
Proceedings of the 1st Joint SLTU and CCURL Workshop (SLTU-CCURL 2020), pages 121–125
Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

121

Scaling Language Data Import/Export with a Data Transformer Interface

Nicholas Buckeridge, Ben Foley
The University of Queensland

The Centre of Excellence for the Dynamics of Language
bucknich@gmail.com, b.foley@uq.edu.au

Abstract
This paper focuses on the technical improvement of Elpis, a language technology which assists people in the process of transcription,
particularly for low-resource language documentation situations. To provide better support for the diversity of file formats encountered
by people working to document the world’s languages, a Data Transformer interface has been developed to abstract the complexities of
designing individual data import scripts. This work took place as part of a larger project of code quality improvement and the publication
of template code that can be used for development of other language technologies.

Keywords: language documentation, low-resource languages, automatic speech recognition, data conversion, Python, design
patterns

1. Introduction
In the development of speech recognition language tech-
nologies, supporting the import and export of the wide
range of language data formats currently in use presents
a challenge. The tools available for language documenta-
tion, description and analysis produce many different for-
mats, which makes it unfeasible to write individual import
and export scripts for each format. This work aims to in-
crease the range of corpora that tools such as Elpis (Foley
et al., 2018) can feasibly import and export. To develop an
understanding of the range of language data formats com-
monly used, archives including PARADISEC (Thieberger
and Barwick, 2012), ELAR1, OpenSLR2 and Open Speech
Corpora3 were analysed. Existing technologies such as Salt
and Pepper (Druskat et al., 2016) were reviewed to deter-
mine their suitability as a conversion engine for Elpis. For
reasons of maintaining support for a commonly-used lan-
guage documentation format, and concerns about increas-
ing the complexity of the Elpis codebase, we developed a
Python interface which simplifies the process of convert-
ing language data formats into an intermediate format. By
identifying the design parameters of relating code structure
to workflow processes, code simplicity and configuration
flexibility, an “abstract factory” design pattern was deter-
mined as the architecture of the work. The development of
Data Transformers, using abstract data manipulation facto-
ries, has given Elpis the capability to support importing a
wide variety of transcription data formats.

2. Background
2.1. Transcription
There are many motivations for transcribing spoken lan-
guage. Building collections of transcribed recordings is
beneficial for language documentation as a multipurpose,
lasting record of a language (Himmelmann, 2006). Tran-
scription is currently a critical requirement for a spoken
language to have a digital presence. Language technolo-
gies such as mobile keyboards, speech recognition (ASR)

1https://elar.soas.ac.uk
2https://www.openslr.org
3https://github.com/jrmeyer/open-speech-corpora

tools, translation systems, and text-to-speech require some
degree of language in text format to train or develop the
systems (van Esch, 2019).
Producing transcriptions is time-consuming; on average it
takes 40 hours to transcribe one hour of audio (Foley et
al., 2019). Given this “transcription bottleneck”, most lan-
guage workers will never get to transcribe all the speech
that they have recorded (Bird, 2013; Brinckmann, 2009;
McDonnell et al., 2018). The overwhelming effort re-
quired results in data graveyards, extensive collections of
un-annotated audio data accumulating with limited use to
anyone (Himmelmann, 2006). The lack of annotations also
limits the use of the recordings in language technologies
such as translation systems.
Software expertise and software literacy can hinder lan-
guage community members from transcribing collections
of recordings themselves, as the dominant tools used in
transcription tend to involve a steep learning curve. Tradi-
tionally, transcription has been done by outsider language
researchers, although this is a trend which is starting to see
some change, with communities such as the Seneca lan-
guage group using the Kaldi speech recognition toolkit to
transcribe their own recordings (Jimerson et al., 2019).

2.2. Data Formats
The wide range of recording practises, technologies and
software requirements used in language documentation and
transcription activities have fostered a great variety of data
formats. As an example, an analysis of the files in PAR-
ADISEC, an archive that supports work on endangered lan-
guages and cultures of the Pacific and the Australian region,
shows >220,000 files with 43 file types, including approx-
imately 20 media formats and eight formats generated by
transcription software (refer to Table 1). Media files dom-
inate, and ELAN files (.eaf) make up the most substantial
portion of transcription file types (see Figure 1) . The va-
riety of formats presents a challenge when designing lan-
guage technologies which rely on importing files created or
processed by other tools.
Standards have emerged to improve the interoperability of
language tools. In recent years, there have been propos-
als to standardise formats such as XIGT (Goodman et al.,



122

Figure 1: PARADISEC file types

2015) for Interlinear Glossed Text; and to extend XML pro-
cessing tools such as XPATH (Bird et al., 2006). Frame-
work specifications such as EXMARaLDA span work-
ing with individual transcriptions through to corpus man-
agement (Schmidt and Wörner, 2009). Wider adoption
of tools such as SayMore4, and proposals like Holton
and Thieberger’s collections management tool, recently re-
leased as Digame5 would make ingesting material into
archives a more reliable and quicker process, and improve
downstream processes such as ASR which rely on access to
language corpora. Corpus conversion tools such as Salt and
Pepper map between different language data formats using
graph data structures (Druskat et al., 2016).

2.3. Corpus Formats

A selection of recording collections was sourced from
archives and online repositories to facilitate the design of
the Data Transformer interface. Source diversity was im-
portant to ensure that the interface design was generalised,
rather than fitting too specifically to one archive. Smaller
specialised repositories such as OpenSRL and Josh Meyer’s
Open Speech Corpora tended to publish files in simple
structures, usually in one ZIP file, as opposed to large and
highly organised repositories. These collections were typi-
cally internally organised for application with specific ASR
tools, which can make pre-processing these corpora more
complicated. Highly organised repositories such as PAR-
ADISEC or ELAR store copious amounts of data grouped
into collections and tend to have more uniformity across the
whole collection. Each file in these archives is paired with
metadata and has permissions controls. Since some of the
permissions restrictions do not allow open access, or use a
request-for-access rule, these were more difficult to down-
load. There are no single collection download mechanisms
for these archives as sometimes permissions would differ
per-file in the same collection.

4https://software.sil.org/saymore
5https://go.coedl.net/digame

File type Number of files
jpg 58727
mp3 52600
wav 52600
tif 33481
pdf 6888
rtf 4754
mp4 3318
eaf 2911
mxf 2327
txt 1378
webm 1144
mov 880
JPG 597
tiff 355
xml 203
mpg 155
qua 140
trs 120
png 113
TextGrid 102
pfsx 76
flextext 60
docx 55
cha 39
tab 39
lbl 30
dv 21
csv 14
fwbackup 12
img 8
MP4 8
MTS 8
xlsx 7
avi 5
ixt 4
m4v 3
md5 3
TIF 3
kml 2
doc 1
EAF 1
mpeg 1
xhtml 1

Table 1: PARADISEC file formats

2.4. Elpis
Elpis is being developed to provide an accessible interface
to speech recognition tools, to accelerate the process of
transcription (Foley et al., 2018). Early work focussed on
writing a suite of Python scripts to assist in working with
the Kaldi speech recognition toolkit. Scripts were writted
to clean and normalise audio and text training data; pre-
pare the intermediary file formats which Kaldi requires; to
move files into the directories required by Kaldi; and to run
a Kaldi recipe to train the ASR models. This early work
was operated by typing instructions into a command-line
interface to run the Python scripts, and supported working
with ELAN, Transcriber and plain text file formats. Subse-
quent development resulted in the design and development



123

Figure 2: Data conversion mental model

of a graphical user interface (GUI) to provide a way of run-
ning Kaldi for people who had no experience with using
command-line interfaces, however the GUI only imports
ELAN files. Support of multiple file formats was lost due
to limited development time preventing the implementation
of import options.

3. Method
3.1. Approach
This work began by researching existing approaches to con-
verting language data formats, and investigating methods
which language tools use to import and export data. The
initial plan to broaden Elpis’ support for more file formats
was to incorporate existing conversion technology, Salt and
Pepper, into the Elpis pipeline. Two options were consid-
ered, firstly for Elpis to interact with Pepper via command-
line calls; secondly to use a Python-to-Java bridge library
for Elpis to interface with Pepper. Early tests showed that
support for ELAN files with linked media was not com-
plete6. Given that linked media in ELAN was commonly
found in the language documentation contexts for which
Elpis was originally designed, in addition to concerns about
the complexity of writing wrappers around Pepper, a deci-
sion was made instead to develop a Data Transformer inter-
face using Python. The mental model representing the data
conversion process of inputs and outputs which Pepper uses
was maintained in the design of the transformer interface,
using Elpis’ existing “Kaldi JSON” object structure as the
intermediate data format (see Figure 2).

3.2. Data Analysis
After acquiring sample data sets, the data structures, for-
mats and metadata were investigated to gain an understand-
ing of the required features of each collection and data for-
mat. In general, collections from OpenSLR and Open ASR
lacked standardisation. Another challenge facing these in-
dividual repositories was discerning the modalities of the
data, with some corpora being collections of speech record-
ings and text, while others were image and text collections.
Extreme cases of specialisation were found in the listings,
including corpora that had been prepared for use directly
in a machine learning toolkit. These over-specialised cor-
pora (for example, most collections from OpenSRL) in-

6https://github.com/korpling/pepperModules-ElanModules

cluded complex directory structures and configuration files
that would be required for specific speech recognition tools.

3.3. Language Technology Architecture
Elpis is built according to an architecture of a sequence
of software layers which interact via a programming in-
terface (API). The API allows the user interface to be de-
coupled from the processing scripts and speech recognition
toolkit, a design which enables the current speech recogni-
tion toolkit to be swapped out for another with minimal dis-
ruption to the user interface, or the development of differ-
ent user interfaces for different user groups. A bare-bones
version of these software layers has been published as an
open-source project “Language Technology API pattern”7,
a template for other language technology projects.

3.4. Design
Designing the Data Transformer interface required adher-
ing to the Elpis philosophy that the codebase and user in-
terface should directly reflect the workflow process; that the
code should be simple enough for a novice to understand;
while allowing flexibility in configuration if necessary.
A key requirement for the transformer design was that the
specification (or description) of a data format should be
separate from its instantiation as a data transformer. To help
implement this, “design patterns” were used. Design pat-
terns are generic solutions to problems that match a pattern
(Sommerville, 2011; Shvets, 2019). To choose a design
pattern, the properties of a problem first need to be iden-
tified. For the design of the Data Transformer API, these
were:

• there is one specification object per format;

• each specification can create multiple importers or ex-
porters for that format; and

• each importer/exporter can be individually configured.

These properties fit the “abstract factory” creational design
pattern. The purpose of an abstract factory is to provide
an interface to create a family of related objects without
specifying the concrete classes (Shvets, 2019). This pattern
was implemented for the Data Transformer API.



124

Figure 3: The transformer architecture

3.5. Data Transformer Architecture
The Data Transformer API component of the transformer
architecture represents the Python transformer module. Im-
port/export formats are specified by extending the Data-
TransformerAbstractFactory, represented here by Factory
Specification Formats A and B. If two formats A and B are
specified by extending the DataTransformerAbstractFac-
tory, then as the properties indicate, concrete DataTrans-
formers of the relevant format can be instantiated at any
time.
When the API has a request to build a new data transformer,
the API will attempt to find that format’s factory if it exists.
Then the factory uses a base DataTransformer class and
in the build process, attaches the specification behaviour
as per the factory’s specification. The factory constructs a
process() method specialised for the format. It also attaches
the bound functions as a Python object attribute by name
to the data transformer being built. This flexibility feature
is in case an expert user wishes to call the bound function
directly, but is not recommended for regular users.

7https://github.com/CoEDL/LT-API-pattern

from elpis.transformer import
DataTransformerAbstractFactory

elan=DataTransformerAbstractFactory(’Elan’)

Example code 1: Elan factory

In Example code 1, the variable elan is a new factory. The
factory constructor takes one argument, the name of the
data transformer. DataTransformerAbstractFactory has in-
formative methods that change the behaviour of the pro-
duced DataTransformer object. Building on the example
shown in Figure 4, an implementer can inspect audio ex-
tension set, and import/export capabilities.

4. Future Work
4.1. Multi-threading Optimisation
During this work the observation was made that Elpis
has limited support for multiprocessor computer resources.
Performance optimization of Elpis hasn’t been a high pri-
ority in its development, which has led to the sporadic use
of multi-threading. Because of this, it was unclear if it was



125

safe to include parallel-processing techniques into the de-
sign of the data transformers. Future work would improve
Elpis’ support for multi-threading and update the data trans-
former interface to make use of multiprocessor computer
resources.

5. Conclusion
The development of Data Transformers, using abstract data
manipulation factories, has given Elpis the capability to
support importing a wide variety of transcription data for-
mats. The software architecture uses “abstract factory” de-
sign patterns to ensure the implementation covers a range
of known corpora and is scalable for unseen formats. Fac-
tory specification methods follow good design practice with
extensive documentation and unit testing. A data trans-
former to import Elan files has been fully implemented to
demonstrate the process of using the abstract factory meth-
ods. Through this work, Elpis is now in a position to be de-
veloped quickly to accommodate the requirements of more
language workers and their diverse data formats.

6. Bibliographical References
Bird, S., Chen, Y., Davidson, S. B., Lee, H., and Zheng, Y.

(2006). Designing and evaluating an XPath dialect for
linguistic queries. In 22nd International Conference on
Data Engineering (ICDE’06), pages 52–52. IEEE.

Bird, S. (2013). Androids in Amazonia: recording an
endangered language. The Conversation, 21-May-2019,
M. Ketchell.

Brinckmann, C. (2009). Transcription bottleneck of
speech corpus exploitation.

Druskat, S., Gast, V., and Krause, T. (2016). An Interoper-
able Generic Software Tool Set for Multi-layer Linguis-
tic Corpora. Proceedings of the Tenth International Con-
ference on Language Resources and Evaluation (LREC
2016).

Foley, B., Arnold, J. T., Coto-Solano, R., Durantin, G.,
Ellison, T. M., van Esch, D., Heath, S., Kratochvil, F.,
Maxwell-Smith, Z., Nash, D., et al. (2018). Building
Speech Recognition Systems for Language Documenta-
tion: The CoEDL Endangered Language Pipeline and
Inference System (ELPIS). In The 6th Intl. Workshop
on Spoken Language Technologies for Under-Resourced
Languages, pages 205–209.

Foley, B., Durantin, G., Ajayan, A., and Wiles, J. (2019).
Transcription Survey.

Goodman, M. W., Crowgey, J., Xia, F., and Bender, E. M.
(2015). Xigt: extensible interlinear glossed text for natu-
ral language processing. Language Resources and Eval-
uation, 49(2):455–485.

Himmelmann, N. P. (2006). Language documentation:
What is it and what is it good for. Essentials of language
documentation, 178(1).

Jimerson, R., Hatcher, R., Ptucha, R., and Prud-
hommeaux, E. (2019). Speech technology for support-
ing community-based endangered language documenta-
tion.

McDonnell, B., Berez-Kroeker, A. L., and Holton, G.
(2018). Reflections on Language Documentation 20
Years after Himmelmann 1998.

Schmidt, T. and Wörner, K. (2009). EXMAR-
aLDA–Creating, analysing and sharing spoken language
corpora for pragmatic research. Pragmatics. Quarterly
Publication of the International Pragmatics Association
(IPrA), 19(4):565–582.

Shvets, A. (2019). Dive Into Design Patterns.
Sommerville, I. (2011). Software engineering. Pearson,

Boston, 9th ed., international ed.. edition.
Thieberger, N. and Barwick, L. (2012). Keeping records of

language diversity in melanesia: the pacific and regional
archive for digital sources in endangered cultures (PAR-
ADISEC). Melanesian languages on the edge of Asia:
Challenges for the 21st Century, pages 239–53.

van Esch, D. (2019). Building Language Technologies for
Everyone.


	Introduction
	Background
	Transcription
	Data Formats
	Corpus Formats
	Elpis

	Method
	Approach
	Data Analysis
	Language Technology Architecture
	Design
	Data Transformer Architecture

	Future Work
	Multi-threading Optimisation

	Conclusion
	Bibliographical References

