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Abstract

Social media used for health applications usually contains a large amount of data posted by users,
which brings various challenges to NLP, such as spoken language, spelling errors, novel/creative
phrases, etc. In this paper, we describe our system submitted to SMM4H 2020: Social Media
Mining for Health Applications Shared Task which consists of five sub-tasks(Ari Z. Klein and
Gonzalez-Hernandez., 2020). We participate in subtask 1, subtask 2-English, and subtask 5. Our
final submitted approach is an ensemble of various fine-tuned transformer-based models. We
illustrate that these approaches perform well in imbalanced datasets (For example, the class ratio
is 1:10 in subtask 2), but our model performance is not good in extremely imbalanced datasets
(For example, the class ratio is 1:400 in subtask 1). Finally, in subtask 1, our result is lower than
the average score, in subtask 2-English, our result is higher than the average score, and in subtask
5, our result achieves the highest score.

1 Introduction

According to the United States Centers for Disease Control and Prevention (CDC), drugs administered
for alleviating common sufferings are the fourth biggest cause of death and birth defects are the leading
cause of infant mortality. These are the most important medical problems for human society.(Giacomini
et al., 2007)

Twitter, a popular micro-blogging service, has received much attention recently. It is an online network
used by millions of people around the world to stay connected to their friends, family members, and co-
workers through their computers and mobile telephones(Barbosa and Feng, 2010). On average, one in
a thousand messages from public Twitter data is health-related. These health-related Twitter posts can
help us analyze various human health-related phenomena. For example, there are limited methods for
studying birth defects in infants, and this knowledge has been challenging(Klein et al., 2018)(Klein et al.,
2019). This situation provides a challenging opportunity due to the increasing number of related tweets
on Twitter.

With this motivation, five shared tasks are conducted as part of the Social Media Mining for Health
Applications (SMM4H) Workshop 2020 hosted by the University of Pennsylvania Health Language
Processing (HLP) Lab. Our team participated in subtasks 1, 2-English, and 5 of the workshop. Some
samples from the training set are given in Table 1, and these tasks are:

• Sub-task 1: Automatic classification of tweets that mention medications

We take subtask-1 as a binary classification task. The model is required to determine whether
a medication or dietary supplement is mentioned in a tweet, and predict a label L, where L ∈
{mention a medication or dietary supplement - 1, no mention - 0}.

• Sub-task 2-English: Automatic classification of English tweets that report adverse effects

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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We take subtask-2-English as a binary classification task. The model is required to determine
whether an adverse effect of medication is reported in a tweet, and predict a label L, where L ∈ {
report adverse effects of medication - 1, no report - 0}.

• Sub-task 5: Automatic classification of tweets reporting a birth defect pregnancy outcome

We take subtask-5 as a ternary classification task. The model is required to determine whether the
user has a child and indicate that the child has the birth defect mentioned in a tweet, and predict a
label L, where L ∈ { refer to the users child and indicate that he/she has the birth defect mentioned
in the tweet - 1, ambiguous about whether someone is the users child and/or has the birth defect
mentioned in the tweet - 2, merely mention birth defects - 3}.

Sub-task Sentence Gold Label

Sub-task 1
@username you can try vitamins for Olivia! Hudson has taken
vitamins since the NICU &amp; it helps him gain weight

1

Can someone get me some chippy chips please 0

Sub-task 2
english

today i’m an emotional mess. that’s what happens when i think
i could wean myself off of cymbalta

1

@username. prozac makes us all better people. #prozacnation 0

Sub-task 5

@uesername, my baby was born with microcephaly in the US due to
#cytomegalovirus not #zika. Why no warning about that? #CDCchat”

1

”Username @Usrename in a way, mine are advantaged by
the older having Down’s syndrome. I can recommend it!”

2

Girl born without an ear can finally hear properly for the
first time after surgeons rebuild it

3

Table 1: Samples from the training set of three subtasks

We try a variety of approaches on these tasks, including classical machine learning methods, CNN
models, RNN models, and transformer-based models. We find that the transformer-based neural models
consistently outperform other methods. The framework of our implementation is shown in Figure 1.
Firstly, we combine the official training set and the validation set to get the new data set, which is split
into the new training set and the validation set by using the stratified 5-fold cross-validation1. Secondly,
the test set is predicted by fine tuning the model. Thirdly, we create pseudo-label to combine training set
and input these data into model training and prediction. Finally, we get the final result by hard voting.

Figure 1: Our framework

2 Related Work

Normally, data in the health field is difficult to obtain. Fortunately, the existence of social media such as
Twitter has alleviated this situation. However, it has caused problems that the data is difficult to handle.

1https://scikit-learn.org/stable/modules/generated/sklearn.model selection.StratifiedKFold.html
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Because diseases and other health problems belong to a small number of people. This phenomenon has
caused data imbalance in social media. These problems bring great challenges.

Much previous work has focused on tracking and monitoring diseases on social media. (Yin et al.,
2015) has developed a scalable system by training classifiers on a dataset of 34 health topics. It created a
general health classifier using standard SVM. Recently, the use of dense word vectors or embeddings is
becoming popular, while previous models (e.g. Word2Vec (Pennington et al., 2014), GloVe (Pennington
et al., 2014), FastText (Joulin et al., 2016)) focus on learning context-independent word representations,
recent works have focused on learning context-dependent word representations. For instance, BERT
(Devlin et al., 2018) is a contextualized word representation model, which is based on a masked language
model and pre-trained by using bidirectional transformers(Weissenbacher et al., 2018; Weissenbacher
et al., 2019b). BioBERT is a domain-specific language representation model pre-trained on a large
biomedical corpus(Lee et al., 2020). In this paper, we use the BioBERT in our experiments and use it for
the different text classification tasks of Social Media Mining for Health Workshop. In the following, we
describe our dataset and the methods used for different tasks.

3 Methodology

3.1 Dataset
The data sets of these tasks are all from social media. These data sets contains rare health-related events
such as pregnant women groups, drug effects, birth defects, etc(Sarker et al., 2017; Weissenbacher et al.,
2019a; O’Connor et al., 2020).

• For shared task 1. In the training set, 55,419 tweets are included, with 146 tweets mentioning
medications (1) and 55,273 tweets not mentioning (0). In the validation set, 13853 tweets are
included, 35 labeled 1, and 13818 tweets labeled 0. This is an extremely imbalanced data set, so
the evaluation indicator for this task is F1-score for the positive class (i.e., tweets that mention
medications).

• For shared task 2. In the training set, 20,544 tweets are included, 1903 tweets that report adverse
effects of medications (1), and 18461 tweets that do not report (0). In the validation set, 5134 tweets
are included, 474 tweets that report adverse effects of medications (1), and 4660 tweets that do not
report (0). This is an imbalanced data set, so the evaluation indicator for this task is F1-score for the
positive class (i.e., tweets that report adverse effects of medications).

• For shared task 5. In the training set, there are 14717 tweets, 773 tweets for ’defect’ (1), 834 tweets
for ’possible defect’ class (2), and 13110 tweets for ’non-defect’ (2). In the validation set, there
are 3680 tweets, 193 tweets for ’defect’ (1), 207 tweets for ’possible defect’ (2), and 3280 tweets
for ’non-defect’ (3). This is an imbalanced data set, so the evaluation indicator for this task is
micro-averaged F1-score for the ”defect” and ”possible defect” classes.

3.2 Models
There are some limitations in applying NLP directly to biomedical text mining. With the recent word
representation model (such as word2vec), Elmo and BERT are trained and tested on data sets containing
common domain text. However, these models do not perform well on biomedical text data sets. So, we
choose the BioBERT2 as our model for these tasks we participated in. For classification tasks, the output
of BioBERT(pooler output) is obtained by its last layer hidden state of the first token of the sequence
(CLS token) further processed by a linear layer and a tank activation function. But the pooler output
is usually not a good summary of the semantic content of the input. So we try the following model
architecture to relieve this problem. Our model architecture is shown in Figure 2.

For Figure 2 (a), we can regard the model as two parts. The first part is to get the output of
BioBERT(P O). The second part is the BiGRU module with input P O. For Figure 2(b), we con-
catenate P O and H0 of the last two hidden layers into the classifier after obtaining P O. For Figure

2https://github.com/vthost/biobert-pretrained-pytorch/releases/tag/v1.1-pubmed
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(a) BioBERT+BiGRU (b) BioBERT+last2hidden0+pooler out

(c) BioBERT+last3hidden0 (d) BioBERT+last3hidden0+pooler out

Figure 2: The models we used (H is the hidden layer of BioBERT, P O is the pooler output, H0 is
hidden-state of the first token of the sequence(CLS token) at the output of the hidden layer of the model.)

2(c), we concatenate H0 of the last two hidden layers into the classifier. For Figure 2(d), we concatenate
P O and H0 of the last three hidden layers into the classifier after obtaining P O.

3.3 Pseudo Label

In order to make our model more robust, we use pseudo labels. First, we input the training set and the
validation set into the modelA for training, and predict a resultA in the test set. Secondly, we add 10%
of resultA to the training set to obtain a training set with pseudo-label. Again, we input the training with
pseudo-label and validation set into the modelA for training, and predict a final result in the test set. The
process of pseudo label is shown in Figure 3.

Figure 3: The process of pseudo label

4 Experiments Result

4.1 Experiments Setup

BioBERT (Bidirectional Encoder Representations from Transformers for Biomedical Text Mining) is a
domain-specific language representation model pre-trained on large-scale biomedical corpora. It greatly
outperforms BERT and previous advanced models in many biomedical text mining tasks. For all tasks,
we use the BioBERT-Base-v1.1-PubMed model and RAdam(Liu et al., 2019) as BioBERT optimizer. In
order to increase the difference in model fusion, we preprocess the data input by some models. Table 2
shows the hyper-parameters used by our different models. Preprocessing data is simple data cleaning of
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Models Hyperparameters

1
5-fold data with 42 random seeds

BioBERT+BiGRU

output hidden states=False
dropout=0.1
learning rate=3e-5
epoch=3
per gpu train batch size=4
gradient accumulation steps=4

2
5-fold data with 42 random seeds

BioBERT+last2hidden0+pooler out
output hidden states=True
dropout=0.1

learning rate=3e-5

epoch=3

per gpu train batch size=4

gradient accumulation steps=4

3
5-fold data with42 random seeds

BioBERT+last3hidden0

4
5-fold data with 24 random seeds

BioBERT+BiGRU

5
5-fold data with 24 random seeds

BioBERT+last2hidden0+pooler out

6
5-fold data with 42 random seeds

Preprocess data
BioBERT+last2hidden0+pooler out

7

5-fold data with 42 random seeds
Pseudo Label

Preprocess data
BioBERT+BiGRU

8

5-fold data with 42 random seeds
Pseudo Label

Preprocess data
BioBERT+last2hidden0+pooler out

9
5-fold data with 42 random seeds

BioBERT+last3hidden0+pooler out

output hidden states=True
dropout=0.1
learning rate=2e-5
epoch=3
per gpu train batch size=4
gradient accumulation steps=4

Table 2: Hyperparameters of these models in our experiments for three subtasks.

the data set such as: removing URL, standardizing case, and standardizing @ username. The purpose of
preprocessing data is to increase the difference of results during model ensemble.

From table 2, we can see the Hyperparameters of these models. Firstly, we combine the official
training set and the verification set to get the new data set, which is split into the new training set and
the verification set by using the stratified 5-fold cross-validation. Secondly, we input data into one to six
models for training with the training set and predict six results with the test set. We combine these six
results(result1 − 6) to get result − A by hard voting. Thirdly, in order to make pseudo label, we take
10% of the data set from result−A which is combined into the training set. We input the data set with
pseudo-label into the seven-eight model to train and predict, we get these result (result7− 8). Fourthly,
we input the data into the ninth model training and prediction, we get the result(result9). Finally, we
combine result1− 9 by hard voting to get the final result.

4.2 Results

Table 3 presents the performance scores for three subtasks on the test data, our results are based on hard
voting of the 9 models in Table 2. For all tasks, we only use the official training set and validation set and
do not use any external data. As can be seen from the table, in extremely imbalanced data, our method
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Precision Recall F-1 Score

Subtask-1
Our score 0.8649 0.4156 0.5614
Mean score 0.7007 0.7039 0.6646

Subtask-2
english

Our score 0.49 0.60 0.54
Mean score 0.42 0.59 0.46

Subtask-5
Our score 0.65 0.73 0.69
Mean score 0.62 0.68 0.65

Table 3: The results of our method on the test set for three subtasks

has no advantage. But in imbalanced data, our method has achieved good results.

5 Conclusion

In this work, our method is an ensemble of various fine-tuned transformer-based models on these tasks.
We obtain decent results for these tasks organized as a shared task in Social Media Mining for Health
Workshop - 2020. Our biggest regret in this work is that in extremely imbalanced data sets, we have not
done too much processing on the data sets and can’t achieve promising results. In the future, our work
will focus on solving the problem of extremely imbalanced data. The code is available online.3
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