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Abstract
The application of deep learning to automatic speech recognition (ASR) has yielded dramatic accuracy increases for languages with
abundant training data, but languages with limited training resources have yet to see accuracy improvements on this scale. In this paper,
we compare a fully convolutional approach for acoustic modelling in ASR with a variety of established acoustic modeling approaches.
We evaluate our method on Seneca, a low-resource endangered language spoken in North America. Our method yields word error
rates up to 40% lower than those reported using both standard GMM-HMM approaches and established deep neural methods, with a
substantial reduction in training time. These results show particular promise for languages like Seneca that are both endangered and lack

extensive documentation.
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1. Introduction

Improvements and breakthroughs in deep learning for au-
tomatic speech recognition (ASR) have resulted in signifi-
cant improvements in ASR performance in high-resource
languages such as English and Mandarin (Hinton et al.,
2012; Hannun et al., 2014} |Chan et al., 2016; |Audhkhasi
et al., 2018; (Chiu et al.,, 2018). Such methods, how-
ever, require very large volumes of labelled training data
to achieve these notable results. Most languages of the
world, even those with tens of millions of speakers, do
not have the quantities of data required to train such sys-
tems. The data sparsity problem is even more dire for the
many indigenous languages that have historically been un-
documented for political or cultural reasons. Deep learn-
ing ASR systems for languages with truly limited labelled
training data typically incorporate additional training re-
sources such as cross-lingual acoustic models or in-domain
synthetic acoustic data to begin to approach the word error
rates found using traditional hidden Markov model (HMM)
and Gaussian mixture model (GMM) frameworks.

While convolutional neural networks (CNNs) have demon-
strated superior performance on vision tasks such as image
classification, image segmentation, and object recognition,
deep learning for ASR has relied heavily upon variants of
recurrent neural networks (RNNs). In RNNs, information
from timesteps before, and after in the case of bidirectional
networks, is used in making the decision of the current
timestep. CNNs are excellent at extracting regional patterns
but typically require inputs to be of fixed size. However, as
seen in object detection and image segmentation applica-
tions, fully convolutional variations can operate on multiple
locations simultaneously and allow variable-size inputs.

In this paper, we present a convolutional acoustic model
for ASR in low-resource conditions. We demonstrate our
approach using a corpus of 10 hours of recordings of the
Seneca language, a critically endangered, morphologically
complex language spoken in the northeastern part of North
America. Our model reduces the computational cost in
terms of number of parameters while still capturing enough
temporal dependencies to make accurate predictions. We

find that our fully convolutional acoustic model yields sig-
nificant accuracy improvements over both deep recurrent
and HMM/GMM models. To demonstrate the robustness
of our approach, we additionally apply our framework to
Iban, an unrelated low-resource language with a phonetic
inventory roughly the size of Seneca’s but with a less com-
plex morphology.

Our main contributions are as follows: 1) We introduce a
deep convolutional architecture optimized for low-resource
scenarios that captures feature-rich audio data over a broad
temporal receptive field; 2) We utilize a fully convolutional
framework for arbitrary length sequence processing; and 3)
We show the effectiveness of utilizing transfer learning and
data augmentation for further reducing word and character
error rates.

2. Previous Work

When given sufficient in-domain monolingual training
data, deep neural network methods for ASR often per-
form significantly better than traditional methods based on
HMMs and GMMs (Hinton et al., 2012;|Graves et al., 2013},
Hannun et al., 2014 |Amodei et al., 2016;/Chan et al., 2016;
Zhang et al., 2017} |Chiu et al., 2018; |/Agenbag and Niesler,
2019). Common approaches for deep learning ASR rely
on RNNs: sequence-to-sequence models like that in Chan
et al. (2016) use RNNs to generate a latent representa-
tion of the utterance before decoding with RNNs, while
DeepSpeech 1 and DeepSpeech 2 (Hannun et al., 2014}
Amodei et al.,, 2016) use RNNs to capture temporal de-
pendencies before making predictions for each timestep.
Methods that produce characters, such as versions of Deep-
Speech, currently use Connectionist Temporal Classifica-
tion (CTC) (Graves et al., 2006)) to reduce streams of char-
acters to plausible words by combining consecutive similar
characters and pauses during speech.

Convolutional architectures have achieved remarkable re-
sults in computer vision tasks such as image classification
(Szegedy et al., 2015 Xie et al., 2017). Szegedy et al.
(Szegedy et al., 2015)) introduced the concept of an Incep-
tion block which consists of multiple filter sizes in a layer
to capture different levels of regional dependencies. This
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concept can be applied to sequential data like speech by
using filters with different widths to simultaneously cap-
ture different temporal dependencies. The Inception net-
work introduces 1x bottleneck filters to reduce the num-
ber of parameters in a model. Xie et al. (Xie et al., 2017)
use Inception-like blocks but with similar filter sizes while
adding skip connections similar to ResNet to allow for bet-
ter gradient flow.

Previous experiments have shown that transfer learning
from a model trained on resource-rich languages can im-
prove the performance of ASR for low-resource languages
(Gales et al., 2014; Imseng et al., 2014). Using synthetic
data has also been found to yield improvements in true low-
resource, artificially low-resource, and resource-rich condi-
tions (Ttuske et al., 2014; |Billa, 2018; Wiesner et al., 2018).
Carmantini et al. (Carmantini et al., 2019)) introduced sam-
ple overgeneration during initialization for low-resource
ASR for improved semi-supervised training on lattice-free
maximum mutual information (LF-MMI) (Manohar et al.,
2018). Malhotra el at. (Malhotra et al., 2019) selected sam-
ples with lower confidence in an active learning scenario
for low-resource ASR.

Rosenberg et al. (Rosenberg et al., 2017) investigated
the use of a CTC-based RNN and an RNN Encoder-
Decoder network in character-based end-to-end ASR for
low-resource languages. While recurrent-based models
have demonstrated usefulness in ASR and other sequence
modeling tasks, these models cannot easily take advantage
of parallelization on modern hardware since the output of
an RNN cell at each timestep depends on the results from
the previous timestep. To mitigate this problem, Collobert
et al. (Collobert et al., 2016)) relies on convolution to cap-
ture temporal dependencies.

The fully convolutional, character-based architecture pro-
posed by Collobert et al. (Collobert et al., 2016) still re-
quires training models with large numbers of parameters.
Additionally, these models have a high number of layers
causing the models to converge more slowly. Our proposed
model aims to reduce the complexity of the model with-
out reducing performance by using bottleneck filters and
skip connections. Additionally, instead of relying on dif-
ferent layers to capture different levels of temporal depen-
dencies, we combine filters with different widths into one
layer to reduce the number of layers in the model while
still maintaining a wide context window. While transfer
learning and data augmentation separately have both shown
improvements, we explore the effectiveness of combining
both concepts on low resource ASR, as well as a final fine-
tuning step using only unaugmented data to prevent digital
artifacts in augmented data from degrading performance.

3. Data

We conduct our experiments on Seneca, a morphologically
complex and critically endangered language spoken by in-
digenous people in what is now Western New York State
and Ontario. Although the language was still widely spo-
ken in the Seneca community as recently as 75 years ago,
Seneca children in the mid-twentieth century were typically
required to attend state-run residential schools where they
were punished or beaten for using their native language.

Today, roughly 50 elderly individuals speak Seneca as their
first language, and a few hundred others are second lan-
guage speakers. There are several ongoing efforts to revi-
talize the Seneca language, including language immersion
programs for adults and children, but there are very few
available Seneca recordings or texts, as many members of
the Seneca community are reluctant to allow their speech to
be recorded or transcribed. One motivation for developing
a robust ASR system for Seneca is to accelerate efforts to
document the language while there are living native speak-
ers and to produce educational materials for the immersion
programs that will train the next generation of speakers.
The available transcribed audio recordings consist of
approximately 720 minutes of spontaneous, naturalistic
speech produced by eleven adult speakers, eight male and
three female. All speakers in the dataset are middle-aged or
elderly first-language Seneca speakers whose second lan-
guage is English. Recordings were made over many years
primarily by Seneca language learners under a variety of
conditions using various recording equipment, resulting in
a diverse range of audio quality.

The recordings were transcribed using Seneca’s current or-
thography, which uses 30 characters, and segmented at
the utterance level by second-language Seneca speakers.
Since Seneca orthography is quite reliably phonemic, with
few ambiguous character-to-phone and phone-to-character
mappings, we choose to treat characters (excluding punc-
tuation) as phones. Using utterance boundaries provided in
the reference transcripts, we randomly selected individual
utterances from the full corpus of 720 minutes until we had
obtained 600 minutes of audio for training. The remaining
120 minutes made up the test set. We deliberately selected
utterances at random to maximize diversity in terms of gen-
der, age, dialect, voice quality, and content (e.g. narrative
vs. conversation) of both the train and test sets in order to
avoid overfitting to any particular speaker or speaker char-
acteristics. While this selection procedure lead to certain
speakers appearing in both the testing and training sets, we
were obliged to make this compromise due to the limited
number of speakers of the language. In addition to the tran-
scriptions of the recorded audio (roughly 35,000 words), we
have available text data consisting of 6000 words of previ-
ously transcribed texts for which no corresponding audio is
available.

To demonstrate the generalizability of our methods, we also
conduct our experiments on Iban, a Malayic language spo-
ken in Brunei and Malaysia. The publicly available dataset
((Juan et al., 2014)) consists of 479 minutes of professional
recordings of broadcast news, partitioned into 408 minutes
of training data and 71 minutes of testing data. There are
17 speakers (7 male, 10 female) in the training set and 6
speakers (2 male, 4 female) in the test set.

4. Methods
4.1. Acoustic Modeling

We utilize a fully convolutional acoustic model constructed
from a family of one dimensional convolution layers. The
model takes either 13 MFCCs and their first and second
derivatives, or 80 log mel-filterbanks as input features.
Both are obtained using 25ms windows with 10ms stride.
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Figure 1: Left: The overall architecture of our convo-
lutional approach. Right: A WideBlock consisting of 9
paths, each consisting of bottleneck filters centered by fil-
ters of different width to capture different levels of tempo-
ral dependencies. Each layer is shown as (# input channels,
filter width, # output channels).

Figure [I] shows the overall network architecture and the
architecture of a WideBlock, the main building block of
our model. The details of each are described next.

WideBlock: The main building block of our architecture
is the WideBlock (Figure [I)), named for the high number
of paths in each block. The architecture of the block,
taking inspiration from ResNeXt blocks used in image
classification (Xie et al., 2017), consists of several parallel
streams, each consisting of bottleneck 1 x 1 convolution
layers before and after a normal convolution layer. The
bottleneck layers reduce the complexity of the model
by reducing the number of parameters required by the
middle convolution operation. Instead of keeping the
same filter size for all paths, we draw inspiration from
Inception networks and employ filters with different sizes
in each layer. The filter widths are odd numbers between
3 and 19. This choice is suitable for speech-related
tasks since temporal dependencies in audio typically
have more variance than spatial dependencies in visual
tasks. The different filter sizes allow the model to pick
up both short-term and long-term temporal dependencies.
The output from each path is then summed before being
added to the input of each block, forming a skip connection.

Acoustic Model: Our acoustic model consists of two
convolutional layers between the input feature vector and
the first WideBlock (Figure [T). These embedding layers
convert input audio features into a vector of desired depth
and temporal content. The acoustic architecture continues
with five WideBlocks, then two 1 x 1 convolution layers
which act as fully-connected layers. The final layer outputs
a vector with size corresponding to the number of tokens to
be predicted. Batch normalization and ReLU are used after
each convolution operation. To prevent overfitting due to
limited data, dropout layers of 0.25 are added after each
WideBlock. To train the network, the CTC loss function is
used.

DeepSpeech: To compare the performance of our deep
approach against recurrent-based ASR models, we also
trained a DeepSpeech model. The DeepSpeech model
consists of a five-layer recurrent neural network with
Long-Short Term Memory cells. The first, second, third,
and fifth layers of the neural network are fully connected,
while the fourth layer is a bi-directional recurrent layer.
All layers contain 2048 hidden units and are followed by a
dropout layer of 0.2. The DeepSpeech model uses the same
input features as our deep approach and also uses CTC loss.

Kaldi: We also compare the performance of our model
against the traditional HMM/GMM framework provided by
Kaldi (Povey et al., 2011)) with a triphone acoustic model
trained with the parameter settings described in the Kaldi
tutorial and a word-level trigram language model. A second
acoustic model was created using Kaldi’s time-delay neural
network (TDNN) architecture trained with the lattice-free
maximum mutual information (LF-MMI) objective func-
tion (Peddinti et al., 2015).

4.2. Multistage Learning

Transfer learning has proven successful in deep learning
tasks with limited domain data. We extend this concept
with a multistage transfer learning strategy. In the first
stage, we train an acoustic model on a 960-hour Lib-
riSpeech English corpus for 100 epochs. In the second
stage, weight initialization is from the model obtained in
the first stage. The model was then trained on heavily aug-
mented training data as per (Jimerson et al., 2018) for 100
epochs or until convergence. In the final stage, the weights
of the model from the second stage were used to initialize
a model which is trained only on unaugmented data. For
this final stage, the learning rate is reduced by an order of
magnitude.

5. Results

Table 1| shows the performance for Seneca across different
acoustic models with different transfer learning and aug-
mentation strategies. To evaluate the performance of each
model, we use word error rate (WER) and character error
rate (CER). WER is the minimum edit distance over a word
alignment, aggregated across utterances and normalized by
the total number of words in the reference transcript. CER
is calculated by aggregating the character-level minimum
edit distance over all utterances and normalizing by the total
number of characters in the reference. We report results for
decoding both with and without a trigram language model
built on the transcripts of the 10 hours of acoustic training
data using KenLLM (Heafield, 2011) with modified Kneser-
Ney smoothing and no pruning.

Table[T|shows that DeepSpeech (DS) with no transfer learn-
ing, augmentation, or language model yields little or no cor-
rect output. With a language model, the WER and CER for
this model are reduced, but results are still mostly incor-
rect. Our deep approach shows slightly better performance
than DeepSpeech without a language model and signifi-
cantly lower WER when decoding with a trigram language
model.
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DS (N0 LM) | DS (W/LM) | Our CNN (No LM) | Our CNN (W/LM)
WER CER | WER CER | WER CER WER  CER
No TL, no Aug (Baseline) 1.000 0.891 | 0.970 0.872 | 0.839  0.365 0421 0257
TL, no Aug (+TL) 0.859 0436 | 0.727 0409 | 0.785  0.328 0337  0.199
TL + Aug (+TL,Aug) 1.000 0.716 | 0.975 0.698 | 0.730  0.303 0319  0.194
TL + Aug + finetune (+TL,Aug,FT) | 0.850 0.427 | 0.693 0421 | 0.699  0.278 0299  0.175

Table 1: Seneca WER and CER for various transfer learning (TL), augmentation (Aug), and fine-tuning (FT) strategies
(rows) vs. DeepSpeech (DS) and our deep CNN architecture without (NO LM) and with (W/LM) a trigram language

model.
NOo LM w/LM
WER CER | WER CER
Baseline 0.784 0.307 | 0.369 0.197
+TL 0.768 0.309 | 0.302 0.172
+TL,Aug 0.758 0.324 | 0.307 0.187
+TL,Aug,FT | 0.656 0.247 | 0.243 0.130

Table 2: Seneca WER and CER using our deep CNN ap-
proach with log mel-filterbank feature as input features with
and without a trigram language model.

Acoustic Model WER
Monophone GMM/HMM | 0.608
Triphone GMM/HMM 0.524
TDNN LF-MMI 0.421

Table 3: Seneca WER for Kaldi HMM-GMM models and
TDNN with LF-MMI.

NO LM w/LM
WER CER | WER CER
Baseline 0.856 0.463 | 0.487 0.286
+TL 0.668 0.287 | 0.413 0.257
+TL,Aug 0.665 0.226 | 0420 0.286
+TL,Aug,FT | 0.518 0.160 | 0.266 0.116

Table 4: Iban WER and CER for transfer learning and aug-
mentation strategies within our architecture using with log
mel-filterbanks as input features with and without trigram
language model built using only the transcripts of the audio.

Acoustic Model WER
Monophone GMM/HMM | 0.372
Triphone GMM/HMM 0.265
TDNN LF-MMI 0.175

Table 5: Previously reported WER for Iban 2 HMM-GMM
models and TDNN with LF-MMI, all decoded with a lan-
guage model built on the full 2-million word text corpus.

Using transfer learning from a high resource language im-
proves performance across all models and all language
model settings. Training on augmented data after transfer
learning from a high resource language degrades the per-
formance of DeepSpeech models in terms of WER but im-
proves CER. For our deep architecture, this configuration
improves results across the board. In all configurations for
Seneca, our deep approach substantially outperforms the
corresponding DeepSpeech model.

Fine-tuning of the augmented model using only non-
augmented data yields the best performance across all
models, with a WER of 0.299 using our deep acoustic
model. While fine-tuning after augmentation results in
improvements, it yields much larger absolute and relative
reductions in WER for the DeepSpeech model than for
our deep architecture. Table 2] shows results of using log
mel-filterbank features in place of MFCCs with modest
improvement.

Table [ shows three Kaldi results on this same dataset:
two standard HMM/GMM models (monophone and tri-
phone) and one deep architecture, TDNN with LF-MMI.
For Seneca, our deep architecture substantially outperforms
all three of these models, including the TDNN.
Demonstrating the efficacy and generalizability of our mod-
els on other low-resource datasets, Table 4] shows the per-
formance of our deep method under different configura-
tions for the Iban language. We see slightly higher but com-
parable error rates on this dataset, which had three fewer
hours of acoustic training data.

Table [5| shows previously reported results E] for the three
Kaldi models for Iban. These results are noticeably lower
than those we report using the same acoustic model train-
ing configurations for Seneca. In addition, the TDNN LF-
MMMI model yields a lower error rate than our best deep
model. We note that the language model used to decode
with these Kaldi models was built on a 2-million word text
corpus, while the results presented above in Table @] for our
own deep methods used a language model built using only
the transcripts from the 7 hours of available audio data. We
suspect that this accounts for much of this discrepancy. It
is also possible that our framework is better suited to the
lower-quality recordings typical in the Seneca dataset and
less appropriate for the clean, professionally recorded Iban
data. We also note that our model yields comparable WER
error rates in both languages, which points to its superior
ability to generalize to new datasets.

6. Conclusions

In this paper, we introduced a residual network with a very
wide filter selection in a fully convolutional architecture for
low-resource ASR acoustic modeling. We show that our
acoustic model outperforms a typical recurrent-based deep
neural network in all experimental settings while also being
more compute-efficient. Our deep acoustic model, when
combined with a trigram language model, outperforms the

"https://github.com/bagustris/id
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traditional GMM/HMM model without the need for trans-
fer learning or data augmentation. We also show that trans-
fer learning from a high-resource language and data aug-
mentation contribute to meaningful reductions in word er-
ror rate achieved by the model for two distinct low-resource
languages. Our results point the way toward new, fast-
training deep learning ASR methods for languages with ex-
tremely limited audio and textual training resources.
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