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Abstract

This paper presents the submission by the CU
Ling team from the University of Colorado to
SIGMORPHON 2020 shared task 0 on mor-
phological inflection. The task is to generate
the target inflected word form given a lemma
form and a target morphosyntactic description.
Our system uses the Transformer architecture.
Our overall approach is to treat the morpholog-
ical inflection task as a paradigm cell filling
problem and to design the system to leverage
principal parts information indirectly for bet-
ter morphological inflection when the training
data is limited. We train one model for each
language separately without external data. The
overall average performance of our submission
ranks the first in both average accuracy and
Levenshtein distance from the gold inflection
among all submissions including those using
external resources.

1 Introduction

The task of morphological inflection is to gener-
ate a target inflected word form (henceforth rgz-
form) given a lemma form (henceforth lemma) and
a target morphosyntactic description (henceforth
tgtmsd). In the SIGMORPHON 2020 shared task
0 on morphological inflection (Vylomova et al.,
2020) and previous years’ SIGMORPHON shared
tasks on morphological inflection (Cotterell et al.,
2016, 2017a, 2018; McCarthy et al., 2019), the
training data is provided in the format of tab-
separated lemma-tgtmsd-tgtform triples, and partic-
ipating systems are expected to predict the missing
target forms in the test data released shortly before
prediction submission.

The sequence-to-sequence (henceforth seg2seq)
architecture has been very successful in dealing
with morphological inflection, especially when
there are abundant labeled data for training. The
accuracies and Levenshtein distances on the devel-
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Figure 1: Illustration of general model architectures.
All three of our models use the Transformer architec-
ture for inflection. They are different from each other
by the input to the Transformer model.

opment data inflected by 9 baseline models are pro-
vided for the 45 typologically and genealogically
diversified development languages: a non-neural
model based on lemma-tgtform alignment and
transformation, a per-language Transformer model,
a per-language-family Transformer model, a per-
language Transformer model with data augmen-
tation, a per-language-family Transformer model
with data augmentation, LSTM seq2seq models
with exact hard monotonic attention (Wu and Cot-
terell, 2019) trained per language, per language
family, per language with data augmentation, and
per language family with data augmentation respec-
tively. The data augmentation method used by the
baseline models is from Anastasopoulos and Neu-
big (2019). The baseline numbers indicate that the
Transformer model for character-level transduction
(Wu et al., 2020) is very competitive, achieving
the highest average accuracy and lowest average
edit distance and best performance on most lan-
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guages (33 out of 45) when the model is trained per
language. Therefore, we adopt the Transformer ar-
chitecture (Vaswani et al., 2017) for all three of our
models (see Figure 1) which are different from each
other by the input and output to the Transformer
model, as will be presented in section 3.

Though not explicitly organized as a paradigm
cell filling problem (PCFP) (Ackerman et al., 2009)
task, the shared task is closely related to and can
largely be seen as a computational instance of it
(Malouf, 2016, 2017; Cotterell et al., 2017a; Silfver-
berg et al., 2018; Silfverberg and Hulden, 2018),
where some slots are given in the paradigms as
training data and others are to be inflected as de-
velopment data or test data.! The data format of
the shared task privileges the lemma as the source
form (henceforth srcform) which all tgtforms are
inflected from. However, the lemma form may not
be the only and the most informative srcform to
inflect all other slots from in the same paradigm.
Morphologists refer to a lexeme’s principal parts
(Finkel and Stump, 2007) as the minimum subset
of paradigm slots which, if known, provide all the
information needed to generate the other slots in its
paradigm. The principal parts which best predict
an inflected form in a lexeme’s paradigm do not
necessarily include the lemma, and more than one
of the principal parts may be needed to generate
an inflected form reliably (see examples in Table
1 analyzed in section 3.2). Considering this, we
convert the shared task of morphological inflection
to the paradigm cell filling problem, and incorpo-
rate the principal part intuition into the inflection
system. Our approaches achieve better or equally
good performance compared to the official base-
lines for most (19 out of 24) relatively low-resource
languages we experimented with.

To generate inflected forms for the test data
for submission, our system uses the same input-
output format as the baselines for high-resource
languages, and includes two slightly different ap-
proaches of leveraging principal parts information
for low-resource languages. The evaluation results
indicate that the Transformer model augmented
with principal parts information can handle mor-
phological inflection very well for typologically
and genealogically diverse languages, whether it

!This does not hold perfectly—some languages have held-
out data that come from paradigms where no form is ever
witnessed in the training data, but these are a minority. We
overcome this problem by adding an additional slot (tagged as
POS; CANONICAL) for the lemma in the paradigm.
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has been tuned on the language or not, even when
the training data is limited.

2 Task and data description

The SIGMORPHON 2020 shared task 0 (Vylo-
mova et al., 2020) is a typical morphological inflec-
tion task. Compared to previous years’ SIGMOR-
PHON shared tasks on morphological inflection,
this year’s task highlights the distinction between
development languages and surprise languages and
the inflection model’s ability to generalize to new
languages that may be genetically related or un-
related to the languages according to which it is
developed. In the development phase, 45 languages
from 5 language families were provided, and these
languages are development languages. In the gen-
eralization phase, 45 surprise languages from 16
language families were released. In the evalua-
tion phase, test data include both development lan-
guages and surprise languages.

Deviating from previous years’ tasks, this year’s
task did not feature different (low/medium/high)
data settings for the languages (Cotterell et al.,
2017a, 2018) or manipulate the data size of ge-
netically related language pairs (McCarthy et al.,
2019). Instead, each language comes with differ-
ent amount of training, development and test data,
corresponding to the reality of data availability for
the language. Of the total 90 languages from 18
language families, 44 have 5,000 or more lemma-
tgtmsd-tgtform training triples and 46 have fewer
than 5,000. Of the 45 development languages, 24
have fewer than 5,000 training examples. In this
paper, we refer to languages with 5,000 or more
training triples as high-resource and those with
fewer than 5,000 training triples as low-resource.

3 System description

All our models use the self-attention Transformer
architecture (Vaswani et al., 2017) as implemented
in the Fairseq (Ott et al., 2019) tool, a PyTorch-
based sequence modeling toolkit. Both the encoder
and decoder have 4 layers with 4 attention heads,
an embedding size of 256 and hidden layer size of
1024. Models are trained with the Adam algorithm
(Kingma and Ba, 2014) for optimization with an
initial learning rate of 0.001, a batch size of 400,
0.1 label smoothing, the gradient clip threshold as
1.0, and 4,000 warmup updates. The models are
trained for a maximum of 20,000 or 30,000 opti-
mizer updates depending on the amount of input-



ID MSD Lexemel Lexeme2 Lexeme3 Lexeme4 LexemeS
1 V;CANONICAL pahinga bayad pukpok linlang galing
2 V;AGFOC;LGSPECI1 — magbabayad manumukpok lanlilinlang gagaling
3 V;IPFV;AGFOC ? nagbabayad namumukpok nanlilinlang gumagéling
4  V;IPFV;PFOC *  binabayaran pinupukpok  nililinlang iginagaling
5  V;NFIN pahinga bayad pukpok linlang giling
6  V;PFOC;LGSPECI1 * babayaran pupukpukin ? igagéling
7 V;PFV;AGFOC nagpahinga nagbayad namukpok  nanlinlang gumaling
8  V;PFV;PFOC * binayaran pinukpok nilinlang iginaling

Table 1: Example of reconstructed paradigms from Tagalog data. — are slots in the development set, 2 are slots
in the test set, * are slots which didn’t appear in the shared task data, and other slots which are filled with inflected

forms are slots in the training set.

output tuples for training, with checkpoints saved
every 10 epochs. The checkpoint with the smallest
loss and the last checkpoint are also saved. The
model with the best parameters was selected from
all the saved checkpoints based on the accuracy
on the development data. Beam search is used at
decoding time with a beam width of 5.

Our submission is an ensemble of predictions
from three types of models: baseline (Fairseq), 1-
src, and 2-src. These three types of models have
identical model architecture for inflection and are
different from each other in the input and output.
As the varied baseline results trained per language
family provided by the organizers did not show
consistent improvements compared to training lan-
guages separately, we train all the models per lan-
guage without using external resources. We made
our code publicly available.?

3.1 Baseline (Fairseq) model

The baseline (Fairseq) model (see Figure 1(a))
is very similar to the unaugmented per-language
Transformer baseline (Wu et al., 2020) provided by
the shared task organizers, except that the Fairseq
implementation is used and that beam search rather
than greedy search is used at decoding time. The
inputs to this model are the individual characters
of the lemma followed by the individual subtags of
the tgtmsd. For example, for the English training
triple (look, looks, V;SG; 3;PRS),thein-
putto the modelis1 o o k V SG 3 PRSand
the gold standard outputis 1 o o k s. Our sub-
missions for languages with 5,000 or more training
triples are generated with this model. The model
is trained for a maximum of 20,000 optimizer up-
dates for languages with 5,000 to 20,000 training

https://github.com/LINGuistLIU/
principal_parts_for_inflection
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triples, and for a maximum of 30,000 updates for
languages with over 20,000 training triples.

3.2 Principal parts of a paradigm

The classical notion of “principal parts of a
paradigm” is the minimal subset of paradigm slots
that provides enough information according to
which the inflection forms for other slots in the
same paradigm can be correctly generated (Finkel
and Stump, 2007). The principal part may be dif-
ferent for different slots in the same paradigm, and
more than one principal part may be necessary in
order to inflect for some slots correctly. For exam-
ple, for each Tagalog lexeme in Table 1, slots 2
and 3 are very informative source forms for each
other, which are different by the first consonant, or
the presence or absence of um in the prefix. Slot
3 can predict slot 7 very well, and slot 8 can be
easily generated from slot 4. Inflection of slot 6
is the most complex in the paradigms, for which
slot 4 together with the lemma, i.e. slot 1, can
be informative but not sufficient. Therefore, the
lemma is not always a good choice as the source
to generate all other slot forms from, and we can
expect the morphological inflection system to be
more effective and efficient if the principal parts
information is incorporated.

The 1-src model (see Figure 1(b)) and the 2-
src model (see Figure 1(c)) leverage the idea of
paradigm principal parts. To do this, we first recon-
struct the paradigm for each lexeme in the shared
task data, from which we prepare input and output
data for the inflection models.

We assume that each part-of-speech (henceforth
POS) in a language has its own set of morphosyn-
tactic descriptions (henceforth MSDs), which can
be obtained by collecting the tgtmsd types in the
training, development and test data for the lan-


https://github.com/LINGuistLIU/principal_parts_for_inflection
https://github.com/LINGuistLIU/principal_parts_for_inflection

guage. Each slot in the paradigm of a lexeme
locates an inflected word form, which can be con-
sidered a combination of a lexeme and an MSD. In
this paper, slot is used to refer to both the inflected
form and the corresponding MSD it locates, slot
form refers to the inflected forms only, and slot
MSD refers to the corresponding morphosyntactic
description. If a slot contains both the MSD and
the inflected form, it is a filled slot, while an empty
slot needs to be filled with the corresponding in-
flected form. The slot MSD can be determined by
the set of MSDs we collect for each POS, and we
can fill in the slot if it appears in the training data
and mark it if the inflected form is to be generated
in the development or test data, or does not appear
in the shared task data at all. In addition, the shared
task data format has the first element in the triple
as the lemma form, i.e. the canonical, or citation,
form of the lexeme. We add an additional slot in
the paradigm for the lemma form, and tag the slot
as POS; CANONICAL where the POS in the tag
is determined by the POS of the lemma. As a re-
sult, we create a paradigm for each lexeme in the
shared task data and the reconstructed paradigm
for each lexeme has at least one filled slot. Ta-
ble 1 provides 5 example paradigms reconstructed
from the Tagalog data, where — marks slots with
tgtforms to be predicted in the development set, ?
are slots in the test data and * indicates slots which
are not found in the shared task data,? and other
slots which are filled with inflected word forms
are data in the training set. In cases where slots
have alternative forms in the data, only one form is
kept. For example, there are two alternative forms
for thanda V; SG; 1; PRS in the Zulu training
data: ngithanda and ngiyathanda, and our
conversion only kept ngiyathanda.

1-src model In order to train the 1-src model,
the reconstructed paradigm is organized so that
each of the known slots is given as a srcform
from which we predict every other known slot as
the tgtform. The symbol # is inserted between
the srcmsd and tgtmsd. For example, six input-
output tuples (see Figure 2) are constructed from
the Tagalog Lexemel paradigm example provided
in Table 1. When only one slot is filled in the re-
constructed paradigm, we make the slot predict

3The * slots may be invalid in the language. For example,
the English noun cattle does not have a single form, and
the single slot would be marked by * in the paradigm for the
lexeme catt le reconstructed by our method.
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INPUT, i.e. srcform srcmsd # tgtmsd OUTPUT, i.e. tgtform

pahinga VCANONICAL # V PFV AGFOC ]-—-)[ nagpahinga

( pahingaV NFIN#V CANONICAL )-—){ pahinga ]
[nagpahmgaVPF\/AGFOC»\/CANONlCAL]—)( pahinga j
( pahinga VCANONICAL # V NFIN ]—)( pahinga j
(_ nagpahingavprvacroc#vNAN ) -3 ( pahinga j
C )
( )

pahingaVNFIN #V PFV AGFOC ]-—)( nagpahinga

Figure 2: Input-output tuples for the 1-src model for
Tagalog Lexemel (pahinga “rest”) example paradigm
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Figure 3: Input-output tuples for the 2-src model for
Tagalog Lexemel (pahinga “rest”) example paradigm

itself (i.e. input as lemma POS; CANONICAL
# POS; CANONICAL and output as Iemma) for
training. All given srcform-srcmsd slots are used
to predict the tgtform for each tgtmsd in the devel-
opment and test data respectively. Consequently,
for the Tagalog Lexemel example, each tgtsmd in
the development and test sets will be predicted by
three different source forms with the correspond-
ing morphosyntactic description specified, rather
than being predicted only by the lemma. This is
the model we use to generate our submission pre-
dictions for 39 languages with fewer than 5,000
training triples. The languages aka, ben, cly, cre,
kan, kir, kon, liv, 11d, lug, nya, pus, sna, and swa are
trained for 30,000 maximum updates, and other lan-
guages are trained for 20,000 maximum updates.

2-src model The 2-src model generates predic-
tions for the remaining 7 low-resource languages
(czn, frr, gsw, izh, mlt, mwf, zpv), because we
only trained the 2-src model for languages with
fewer than 2,000 training examples due to time con-
straints and because the 2-src model generates sig-
nificantly better predictions for these 7 languages
on the development data than the 1-src model. Dur-
ing training, the inputs to the 2-src model are all
possible known two-slot combinations followed by
the MSD for the slot to be filled; the output is the
known inflected form for the target slot. The sym-
bol # is inserted between the first srcmsd and the
second srcform as well as between the second sr-
cmsd and tgtmsd. For example, three input-output
tuples (see Figure 3) are constructed from the Taga-
log Lexemel example. When only one slot form
is given in the paradigm, the given slot is made



to predict itself by taking as input the Iemma and
POS; CANONICAL repeated twice together with
the tgtmsd as POS; CANONICAL, and the output
is the Z1emma form. When only two slots are filled
in the paradigm, each slot form is treated as the tgt-
form and the other slot is repeated twice together
with the MSD for the slot to be predicted as input
to the model. For the development and test data,
every two-slot combination of given slots is used
as input to predict the tgtform corresponding to
the tgtmsd. Therefore, each test and development
tgtmsd in the Tagalog Lexemel example will be
predicted by three different inputs, respectively.

Prediction selection Because of the input and
output construction for the 1-src and 2-src models,
each tgtmsd may be predicted multiple times by
different inputs which may generate more than one
inflected form for the same tgtmsd. Two mech-
anisms are employed to pick the best prediction,
both of which implicitly employ the principal parts
intuition. The first mechanism is to select the pre-
diction generated by most inputs, i.e. by majority
vote for predictions by different inputs. The sec-
ond mechanism is to select the prediction which
gets the highest average log-likelihood, i.e. by av-
eraging the scores for each prediction by different
inputs. The intuition behind this mechanism is
that the most informative source slots should be
most confident about the inflection for the target
slot. Unless the majority vote mechanism produces
significantly higher accuracy on the development
data for the language, the prediction with the high-
est average log-likelihood is selected as the final
prediction for the target slot.

4 [Experiments

Considering the time constraints and the al-
ready strong performance of the baseline models—
especially when training data is abundant—we fo-
cused our experiments on the 24 low-resource de-
velopment languages in the development phase, for
which we attempted to augment the Transformer
model for inflection by reorganizing the data into
paradigms and making use of the principal parts
morphology idea in different ways.

In addition to the 1-src and 2-src models de-
scribed in section 3.2, other approaches we experi-
mented with included 2-random-src, 3-random-src
and 4-random-src models where we randomly pick
two, three or four given slots as input which will
be translated to the tgtform corresponding to the
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tgtmsd, as well as all-src-tgtform and all-src-all-
form models, where the concatenation of all given
slots followed by the tgtmsd are input to the inflec-
tion model which predicts the corresponding tgt-
form or all srcforms and the tgtform. Though these
models produced better performance for one or two
languages that we experimented with initially, we
did not see consistent performance improvement
proportional to the increasing model complexity
over the 1-src and 2-src models. We also exper-
imented with warming up the 1-src model with
an additional copying task following the practice
suggested by Anastasopoulos and Neubig (2019),
but did not see improvements. Therefore, we fo-
cused exclusively on the 1-src and 2-src models
after initial experiments.

Further experiments with the 1-src model were
conducted on the 24 development languages with
fewer than 5,000 training triples, and further ex-
periments with the 2-src model were conducted on
the 17 development languages, each of which has
fewer than 2,000 training triples. The performance
of the two selected models will be presented and
discussed in the next section.

5 Results and discussion

The average inflection accuracy of development
data for the 24 languages by the 1-src model is
91.72%, which is 1.3% higher than the unaug-
mented per-language Transformer baseline and
0.55% higher than the best performance of all base-
line models. The 1-src model achieved higher or
equal accuracy on 18 languages compared to the
unaugmented per-language Transformer baseline
and 17 languages compared to the best performance
of all baselines. The 2-src models for the 17 lan-
guages we experimented with achieve an average
accuracy of 91.63% and their performance on 7 lan-
guages (czn, frr, gsw, izh, mlt, mwf, zpv) is better
than the 1-src model.

Figure 4 plots the difference in the accuracy on
the development set for each language by the 1-src
for 2-src model from that by the unaugmented per-
language Transformer baseline. Figures 4(a) and
4(c) depict the relationship between this difference
and the number of training triples. Figures 4(b)
and 4(d) show the relationship between this differ-
ence and the completeness of the paradigms seen
in training. The filled percentage of each paradigm
is calculated by dividing the number of given slots
by the number of all slots in the paradigm, and the
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paradigm completion rate of a language is calcu-
lated by taking the average of the filled percent-
ages of all the reconstructed paradigms. For in-
stance, the completion rate of the Tagalog Lex-
emel paradigm is 37.5%, and the average comple-
tion rate of all the Tagalog example paradigms in
Table 1 is 85%. The low-resource development
languages have average completion rates between
54.16% (frr) and 79.81% (mao). Figure 5 plots the
same relationships, but the difference is between
the 1-src or 2-src model and the best performance
of all baseline models. Languages for which both
the baseline models and our models achieve 100%
accuracy are excluded from the plots, because such
languages have the potential to skew the perfor-
mance comparison. Such languages include one
Austronesian language: mlg and six Niger-Congo
langauges: gaa, kon, lin, nya, sot and swa.

Model performance and training data size
The improvements by the 1-src and 2-src models
over the unaugmented Transformer baseline trained
per language show the same tendency with relation-
ship to the training data size: The more training
data there is available, the less advantage our mod-
els have. This is shown in Figure 4(a). The baseline
model begins to catch up with these improvements
as is shown in Figure 5(a), where the 1-src model
accuracy still has a decreasing trend as the train-
ing data increases while the 2-src model accuracies
turn into a slightly increasing trend.

Model performance and paradigm completion
rate The good performance of our models relies
on the high completion rate of paradigms. The
performance for both the 1-src and 2-src models
tends to be better if the reconstructed paradigm con-
tains a higher proportion of known slots. This is
true whether our models are compared to the single
unaugmented per-language Transformer baseline
model or to the ensemble of all baseline models.
This relationship is illustrated in Figure 4(b) and
Figure 5(b). An extreme case of a low paradigm
completion rate in the shared task languages is
Ludic, where only 5.64% of the slots are known,
and our best model for this language is the 1-src
approach with average score selection, which gen-
erates an accuracy of 48.78% on the development
data. This relationship supports the use of principal
parts for morphological inflection, because given a
random sampling, the more complete a paradigm
is, the more likely it is that the principal parts are
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included in the paradigm.

Model performance and genealogy Subplots
(c) and (d) in Figure 4, and subplots (c) and (d) in
Figure 5, show the performance of the 1-src model
on languages with language family information.
Uralic languages are challenging to our models.
This is to be expected from the fact that Uralic lan-
guages usually have large inflection paradigms and
therefore tend to have more incomplete slots on
average given the same amount of data, and may
hence be missing a principal part.

6 Related work

Morphological inflection is one of the natural lan-
guage processing tasks which achieve great im-
provement by applying neural network models, es-
pecially sequence to sequence models, which ini-
tially outperformed other approaches by a large
margin on high-resource languages (Cotterell et al.,
2016; Kann and Schiitze, 2016; Aharoni et al.,
2016) and have been improved and augmented
later to achieve state-of-the-art performance on
low-resource languages as well (Aharoni and Gold-
berg, 2017; Cotterell et al., 2017a; Makarov and
Clematide, 2018; Wu et al., 2018; Cotterell et al.,
2018; Wu and Cotterell, 2019; McCarthy et al.,
2019; Anastasopoulos and Neubig, 2019).

Subtask 2 of the CONLL-SIGMORPHON 2017
shared task (Cotterell et al., 2017a) was about
paradigm cell filling, and received submissions of
neural network systems (Kann and Schiitze, 2017;
Silfverberg et al., 2017). There is also other work
which targets the paradigm cell filling problem
(Cotterell et al., 2017b; Silfverberg et al., 2018; Sil-
fverberg and Hulden, 2018). Cotterell et al. (2017b)
models the principal parts idea with graphical mod-
els to generate all the missing slots in paradigms.
Our 1-src model has an input-output format simi-
lar to Silfverberg and Hulden (2018). Our work is
also closely related to Kann et al. (2017) on multi-
source inflection which is also motivated by a prin-
cipal parts analysis. Cotterell et al. (2019) use an
explicit neural model that organizes paradigm slots
in their most predictable order to investigate mea-
sures of morphological complexity, an instantiation
of the principal parts idea in another context.

7 Conclusion

We have presented the system for our submission
to the SIGMORPHON 2020 shared task O on mor-



phological inflection. It achieved the highest aver-
age accuracy and smallest average Levenshtein dis-
tance across all the 90 languages from 18 language
families. The standard deviation of our submission
is the lowest for accuracy and the second lowest
(0.004 higher than the lowest) for edit distance.

Our work indicates that the self-attention Trans-
former architecture can perform well for the mor-
phological inflection task for a genealogically and
typologically diverse group of languages. The ar-
chitecture has a strong generalization ability and
can inflect new languages as effectively as the lan-
guages it is tuned on. We augment the Transformer
model by converting the morphological inflection
task to the paradigm cell filling problem and lever-
aging the principal parts of paradigms in indirect
ways, which turns out to be helpful, especially
when the training data is limited and the recon-
structed paradigms have a high completion rate.
Our primary strategy to incorporate principal parts
information in this work is to use each given slot
in the reconstructed paradigm to predict the target
form and select the final prediction from predic-
tions generated by different slots by highest aver-
age score or majority vote. Another strategy is to
use all possible two-slot combinations to predict
the target form.

According to principal parts morphology, the
number of principal parts may vary between
paradigms and languages, and different slots may
require different numbers of principal parts to in-
flect correctly, indicating that uniformly using ev-
ery slot individually or every two-slot combination
may not always be the best choice. Future work is
needed to explore how to use principal parts infor-
mation more effectively, perhaps tuning the number
and choice of forms on a per-language basis or de-
veloping strategies to explicitly determine principal
parts for the paradigms.
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