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Abstract
This paper presents a new 3D motion capture dataset of Czech Sign Language (CSE). Its main purpose is to provide the data for further
analysis and data-based automatic synthesis of CSE utterances. The content of the data in the given limited domain of weather forecasts
was carefully selected by the CSE linguists to provide the necessary utterances needed to produce any new weather forecast. The dataset
was recorded using the state-of-the-art motion capture (MoCap) technology to provide the most precise trajectories of the motion. In
general, MoCap is a device capable of accurate recording of motion directly in 3D space. The data contains trajectories of body, arms,
hands and face markers recorded at once to provide consistent data without the need for the time alignment.
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1. Introduction
Sign language (SL) is a way of communication that utilizes
the movement of a human body. It uses manual, facial, and
other body movements to express information. SL is a basic
communication system of deaf people and it is often their
natural way of communication. According to (Naert et al.,
2017), deaf people are often facing problem using written
language (based on the spoken language), because it uses
the different grammatical rules, and the nature and the spa-
tial organization of linguistic concepts as well. However,
most information in the media or the Internet is available in
the spoken or the written form. Thus it leads to difficulties
for deaf people to access the information.
Computer animation techniques have experienced great im-
provement recently. There have been developed devices
dedicated to the recording of a movement in high precision
in 3D space. Animations computed from the data recorded
in this way are of high quality and accurate, and their usage
is increasingly common outside the film and the computer
game industry. An artificial avatar is one possible output
of such animation. In public television as an example, they
use translation made by a signer which is shown in a win-
dow added into the screen. However, the avatar technology
is more flexible compared to the real SL signer. It has ed-
itable content that can be produced more easily than video
(no recording studio with camera) and which also preserves
the anonymity of the signer. Using an animated artificial
avatar with automatic SL synthesis seems to be a good way
to improve the actual way of using CSE on TV.
Recently, some approaches based on key-frame techniques
and procedural synthesis have been developed. These ap-
proaches provide fine control over the movements of the
avatar. These avatars are however poorly accepted by the
deaf community because of their lack of human-like mo-
tion. There are some works that aim to deal with this prob-
lem. In (McDonald et al., 2016) for example, authors added
noise measured from MoCap data to the rule-based synthe-
sis to improve the performance of the avatar. Data-driven

synthesis, on the other hand, preserves the motion of an
original SL signer.
In this paper, we introduce, by our best knowledge, the
first MoCap dataset of CSE. This dataset consists of both
dictionary items and continuous signing. Manual and non-
manual components were recorded simultaneously and the
setup includes a high number of markers placed on the face,
the body and fingers in order to provide precise and syn-
chronous data. As the main purpose of creating this dataset
is to develop an automatic SL synthesis, we also suggest
the methods for evaluating the synthesized data.

2. Related Work
Most SL datasets are recorded by an optical camera as they
are the most affordable device for this purpose and the
recording setup is fast. The difference in data output from
the MoCap system and video output is that the MoCap sys-
tem provides 3D data directly and therefore can be more
precise. Although, there are techniques developed for the
pose estimation from the image or video, e.g. OpenPose
(Cao et al., 2017), the 3D precision is in principle lower
than the actual 3D pose measuring provided by the MoCap
system.
Some datasets using different motion capture techniques
were created in recent years. (Lu and Huenerfauth, 2010)
recorded American SL using magnetic-based motion cap-
ture for hand and finger tracking. The evolution of mo-
tion capture datasets collected in French SL is described
in (Gibet, 2018). They recorded three MoCap datasets in
the last 15 years. All of them contain manual and non-
manual components of SL. The project HuGEx (2005) used
Cybergloves for recording finger movements and the Vi-
con MoCap system for the body and the facial movements.
The total recording time was 50 minutes. The next project,
SignCom (2011) uses the Vicon MoCap system to record
all components and the recording time was 60 minutes, but
only 6 markers per hand were used for the hand and fin-
ger recording. The most recent project Sign3D (2014) has
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all components recorded with the Vicon system and the eye
gaze was recorded with a head-mounted oculometer (Mo-
capLab MLab 50-W). It has 10 minutes of recorded data.
There is a continual need for a large amount of data to uti-
lize machine learning techniques. Although the quality and
size of datasets are increasing, there is still a lack of such
data. The usual size of those datasets is between 10 and 60
minutes of recording time.

3. Dataset Design
Our aim is to record the SL dataset usable for automatic
synthesis and evaluation of new utterances. In order to syn-
thesize any given utterance, the language domain was lim-
ited to the terms used in the weather forecast. The weather
forecast domain was also selected because of the availabil-
ity of reference video recordings of daily forecasts in SL
from a recent couple of years. The size of the vocabulary is
reasonably limited for our purposes.
There are some differences in SL expressions depending
on the location due to different dialects of CSE, therefore,
we used the video source provided by the Czech national
television because the used signs are considered as well un-
derstandable and recognizable to most of the audience.
CSE linguist experts selected 36 weather forecasts broad-
casted throughout the year in order to provide different ex-
pressions needed for weather forecasts in different seasons
to provide all the necessary data for further synthesis of any
weather forecast in the future.

4. Recording Setup
The Motion capture (MoCap) recording is the process of
recording the movements using specialized devices in or-
der to reconstruct motions in the 3D space during the time.
There are different approaches for data acquisition using
MoCap techniques and there are also devices dedicated to
the MoCap recording of different body parts. We did some
experimental recordings using a different variation of de-
vices such as Cybergloves2 for finger and VICON Cara
for facial recording (Krňoul et al., 2016). The main prob-
lem with the usage of such devices was signer’s discom-
fort and limitations to performed movements (e.g. tight
gloves reduce free movement of fingers, Cara devices cam-
era placement denies finger-face interactions). Another is-
sue was synchronization and calibration (data alignment in
general) of different devices as described in (Huenerfauth
et al., 2008) and (Krňoul et al., 2016).
Recording all modalities (arm, hand pose, and facial move-
ment) using one device emerged as the best solution. In our
solution using an optical-based MoCap system, the signer
is equipped with lightweight markers only, and there is no
need for merging data together. The only limitation is that
the optical-based approach needs a clear line of view from
cameras to markers and, therefore, is sensitive to occlusions
of body parts. A large number of cameras are needed as
well as their precise placement, for such a complex move-
ment like SL utterances.

4.1. Motion Capture Setup
We used the optical-based MoCap system consisting of
18 VICON cameras (8xT-20, 4xT-10, 6xVero) for dataset

recording and one RGB camera as referential and two
Kinects v2 for additional data acquisition. MoCap record-
ing frequency was 120Hz. The placement of cameras
shown in Figure 1 was developed to cover the place in front
of the signer in order to avoid occlusions as much as pos-
sible and in order to focus on facial expressions. Camera
placement was also adjusted for the particular signer to re-
duce gaps in trajectories caused by occlusions.

Figure 1: Visualization of MoCap camera layout. View
from back and above, the signer is in the middle.

4.2. Subject Setup
The markers placed on the face and fingers were selected to
cause minimal disturbance to the signer. We used different
marker sizes and shapes for different body parts (see Ta-
ble 1 and Figure 2). We tracked the upper body and arms by
a pair of markers placed on the axis of joints completed by
some referential markers. The positions of markers on the
face were selected to follow facial muscles and wrinkles.
We used 8mm spherical markers around the face, 4 mm
hemispherical markers for facial features with the excep-
tion of nasolabial folds with 2.5 mm hemispherical mark-
ers. The eye gaze and eyelid movement were not tracked by
the MoCap device, but it can be obtained from the reference
video. Two markers for palm tracking are placed on the in-
dex and small finger metacarpals. We tracked fingers using
three 4 mm hemispherical markers per finger placed in the
middle of each finger phalanx and thumb metacarpals.

marker diameter marker count
[mm]

Body, arms, hands 8 - 14 33
Fingers 4 30
Face 2.5 - 8 46
Total 2.5 - 14 109

Table 1: Maker sizes and count per segment.

5. Dataset Parameters
We have recorded approximately 30 minutes of continuous
signing (> 200000 frames) and 12 minutes of dictionary
items. All data were recorded by one expert CSE signer,
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Figure 2: Signer marker setup.

who was monitored by another CSE expert during the pro-
cess. The dataset contains 36 weather forecasts. On av-
erage, each such forecast is 30 seconds long and contains
35 glosses. The dictionary contains 318 different glosses.
Those dictionary items are single utterances surrounded by
the posture with loose hands and arms (a rest pose) in order
not to be affected by any context.
Dataset processing is a very demanding work both in terms
of time and demands for expert annotation and MoCap data
postprocessing. MoCap data have to be processed in order
to ensure proper labeling of each marker and to fill even-
tual gaps in marker trajectories. The next step of MoCap
data processing is to solve the marker trajectories (Fig-
ure fig:MarkerSetup) to the form of the skeleton model
shown in Figure 5. Solving provides data in the angular
domain of each body part. Those data can be used directly
for the animation.
Another important step in the processing of the dataset is
the annotation of content. We used the well-known Elan
annotation tool for this purpose, see (Crasborn and Sloet-
jes, 2008). The reference video of data was used for the
annotation as it provides the possibility to annotate the data
without need of rendering the MoCap data but it lacks pre-
cision because of lower frame-rate (120 fps MoCap vs.
25 fps video). This annotation was made by the CSE native
signer. It contains time stamps dividing the data into dif-
ferent signs, transitions between signs and rest pose in one-
tier, see Figure 3. The aim of this annotation is to roughly
capture those moments of change and it will be used as

initialization for a data-driven segmentation/synthesis pro-
cess. Although annotation is still in progress, almost 80%
is already done.

Figure 3: Annotation in ELAN.

6. Data and Synthesis Evaluation
The best way and till now mostly used method for express-
ing the quality or comparing the similarity of two signs is
using subjective evaluating by SL native signers. However,
this evaluation is both time and human resources demand-
ing process and moreover usually more than one person is
needed for the subjectivity of the evaluation, see (Huener-
fauth et al., 2008).
The popularity of automatic and machine learning tech-
niques utilization for data-processing related tasks in-
creased in recent years. An objective criterion in the form
of a cost function is crucial for such techniques but it is
usually not trivial to choose one. The purpose of such a
function is not to replace the human evaluation of the syn-
thesis result, but to provide a proper cost function for ma-
chine learning techniques as they need fast evaluation dur-
ing training process.
The data provided by the MoCap recording are trajectories
of all markers. The advantage of such data is direct infor-
mation of the positions in the 3D space but the human body
topology (skeleton) may not be respected in such represen-
tation. On the other hand, angular trajectories of bones are
bound to the exact human body topology. The topology
of a signer is constant during the time. This can improve
the consistency of the data if signs from single signer are
compared. In both cases, one frame can be considered as a
vector of values and the duration of two similar utterances
can differ, although the meaning is the same. The signs and
utterances are the time-sequences of these vectors.
The usual metrics (among the others) for evaluating
difference/similarity between two single vectors p =
(p0, p1, ..., pi, ...pN ) and q = (q0, q1, ..., qi, ...qN ) of the
same length N are:

• Euclidean distance:

d =

√√√√ N∑
i=0

(qi − pi)2, (1)
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Figure 4: Marker setup (data visualization).

Figure 5: Model visualization.

• Root mean square error (RMSE):

d =

√∑N
i=0(pi − qi)2

N
, (2)

• Correlation coefficients (Corr):

d =

∑N
i=0(pi − p)(qi − q)√∑N

i=0(pi − p)2
∑N

i=0(qi − q)2
, (3)

where p and q are mean values of p and q respectively.

The time component of the data (the time-sequence of the
vectors) can be addressed by the following approaches.
One of them is a time alignment in the form of re-sampling
the time-sequence of two compared components to the
same length and then measure the distance. In (Sedmidub-
sky et al., 2018) they used normalization for motion data
comparison for query purposes in the form of the time axis
movement sequence normalization and Euclidean distance
for each motion.
Dynamic time warping (Berndt and Clifford, 1994) (DTW)
is commonly used algorithm for the time-series compari-
son. This method computes the best per frame alignment in
terms of the chosen distance. It provides us a possibility to
get minimal distance of two time-sequence with different
lengths, for example two utterances with different signing
pace. The computed DTW distance dDTW is a minimal
distance with the optimal time alignment of sequences p
and q, path describes the alignment of the vectors:

dDTW , path = DTW (p, q). (4)

We tested the DTW algorithm with the Euclidean distance
(1) for measuring a distance between two different signs
and between different instances of the same sign. We lim-
ited this test for the signs with meanings ”one”, ”two”,
”three”, ”four”, and ”five”, both from the dictionary and
the continuous signing and compared measured distances
between signs with the same meaning (different instance
of the same sign) and different signs (all instances of other
signs from the same test-set). The DTW distance was mea-
sured between two signs, the distance was normalized to the
vector size and the length of the DTW path, so the distance
is independent on the skeleton complexity and duration of
the sequence. The normalized DTW dnormDTW distance
is defined as:

dnormDTW =
dDTW

M ·N
, (5)

where M is the length of the path from DTW algorithm
and N is the number of channels of the data.

Sign distances [deg] distances [deg]
(same meaning) (different meaning)

”one” 0.84 - 1.79 2.49 - 8.67
”two” 0.45 - 1.29 2.49 - 7.08

”three” 1.18 2.54 - 5.80
”four” 0.33 - 0.85 3.24 - 8.67
”five” 0.33 - 0.85 2.49 - 7.78

Table 2: Normalized DTW distances between signs (hand-
shapes only).

The Euclidean distances of angular trajectories computed
using DTW are summarized in Tables 2 and 3 for hand-
shape only and for the whole body (hand included) respec-
tively. The tested signs (numbers from 1 to 5) were chosen
because they are very similar and differs only in the hand-
shape. The signs are compared to other instances with the
same meaning and to all instances of all different signs (e.g.



105

Sign distances [deg] distances [deg]
(same meaning) (different meaning)

”one” 2.30 - 3.25 3.08 - 6.90
”two” 1.04 - 3.59 2.74 - 6.37

”three” 2.58 2.94 - 5.42
”four” 0.89 - 3.28 2.73 - 6.90
”five” 1.10 - 2.07 3.13 - 5.57

Table 3: Normalized DTW distances between signs (whole
body without face).

all instances with the meaning ”one” are compared to all
other instances with the same meaning and to all instances
with different meanings such as ”two”, ”three”, ...). Ac-
cording to the results in Table 3, using normalized DTW
distance for raw trajectories of the angular representation
seems to have the ability to objectively measure the differ-
ence between signs, because the distance is generally lower
for the signs with the same meaning than others.
In case of the hand-shapes (Table 2, there seems to be the
ability to not only measure the distances between signs with
the same meanings but also to distinct different signs com-
pletely.
We suggest some approaches to improve the evaluation of
distances calculated by DTW. We can use different weights
for the distance measure for different bones based on its
corresponding importance for the signs distinction. We
can also use trajectories of different body parts to compare
signs components separately. For example, compare hand-
shapes, palm orientation and location with their counter-
parts respectively to enable more precise modeling of SL
grammar such as classifiers, the co-occurrence of manual
and non-manual, etc.

7. Experiments
7.1. Methods
We propose the following baseline technique for the SL ut-
terance synthesis. The purpose of this baseline is not to
solve the synthesis problem itself but to provide a refer-
ence algorithm and performance for further developed and
more sophisticated techniques. We assemble the utterance
from dictionary item trajectories for each sign. Then we
compute trajectories of transition movement between these
signs. We set the fixed length for all transitions as the aver-
age length of all transitions in our dataset. We interpolated
the transition trajectory for each joint by the cubic spline.
For evaluation, we compared the synthesized utterance with
the utterance captured in the continuous signing by the nor-
malized DTW with Euclidean distance.

7.2. Results
We selected a pair of utterances that have more appearances
in the dataset in order to provide a comparison with a refer-
ence.

• Utterance 1: ”zima-hory-kolem” (literal translation:
cold-hills-approximately). Confusion matrix is shown
in Table 4

• Utterance 2: ”pocasi-zitra-bude” (literal translation:
weather-tomorrow-will be). Confusion matrix is
shown in Table 5

In confusion matrices (Tables 4 and 5), we can see the nor-
malized DTW distances of the synthesized utterance com-
pared to utterances with the same meaning that appear in
continuous signing. For reference, we added a comparison
with the utterance with other meaning.

synth appear1 appear2 appear3 other
synth 0 2.58 2.69 2.82 5.28
appear1 2.58 0 1.03 1.27 6.14
appear2 2.69 1.03 0 1.41 6.19
appear3 2.82 1.27 1.41 0 6.62
other 5.28 6.14 6.19 6.62 0

Table 4: Confusion matrix of normalized DTW distances
for utterance 1. Synthesised data (synth), compared with
real data (appear1-3) and other utterance with different
meaning.

synth appear1 appear2 appear3 other
synth 0 1.51 1.43 1.61 5.28
appear1 1.51 0 0.62 0.71 4.69
appear2 1.43 0.62 0 0.82 4.84
appear3 1.61 0.71 0.82 0 4.60
other 5.28 4.69 4.84 4.60 0

Table 5: Confusion matrix of normalized DTW distances
for utterance 2. Synthesised data (synth), compared with
real data (appear1-3) and other utterance with different
meaning.

The comparison of the normalized DTW distances shows
larger differences between synthesized utterance and ex-
amples from continuous data then among the continuous
data. We can also distinct different utterances from each
other. The difference between synthesized data and exam-
ples from continuous data can be caused by various reasons.
We try to explain some of those in the following discussion.

8. Discussion
There is a difference in the pacing and the method of sign-
ing for signs in the dictionary and the same signs in the
continuous signing. On average, the dictionary signs are
more than twice longer than signs from continuous signing.
The average duration of signs in our dataset is 0.81/0.38
seconds in dictionary/continuous signing. There are also
differences in signs that consist of repetitive moves. Usu-
ally, more repetitions are made in dictionary items than in
continuous signing. Those differences are insignificant in
human understanding of the sign but enlarge the measured
distance.
The transitions are synthesized with a constant length and
such an approximation does not correspond with the ob-
served reality. The cubic spline interpolation is also heavily
dependant on the annotation’s precise selection of the start
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and the end point and also does not respect the nature of the
human movement.

9. Conclusion
We presented a new 3D motion capture dataset of Czech
Sign Language (CSE), which we would like to share with
the community. Its main purpose is to provide the data for
further analysis and data-based automatic synthesis of CSE
utterances. The dataset was recorded using the state-of-the-
art motion capture technology to provide the most precise
trajectories of the motion. The size of the dataset and the
precision of tracked components are comparable to the best
existing datasets for other SLs. The dataset contains trajec-
tories of body, arms, hands and face markers recorded at
once in order to provide consistent data without the need
for the time alignment.
We introduced a baseline for the data-driven synthesis of
SL utterances and suggested a method for objective data
evaluation in the form of normalized DTW algorithm and
Euclidean distance.
In future work, we will focus on improving the quality of
the synthesis by using machine learning techniques and the
normalized DTW distance as an objective function. We
would also like to verify the correlation between objective
and subjective evaluations.
We also would like to further improve synthesis by adding
a non-manual property as well as other more complex SL
grammar concepts. This will require annotations in more
than one-tier. The additional annotation can be done in
semi-automatic or fully automatic mode. It will also be
beneficial to use multiple annotators on the same task to
eliminate human errors and improve the precision of an an-
notation.
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