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Abstract
Speech-based communication is one of the most preferred modes of communication for humans. The human voice contains several
important information and clues that help in interpreting the voice message. The gender of the speaker can be accurately guessed by a
person based on the received voice of a speaker. The knowledge of the speaker’s gender can be a great aid to design accurate speech
recognition systems. GMM based classifier is a popular choice used for gender detection. In this paper, we propose a Tensor-based
approach for detecting the gender of a speaker and discuss its implementation details for low resourceful languages. Experiments were
conducted using the TIMIT and SHRUTI dataset. An average gender detection accuracy of 91% is recorded. Analysis of the results with

the proposed method is presented in this paper.
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1. Introduction

Gender detection is one of the important problems in
speaker and speech recognition domains. It has got sig-
nificance because of the gain in popularity of voice-based
systems like Alexa, Google Assistant, Cortana, Siri, etc.
One of the applications of this is helping companies to pro-
vide better solutions. In speech recognition, it helps in
improving the accuracy of recognition. It also has impor-
tance in sub-problems like age detection, emotion detec-
tion, speaker identification, etc. Research on the gender
detection problem started in the early *90s. The problem
was studied by using features like Linear Predictive Cep-
stral Coefficients (LPCCs), energy, Mel Frequency Cepstral
Coefficients (MFCCs), etc. Konig and Morgan (Konig and
Morgan, 1992) used LPCCs in their work to address this
problem. In the system that was proposed, a multi-layer
perceptron was employed for the classification of gender.
As a result, this system achieved an accuracy of 84% on
DARPA resource management database.

Neti (Net1 and Roukos, 1997) proposed a GMM (Gaus-
sian Mixture Model) based gender classification approach
for an Air Travel Information System (ATIS) corpus. It
was reported that 95% accuracy was obtained. This was
an improvement over a simple pattern matching approach.
MFCCs have widely accepted features in speaker charac-
terization. They play an important role in GMM based
systems that deal with gender recognition task. Tzanetakis
(Tzanetakis and Cook, 2002)) proposed a system that uses
the above- mentioned features. The system was developed
with gender classification and sports announcement facil-
ities. Along with the techniques that are discussed, there
are papers available on the same problem. In these sys-
tems, the pitch was used as a crucial feature. Several stud-
ies agree that modeling techniques like Convolutional Neu-
ral Networks (CNNs) (Doukhan et al., 2018]), Expectation-
Maximization (EM) (Yiicesoy and Nabiyev, 2013), Hidden
Markov Models (HMMs) (Parris and Carey, 1996), Sup-
port Vector Machine (SVM) classifiers (Jo et al., 2008) are
successful in this area of research.

GMM-based classifiers and Expectation-Maximization

(EM) have been used predominantly for modeling and pa-
rameter estimation, respectively. Most of the methods for
estimating parameters of GMM are based on Maximum
Likelihood Estimation (MLE), which has a drawback of
getting stuck in a local optimum. So it needs to restart
indefinitely to search for global optimum, and sometimes
it may not find global optimum at all. As a result, the
whole process of parameter estimation becomes very time-
consuming.

In this paper, we have proposed an eigenvector-based ap-
proach to detect the gender from human voice using tensor
analysis. We have used MFCCs as feature vector to form
the feature vector space. Method of moments is used to
build the tensor structure from the feature vector space for
each gender. The tensor power method is applied to com-
pute the eigenvectors from that tensor structure (Anandku-
mar et al., 2014). The proposed approach does not require
multiple restarts but still provides 91% accuracy using Eu-
clidean distance for evaluations.

2. Basic Understanding of Tensors

In this section, we will go through the basics of Tensors
and related multi-linear algebra that are essential concepts
to understand the tensor power method (Anandkumar et al.,
2017) and its usefulness in parameter estimation of latent
variable models. A comprehensive study about tensor is
available in the work of Kolda (Kolda and Bader, 2009) and
Sidiropoulos (Sidiropoulos et al., 2017), whereas a multi-
linear map and its notations can be found in the work of
Lim (Lek-Heng Lim, 2005)).

2.1. Tensor Preliminaries

Tensor is a multiway collection of numbers or an extension
of a matrix in higher order. Vectors and Matrices are first-
order and second-order tensors, respectively. In general, a
p!" order tensor is an object that can be interpreted as a
p-dimensional array of numbers. Tensor order is the num-
ber of dimensions of the tensor. Though the tensor can be
of any order, we will describe tensor as a 3" order tensor

structure in our experiments. For discussion, an N-way ten-
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sor is the same as N-order tensor or vice versa. In terms of
notation, a scalar is denoted by lower case letters a € R,
vectors by bold lower case letter @ € R, matrices by up-
per case bold letter A € RI**I2 and for higher order tensor
calligraphic letters are used A € R xT2x--XIn,

Figure 1: Zero'" Order Tensor (¢ € R, First Order Tensor
(a € RY), Second Order Tensor (A € R**3), Third Order
Tensor (A € R**3x5),

2.1.1. Outer Product and Inner Product

Vector outer product is the element-wise product of two
vectors. The outer product of two vectors produces a Ma-
trix, which is a second-order tensor. In this discussion, the
outer product will be denoted by ® symbol. For instance,
if @ and b are two n-sized vectors then their outer product
will produce a matrix A as follows:

A=a©®b=ab’ (D

Similarly, the outer product of three vectors will generate
37 order tensor, which will be relevant to our topic of dis-
cussion. In general, the outer product of n vectors creates
n-order tensor.

A=aV©a? ©®a?....0a™ )

In contrast to this, the inner product of two m-sized vectors
will generate a scalar.

a=a’b= Z a;b; 3)
i=1

2.1.2. Tensor Rank

Tensor rank is one of the important properties of a tensor.
Before going to tensor rank, we will discuss about Rank-
1 tensor. If an N-order tensor is strictly decomposed as
an outer product of N vectors, then the N-order tensor is
a Rank-1 tensor. So a Rank-1 matrix (2-way tensor) can
be written as A = a © b. Similarly a Rank-1- third-order
tensor can be represented as A = a © b ® c.

Minimum number of rank-1 N order tensors required that
can sum up as N order tensor is called the rank of the N-
order tensor. A rank-R third-order tensor can be repre-
sented as A = Zf;l M;a; © b; © ¢;. Here the )\ is used
to represent the weighting factor during normalization of
matrices, which are the other factors of the resultant tensor.

2.2. Tensor Decomposition

In Mathematics, it is fundamental to decompose an object
into some simpler and easy-to-handle objects. Matrix de-
composition techniques are significant in the field of Math-
ematics in their application to solve linear equation systems
and the implementation of numerical algorithms efficiently.

In the following part, we have discussed the non-
uniqueness of general matrix decomposition and the
uniqueness of tensor decomposition with much-relaxed
conditions.

2.2.1. Matrix Decomposition and Rotational Problem
In our discussion on matrix decomposition, we focus on
matrix rank decomposition, which is an information extrac-
tion technique. It can be expressed by the following equa-
tion:

A= BCT 4)

where A € R"*™ B € R"*" C € R™*" and r is rank of
the decomposition.

Similar work was carried out by Charles Spearman, a
British Psychologist in 1904, which is popularly known as
Spearman’s Hypothesis.

However Equation [] is not unique. By using another in-
vertible matrix R, we can create another decomposition.
Absorbing R on the left with B and R~! on the right of
C we can generate matrix Band C respectively which can
be used to reconstruct A.

A=BCT = BRR'CT = (BR)(R™'CT) = BC (5)

We can see that matrix rank-decomposition is non-unique
generally. Though some decomposition techniques provide
unique decomposition over some conditions such as or-
thogonality for Singular Value Decomposition (SVD), ten-
sor decomposition is unique under much milder conditions.

2.2.2. Tensor Uniqueness and Rigidness

Tensor decomposition is unique only if there is one type of
rank-1 tensor that sums up to our main tensor with a certain
scaling factor. It means we cannot construct a different ar-
rangement of rank-1 tensors that can sum up to our desired
main tensor. The uniqueness of tensor decomposition is
under much milder conditions than matrix decomposition.
Let’s consider a slice of a tensor .4 which can be repre-
sented as follows:

R

A= (a; ®bi)ex; (6)

i=1

Here k represents the k' slice which is also a low-rank
matrix. Therefore a tensor is not just a low-rank collection
of these slices, there is an interrelation among them. If we
observe, each slice is a differently scaled representation of
the same matrix. This constraint helps us to address the
rotational problem of a matrix that is faced during matrix
decomposition.

To determine the factors that capture the underlying struc-
ture of a tensor, we subtract the scaled matrix formed by
those factors. For matrices, there are multiple possibili-
ties of finding those factors. But for tensors, these factors
have to satisfy all the slices, thus making a strong intercon-
nection between the slices, which further makes the tensor
more rigid.

2.3. Tensor Decomposition Algorithms

Tensor Decomposition is one of the most studied topics of
tensors. There are two different families of tensor decom-
position techniques as follows:
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1. Canonical Polyadic Decomposition (CPD)
2. Tucker Decomposition

CPD is mainly used for latent parameter estimation, and
Tucker is used for compression, dimensionality reduction,
estimation of subspace, etc.

In the following subsections, first, we have discussed the
basic understanding of CPD and Tucker decomposition,
followed by the tensor power method, which is a special
kind of CPD decomposition. The tensor power method is
used in our proposed approach.

2.3.1. Canonical Polyadic Decomposition

A rank decomposition is a way to express a tensor as a
sum of rank-1 tensors of finite numbers. Rank decompo-
sition has been discovered differently in different knowl-
edge domains in many forms. Parallel Factors (PARAFAC)
and Canonical Decomposition (CANDECOMP) is the most
popular among them. The basic principle is the same for
them. We will refer to this as CANDECOMP/PARAFAC
or Canonical polyadic decomposition.

CPD for a 3-way Tensor(.A) can be expressed as

minflA — A
A

where

R
A=Y a0boc (7)

i=1

Different algorithms are available to compute the CPD of
any given tensor. Jennrich’s and Alternating Least Square
Algorithm (ALS) are the most popular among them.

Let A, B and C be factor matrices that holds the combina-
tion of vectors (a;, b;, ¢;) forming the rank-1 tensor A as
columns.

A =laias...ag]
B = [b1by...bg]
C =[eies...cR]

Jennrich’s algorithm states that if A, B, and C are linearly
independent, then the matrix have full rank. We can use
this algorithm to compute the factor matrices as the tensor
A = Zil Aia; © b; ® ¢; . It is unique up to a trivial
permutation of rank and scaling factors. This algorithm
works for some problem, but it does not consider all the
tensor slices, and it also requires a good difference between
two successive eigen values (eigen-gap), absence of which
causes numerical instability.

ALS is state of the art for modern tensor decomposition
techniques in the CPD family. The key idea is to fix all fac-
tor matrices for the tensor except one and then estimating
the non-fixed matrix. This step is repeated for all the fac-
tor matrices until a specific stopping criterion is achieved.
Though the ALS algorithm is straightforward, it takes sev-
eral steps to converge, and sometimes it may also get stuck
at a local optimum.

2.3.2. Tucker Decomposition

In this type of decomposition, a tensor is decomposed in a
core tensor and factor matrices. Algorithms like Higher-
Order Singular Value Decomposition (HOSVD), Higher-
Order Orthogonal Iteration (HOOI) comes under this fam-
ily of decomposition. However, in contrast to CPD, Tucker
decomposition is not unique, and so it is not used for the
estimation of latent variables.

2.3.3. Tensor Power Method

This method is a special type that comes under the CPD
family. The tensors that can be decomposed by this algo-
rithm should have the following structure:

R
A:Z)\iai@ai@ai (®)

i=1

In this special case, the factor matrices have to be iden-
tical, and a;’s need to be orthogonal to construct vectors
from rank-1 tensors. It is very similar to the matrix power
method, but this algorithm tries to calculate top singular
vectors in a tensor.

The main idea behind the matrix power method is to esti-
mate the eigenvector a; ;1 to a; as well as the eigenvalue
)\; based on the following recurrence relation:

Ai(I,a;) Aia; g
;11 = : = : )
’ [Ai(Laip)ll,  [[Aiaikll,

where a; o will be chosen randomly, or it can be initialized
with some correlation to the true eigenvector if possible.
This approximation follows the eigenvector/-value relation-
ship Aa;, = A(I,a;) = A;a;. The top singular value can
be computed from the computed eigenvector after conver-
gence. As we have to calculate the first few dominant eigen-
values, this can be computed by the same process after de-
flating the matrix by the following formulae:

Ai+1 = Az — )\iai © a; (10)

To use this matrix power method in the Tensor approach,
we have to incorporate the following changes in Equation

).
Ai(l,a;, ai)

a; | =
P TA(TL @ an) |

Aij1 = Ai — Nia; ©® a; © a; (12)

(11

This tensor Power method was used in the proposed method
because of its efficiency in calculating the tensor. In the
next section, the approach is explained in detail.

3. Proposed Approach

An uttered sound of a speaker is a collection of feature vec-
tors. Each feature vector is a scaled sum of eigenvectors
of that feature vector space. Some of these eigenvectors
can be factors that represent age, gender, or other proper-
ties about the speakers while some form the content of the
speech. If we collect feature vectors of male speaker utter-
ances and construct a feature vector space from those, then
that feature vector space gets dominated by the eigenvec-
tors, which are the factors of masculinity. The same goes
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for females. For any unknown utterances of the speaker, if
we find the presence of these eigenvectors, we can infer the
gender of the speaker.

The following part consists of feature vector space genera-
tion of each gender, computation of dominant eigenvectors
using the tensor power method, and finding the presence of
these eigenvectors in an unknown utterance.

3.1. Feature Vector Space Generation

We have used MFCCs as feature vectors to generate vector-
space for each gender as MFCC is based on the principle of
the human’s auditory system. Twenty-six MFCCs are col-
lected from each frame of an utterance. Thus each feature
vector is of twenty six dimensions (x € R?5). We have a
collection of utterances for male and female speakers. We
have computed feature vectors from each of the collections
and obtained a set of feature vectors for each gender. This
set of feature vectors works as a feature space that is used
to compute dominant eigenvectors.

3.2. Tensor Formation

Before applying the tensor power method to compute the
dominant eigenvectors, we have to form tensor from the
feature vectors of each feature-space. A 3"¢ order tensor
is constructed from each set of feature vectors. Method of
moments is used to construct the 3"¢ order tensor. The first
raw moment is the mean, which can be computed by the
following:

| X
mlz,u:E[az]:NZwi (13)
i=1

where N is the number of feature vectors in each gender
set.
Second ordinal moment can be computed by the following:

M, =Elx®x] - o*I (14)

where o2 is the smallest eigenvalue of the covarience ma-
trix (X = E[x ©® ] — m; ©® m1) and I is the Identity
matrix (I € R%?). Similarly the third ordinal moment can
be computed as:

d
M3:E[w©m©w]—022(m1@ei@ei

i=1
+e,®mi;@e;+e ©e ©m)

5)

where e; is the basis vector in it dimension.
From the work of Hsu and Kakade (Hsu and Kakade, 2013)
these moments can be reduced to the following forms:

P
My =) wia;®a; (16)
i=1
p
Ms :Zwiai@ai(@ai (17

i=1
Thus M3 is the scaled sum of p eigenvectors (a;). We need

to find the k£ dominant eigenvectors that are responsible for
the gender property of the speaker. M, could have been

used to compute a;s, but due to matrix rotational problem,
it can not be computed accurately. Whereas in tensor (37
order or higher), these can be computed more easily.

These Eigenvectors (a;) can be computed by the tensor
power method only if they are orthogonal in nature. For
that, we have to orthogonalize M3. This has been done
using Mo. It is assumed that if a Matrix is found that can
orthogonalize M5 can help to orthogonalize M3. This or-
thogonalization of M5 can be represented as:

Mo(W, W) = WTMW =1 (18)

where W is the orthogonalizing matrix, It is also known as
the whitening matrix. W can be calculated with the help of
eigenvalue decomposition of second-order moment Ms:

M, =UDU™T (19)

Singular value decomposition has been used to find U, D
from Equation (19). W is computed as follows:

W =UD'z2 (20)

where U € R%** is a matrix of orthonormal eigenvectors,
D € R*** is a diagonal matrix of the eigenvalues of M,
and At is the Moore-Penrose pseudoinverse of matrix A.
By using the following formulae W transforms M3 into
whitened space.

k
mMg(w,meAmi@m@m 2D

i=1

where v; and \; are converted eigenvectors and scaling fac-
tors respectively after orthogonalization of M.

3.3. Eigenvectors Computation

Now on ./\//1\3 we have applied tensor power method to iden-
tify dominant eigenvectors (v;). We shall use Equation (11)
and Equation (12) to compute the v;s and deflate the ten-
sor, respectively. This process will be repeated until k dom-
inant eigenvectors are obtained. As v;s are computed from
orthogonalized tensor (./\//l\g,), so by applying the inversion
of the orthogonalization process we transform v;s to a;s of
M. We shall use the following formulae to do so:

A=WV Diag()\) (22)
where A is the set of k¥ number of a;s, V is the set of k

number of v; and \; are k eigenvalues computed from the
tensor power method.

1

A k'™ order tensor is denoted by A = [aj,.;.] €
R1%--Xdk  Then covariant multi-linear matrix multiplica-
tion of A by Mi = [m{] € RUXP1 M =

mi*) 1 € R%*Pt can be defined as: A(Mj, ...

Jii1

dq dy, N ¢ Y) (k) P1X... XDp
Dt ij:1 Ay Myay -+ M0 € R

>Mk) -
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3.4. Model Creation and Evaluation

We have obtained k£ dominant eigenvectors from each of
the feature vector set of male and female speakers. A,, and
Ay are the eigenvectors set of male and female speaker,
respectively.

For any unknown the feature vector in the feature space,
we will calculate distance from the dominating eigenvector
(minimum distance). The distance for ‘" feature vector
(x;) is calculated by using the following formula:

d
D; = mkiH(Z(akj - i)%) (23)

j=1

Total distance from A; and A,, can be computed as fol-
lows:

N
Dp=Y D; (24)
i=1
N
Dy=3) D (25)
i=1

where N is the total number of feature vectors (Number of
frames) for a voice sample.

Features vectors collected from male voice will be con-
taining vectors which are affected by male eigenvectors,
whereas it will be less affected by the female eigenvectors.
Thus D,,, will be less than D. For similar reasons, Dy will
be less than D,,, for the female voice.

4. Experimental Setup

Experiments were conducted on two different datasets
(TIMIT (S Garofolo et al., 1992) and SHRUTI (Das et al.,
2011)). The study can be divided into three different cases,
as follows:

1. TIMIT DR1
2. TIMIT Mix
3. SHRUTI dataset

The first dataset is a subset of the TIMIT dataset, which
consists of only the New England dialect. TIMIT Mix
dataset is the subset that contains eight different dialect re-
gions. The third dataset is a collection of spoken sentences
belonging to the Bengali language. Bengali is the predom-
inant language used in West Bengal, a state of the Indian

5. Results and Analysis

The results are presented for different cases, as follows:
1. Different sizes of feature vectors
2. Different number of eigenvectors
3. Comparison on multiple datasets

4. Evaluation of same trained models for different
datasets

5. Performance evaluation on noisy data
6. Performance comparison with GMM-EM

At first, feature vectors were used with varying sizes of thir-
teen, twenty, and twenty-six, while each case considers four
dominant eigenvectors. A significant amount of increment
in gender detection is observed with the increase of fea-
ture vector size. It implies that the proposed approach can
capture sufficient characteristics of gender properties suc-
cessfully. The summary of the results is shown in Table
2.

Size of
feature
vectors | Dataset Type Accuracy Type (%)
Male | Female | Average
13 Training 71.2 98.4 84.7
Testing 70.4 97.1 83.5
20 Training 92.2 76.8 84.5
Testing 95.2 72.8 84.0
26 Training 90.8 92.4 91.2
Testing 93.36 | 89.82 91.59

Table 2: Performance with respect to different sizes of fea-
ture vector (d).

Next, the performance of the proposed approach with re-
spect to different numbers of dominating eigenvectors was
evaluated. In this experiment, the TIMIT Mix dataset was
used. The results are shown in Table 3. This experiment
also shows that there is an increment in average gender de-
tection accuracy, which denotes that the eigenvectors com-
puted by the proposed approach are relevant to gender de-
tection.

subcontinent. In the present work, a subpart of this database Number of Dataset
was used. Table ] gives the complete description of the Eigenvectors Type Accuracy Type (%)
dataset used in the study. The results obtained using the Male | Female | Average
approach are discussed in the next section. 1 Training | 464 80.2 03.3
Testing | 42.03 | 76.10 59.06
Dataset Type | Training Set Testing Set 2 Training | 72.4 86.4 79.4
Male | Female | Male | Female Testing | 75.66 84.84 84.75
TIMIT (DR1) | 246 146 34 25 3 Training | 90.0 924 91.2
TIMIT Mix | 500 | 500 150 | 150 Testing | 92.92 | 91.15 92.03
SHRUTI 650 650 150 150 4 Training | 90.8 92.4 91.2
Testing | 93.36 | 89.82 91.59

Table 1: Description of datasets.

Table 3: Performance with respect to the number of domi-
nant eigenvectors (k).
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We tested the performance of the proposed approach in dif-
ferent datasets: SHRUTI, TIMIT Mix, and TIMIT DRI1.
Figure 2 shows that the proposed method provides consis-
tent performance across different datasets. To test whether

SHRUTI 93.4

[
S
-
‘@ TIMIT DR1 91.9
i
©
a

TIMIT Mix 92.2

6

o

65 70 75 80 85 90 95 100
Accuracy (%)

Figure 2: Performance of the proposed approach for differ-
ent datasets.

the proposed approach is capturing the language-specific
or voice-specific gender property, we computed eigenvec-
tors using TIMIT Mix dataset and evaluated with other
datasets. We have obtained a comparable accuracy in dif-
ferent datasets (Figure 3), which demonstrates that the pro-
posed approach captures the voice-specific gender property.

SHRUTI 79.8
(]
S
[
E TIMIT DR1 89.8
8
©
a
TIMIT Mix 91.4

60 65 70 75 80 85 90 95 100
Accuracy (%)

Figure 3: Performance of the proposed approach for differ-
ent datasets trained using single dataset.

We evaluated its performance with respect to noisy utter-
ances. Figure 4 shows the performance of the proposed
approach with different Signal to Noise Ratio (SNR). The
proposed method provides a consistent performance where
the SNR is more than ten for input utterances.

Size of
feature vector Accuracy (%)
GMM - EM | Proposed approach
13 93.2 84.1
26 97.4 91.4

Table 4: Performance comparison of GMM and the pro-
posed approach.

We also compared the performance of our approach with
the modern, state-of-the-art GMM-EM on the TIMIT

100

90

80

70

Accuracy (%)

60
50

40
0 5 10 15 20 25 30

SNR values

Figure 4: Performance of the proposed approach with re-
spect to noisy data.

dataset. We conducted this experiment on the feature vec-
tor of size thirteen and twenty-six. We have presented our
results in Table 4.

100
95 97.4
93.2

90 91.4
g 85
> 84.1
@ 80
3
;d 75

70

65 mm GMM with EM

mmm Proposed approach
60
13 26

Size of feature vector

Figure 5: Performance comparison of GMM and the pro-
posed tensor based approach.

Figure 5 provides a comparison between GMM-EM and
the proposed method. Even though the detection efficiency
of the proposed approach is comparatively less, but the
proposed approach does not require multiple restarts like
GMM-EM, and the improvement of results with the vary-
ing feature vectors is encouraging.

6. Conclusion

In this paper, a simple yet effective tensor-based approach
was proposed for gender detection from the human voice.
In the approach, we have computed dominant eigenvectors
of the feature space of utterances using tensor analysis. It
is demonstrated that the proposed method captures the rele-
vant gender properties of the human voice and also provides
consistent performance for high dimensional feature vec-
tors. We have evaluated this approach on different datasets
and proved that its performance is consistent with an accu-
racy of 91% in each case. We have also demonstrated its
performance on noisy data and concluded that it provides
reasonable accuracy for SNR higher than 10. The proposed
approach provided comparable performance with respect to
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GMM-EM, which ensures that with further improvement,
and it can offer better performance without the drawbacks
of GMM-EM. This work shows that the eigenvector-based
approach using tensor analysis provides consistent perfor-
mance irrespective of the dataset.
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