversampling for future
works.

For extremely imbalanced class distribution in task 1, the under-sampling was done in two steps. First,
we have utilized an informed under-sampling technique based on a pre-trained named-entity recognizer
(NER) (Andriy Mulyar and McInnes, 2018) trained on clinical notes2. The NER model was used to
extract and remove the Tweets that have medical named entities represented by informal expressions
(e.g. ‘lol’).

After that, random under-sampling of the majority class was done on the remaining Tweets. The
balanced dataset size is twice the number of the positive label in the dataset. For example, task 1 has
a total of 146 positive examples (i.e. minority class) and after applying the random under-sampling, the
negative examples (i.e. majority class) reduced down to 146. The resulting balanced training dataset size
is 292 (i.e. 146 + 146). This part of random down-sampling was applied for all the datasets with IR
< 50%. A python toolbox, imbalanced-learn (Lemaı̂tre et al., 2017), was used to re-balance the class
distribution.

3.3 Sentence Embedding

Sentence embedding methods attempt to encode a variable-length input sentence into a fixed-length
vector. While preprocessing and normalization helps in better syntactic representation (Kaufmann and
Kalita, 2010; Kong et al., 2014), sentence embeddings were used to improve the semantic representation.
Moreover, sentence embeddings have been used in sentence classification to address the class imbalance
problem (Madabushi et al., 2019). In recent years, several sentence embedding methods, exploration
of semantic properties of resulted embeddings and impact of embedding on the downstream application
have been proposed (Le and Mikolov, 2014; Kiros et al., 2015; Pagliardini et al., 2018; Schwenk and
Douze, 2017; Arora et al., 2019; Zhu et al., 2018). Among them Sent2Vec (Pagliardini et al., 2018)
demonstrated the robustness of generated general-purpose sentence embeddings when transferred to a
wide range of prediction benchmarks. Sent2Vec is an unsupervised sentence embedding technique al-
lowing composing sentence embeddings using word vectors along with n-gram embeddings.

There are three distinct language-specific categorizations of the Tweets in the shared task datasets.
Among the participated tasks, four are based on English Tweets whereas two tasks are based on French
and Russian Tweets. For representing the four English language Tweets, we have used 700-dimensional
pre-trained3 Sent2Vec model trained with English Tweets incorporating bi-gram embedding. For non-
English Tweets, we have used 1024-dimensional pre-trained Language-Agnostic Sentence Representa-
tions (LASER) embeddings4 (Schwenk and Douze, 2017). The pre-trained LASER model was based on
93 languages and does not need a specification of the input language. The sentence encoder also sup-
ports code-switching, i.e. the same sentences can contain words in several different languages. Overall,

2https://github.com/NLPatVCU/medaCy model clinical notes
3https://github.com/epfml/sent2vec
4https://github.com/facebookresearch/LASER
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Table 2: Evaluation Score on Validation, Test Datasets and Mean Score Based on all Submissions

Validation Test Mean (all submissions)

Task F1 P R F1 P R F1 P R
1 0.08 0.04 0.97 0.05 0.03 0.90 0.66 0.70 0.69

2 (EN) 0.39 0.25 0.84 0.32 0.19 0.87 0.46 0.42 0.59

2 (FR) 0.08 0.04 0.75 0.07 0.04 0.60 0.07 - -
2 (RU) 0.35 0.22 0.86 0.35 0.22 0.89 0.43 0.36 0.58

3 (D) - - - 0.159 0.178 0.143 0.564 0.607 0.557
4 0.45 0.36 0.62 0.46 0.35 0.68 0.49 - -

Sent2Vec model was used to embed the English Tweets, whereas LASER was used for multilanguage
tasks.

3.4 Classification Model Selection

We mainly focus on traditional systems to classify the Tweets. In recent years, deep learning models
have shown superior performance in classification tasks (Weissenbacher et al., 2019). However, neural
models require longer training time (Livni et al., 2014) and due to time constraint, we have utilized
traditional baselines from related works (Weissenbacher et al., 2019). The multi-class classification is
modeled as an one-vs-one scheme. We have applied Support Vector Machine (SVM) (Cortes and Vapnik,
1995) with radial basis function kernel and tree-based ensemble models, such as, Extra Trees Classifier
(Geurts et al., 2006), Random Forest Classifier (Breiman, 2001) for data modeling. The features for
models were learned by sentence embedding models as described in Sec. 3.3 and the final model was
chosen based on the 10 split k-fold cross-validation on the down-sampled training dataset. For most of
the tasks, the SVM model provided better result based on 10-fold cross-validation with mean F1-score
evaluation metric, except for T2 (Fr) task where Extra Tree Classifier gave best mean F-1 score. Based
on the experiments, for evaluation of the shared tasks, Extra Tree Classifier was used for T2 (Fr), and
SVM models were used for all other participated tasks.

4 Methodology for Span Detection Task

Task 3 can be divided into two sub-tasks: span detection and concept normalization. We have worked
on the detection part of the task and the normalization part is left for the future work. The dictionary-
based simple traditional approach has been used in information detection task (Egorov et al., 2004).
The approach utilizes a carefully constructed dictionary to identify and tag the related entities from the
Tweets. For task 3, we have used a dictionary-based search approach to detect the span of adverse
effects. A dictionary was generated from the AMIA shared task5 with 6,649 annotated instances6 of
adverse effects.

5 Results and Analysis

The official performance evaluation metrics for the tasks are precision (P), recall (R), and F1-score (F1)
computed on the positive class (i.e. minority class). Table 2 reports the performance scores of the tasks
described in Tab. 1. The rows of the table correspond to the tasks and the columns correspond to the
evaluation scores on validation and test datasets. The mean test scores of all the submissions are also
reported in the table. The analysis of the results is based on the validation dataset.

Using the methodology described in this paper, from the table we can observe that the recall score is
higher compared to the precision score in most cases. As positive labels refer to the minority class, there
are a larger number of negative examples that could become false positives (FP). Conversely, there are
fewer positive examples that could become false negatives (FN). The disproportion in class distribution

5https://healthlanguageprocessing.org/sharedtask2/
6https://github.com/tttr222/uknlp adr mention norm/tree/master/data train
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can result in the disproportion of the FPs and FNs which could result in high recall and low precision
score. As F1-score is a weighted combination of these two matrices, a low precision score can cause an
overall low F1-score. Although random under-sampling was used to balance the training dataset, it does
not improve the precision score on the validation and test dataset since the validation and test dataset are
still imbalanced that reflect the real class distribution.

6 Conclusion

This paper reports the preliminary exploration of Twitter-based imbalanced data modeling techniques
for health applications. We have explored techniques for efficient syntactic and semantic representation
of Tweets. As the focus was on imbalanced class distribution, random under-sampling with novel noise
reduction technique was utilized to balance the dataset. The traditional margin-based and ensemble
tree-based classifiers were used to classify the Tweets.

The directions for future works involve deeper exploration and extensive methodological improve-
ments to enhance the learning performance. For example, the statistical learning theorems establish the
number of examples needed to estimate the accuracy of a classifier as a function of its complexity (VC-
dimension). However, the class imbalance does not enter these formulas anywhere (Juba and Le, 2019).
Overall, a detailed exploration of classification models and evaluation metrics can be done to enhance
model performance for skewed data distribution.
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