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Abstract

The natural language generation (NLG) mod-
ule in a task-oriented dialogue system pro-
duces user-facing utterances conveying re-
quired information. Thus, it is critical for
the generated response to be natural and flu-
ent. We propose to integrate adversarial train-
ing to produce more human-like responses.
The model uses Straight-Through Gumbel-
Softmax estimator for gradient computation.
We also propose a two-stage training scheme
to boost performance. Empirical results show
that the adversarial training can effectively im-
prove the quality of language generation in
both automatic and human evaluations. For
example, in the RNN-LG Restaurant dataset,
our model AdvNLG outperforms the previous
state-of-the-art result by 3.6% in BLEU.

1 Introduction

In task-oriented dialogues, the computer system
communicates with the user in the form of a con-
versation and accomplishes various tasks such as
hotel booking, flight reservation and retailing. In
this process, the system needs to accurately con-
vert the desired information, a.k.a. meaning rep-
resentation, to a natural utterance and convey it
to the users (Table 1). The quality of response
directly impacts the user’s impression of the sys-
tem. Thus, there are numerous previous studies in
the area of natural language generation (NLG) for
task-oriented dialogues, ranging from template-
based models (Cheyer and Guzzoni, 2014; Langk-
ilde and Knight, 1998) to corpus-based methods
(Dušek and Jurčı́ček, 2016; Tran and Nguyen,
2017; Wen et al., 2015; Zhu et al., 2019).

However, one issue yet to be solved is that the
system responses often lack the fluency and nat-
uralness of human dialogs. In many cases, the
system responses are not natural, violating inher-
ent human language usage patterns. For instance,

Input
name[Wildwood], eatType[restaurant],

food[Indian], area[riverside],
familyFriendly[no], near[Raja Indian Cuisine]

with
adv.

Wildwood is an Indian restaurant in the
riverside area near Raja Indian Cuisine.

It is not family friendly.

w/o
adv.

Wildwood is a restaurant providing Indian food.
It is located in the riverside.

It is near Raja Indian Cuisine.

Table 1: Example of generated utterances from mean-
ing representation input. Our model learns to put two
pieces of location information in one sentence via ad-
versarial training.

in the last row of Table 1, two pieces of location
information for the same entity restaurant should
not be stated in two separate sentences. In an-
other example in Table 4, the positive review child
friendly and the negative review low rating should
not appear in the same sentence connected by the
conjunction and. These nuances in language us-
age do impact user’s impression of the dialogue
system, making the system response rigid and less
natural.

To solve this problem, several methods use re-
inforcement learning (RL) to boost the natural-
ness of generated responses (Ranzato et al., 2015;
Li et al., 2016). However, the Monte-Carlo sam-
pling process in RL is known to have high vari-
ance which can make the training process unsta-
ble. Li et al. (2015) proposes to use maximum
mutual information (MMI) to boost the diversity
of language, but this criterion makes exact decod-
ing intractable.

On the other hand, the adversarial training
for natural language generation has shown to be
promising as the system needs to produce re-
sponses indiscernible from human utterances (Ra-
jeswar et al., 2017; Wu et al., 2017; Nie et al.,
2018). Apart from the generator, there is a dis-
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criminator network which aims to classify sys-
tem responses from human results. The genera-
tor is trained to fool the discriminator, resulting
in a min-max game between the two components
which boosts the quality of generated utterances
(Goodfellow et al., 2014). Due to the discrete-
ness of language, most previous work on adversar-
ial training in NLG apply reinforcement learning,
suffering from high-variance problem (Yu et al.,
2017; Li et al., 2017; Ke et al., 2019).

In this work, we apply adversarial training to ut-
terance generation in task-oriented dialogues and
propose the model AdvNLG. Instead of using
RL, we follow Yang et al. (2018) to leverage
the Straight-Through Gumbel-Softmax estimator
(Jang et al., 2016) for gradient computation. In
the forward pass, the generator uses the argmax
operation on vocabulary distribution to select an
utterance and sends it to the discriminator. But
during backpropagation, the Gumbel-Softmax dis-
tribution is used to let gradients flow back to the
generator. We also find that pretraining the gener-
ator for a warm start is very helpful for improving
the performance.

To evaluate our model, we conduct experiments
on public datasets E2ENLG (Novikova et al.,
2017) and RNN-LG (Wen et al., 2016). Our
model achieves strong performance and obtains
new state-of-the-art results on four datasets. For
example, in Restaurant dataset, it improves the
best result by 3.6% in BLEU. Human evaluation
corroborates the effectiveness of our model, show-
ing that the adversarial training against human re-
sponses can make the generated language more ac-
curate and natural.

2 Problem Formulation

The goal of natural language generation module
in task-oriented dialogues is to produce system ut-
terances directly issued to the end users (Young,
2000). The generated utterances need to carry nec-
essary information determined by upstream dia-
logue modules, including the dialogue act (DA)
and meaning representation (MR).

The dialogue act specifies the type of system re-
sponse (e.g. inform, request and confirm), while
the meaning representation contains rich informa-
tion that the system needs to convey to or request
from the user in the form of slot-value pairs. Each
slot indicates the information category and each
value represents the information content.

Therefore, the training data for the supervised
NLG task is {xi = (di, ri), yi}ni=1, where di is
the dialogue act, ri = {(s1, v1), ..., (st, vt)} is the
set of MR slot-value pairs, and yi is the human-
labeled response.

NLG models typically use delexicalization dur-
ing training and inference, replacing slots and val-
ues in the utterance with a special token 〈SLOT
NAME〉. In this way, the system does not need
to generate the proper nouns. Finally, the model
substitutes these special tokens with correspond-
ing values when delivering to users.

3 Model

3.1 Generator Model

We use the sequence-to-sequence encoder-
decoder architecture (Sutskever et al., 2014)
for the response generator G. The input to the
encoder is a single sequence x of length m via
concatenating dialogue act d and slots and values
in the meaning representation r. The target
utterance y has n tokens, y1, ..., yn. Following
Zhu et al. (2019), we delexicalize both sequences
and surround each sequence with 〈BOS〉 and
〈EOS〉 tokens.

Both the encoder and decoder use GRU (Cho
et al., 2014) for contextual embedder, and they
share the embedding matrix E to map each token
to a fixed-length vector. The final hidden state of
the encoder RNN is used as the initial state of the
decoder RNN. Moreover, the decoder employs a
dot-product attention mechanism (Bahdanau et al.,
2014) over the encoder states to get a context vec-
tor c at each decoding step.

This context vector c is concatenated with the
embedding of the current token and fed into the
GRU to predict the next token. The result pt =
p(yt|y1, ..., yt−1;x) is the probability distribution
of the next token over all tokens in dictionary V .

We use cross entropy as the generator’s loss
function. Suppose the one-hot ground-truth token
vector at the t-th step is yt, then the loss is:

LGen(θ) = −
n∑

t=1

yT
t log(pt) (1)

3.2 Adversarial Training

The goal of the adversarial training is to use a dis-
criminator to differentiate between the utterance y′

from generator and the ground-truth utterance y.
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Figure 1: AdvNLG model with generator and discriminator. The dashed arrow is the direction of gradient flow.

We leverage the improved version of gener-
ative adversarial network (GAN), Wasserstein-
GAN (WGAN) (Arjovsky et al., 2017), in our
framework. WGAN designs a min-max game be-
tween the generator G and the discriminator D:

min
G

max
D

Ey∼Pdata(y)[D(y)]− Ey′∼G(x)[D(y′))]

(2)
where G(x) denotes the probability distribution
computed by the generator G given input x. The
discriminator function D is a scoring function on
utterances.

The goal of the generator is to obtain y′ as simi-
lar as possible to y to fool the discriminatorD (the
outer-loop min), while D learns to successfully
classify generated output y′ from the ground-truth
y (the inner-loop max), via the scoring functionD.

3.2.1 Discriminator Model
For the discriminator, we reuse the embedding ma-
trix E as the embedder, followed by a bidirectional
GRU layer. The last GRU hidden state h is passed
through a batch normalization layer and a linear
layer to get the final score D(y):

r = BatchNorm(h) (3)

D(y) = W3r + b3, (4)

where W3 and b3 are trainable parameters.

3.2.2 Training
Gradient computation. One problem with adver-
sarial training in language generation is that the to-
ken sequence y′ sampled from G is discrete, mak-
ing it impossible to back-propagate gradients from
the min-max objective to the generator.

Several previous methods leverage reinforce-
ment learning for gradient computation (Yu et al.,
2017; Li et al., 2017). However, the related sam-
pling process can introduce high variance dur-

ing training. Therefore, we employ the Straight-
Through Gumbel-Softmax estimator (Jang et al.,
2016; Baziotis et al., 2019). In detail, during
the forward pass, at the t-th step, the argmax of
the generated word distribution pt is taken, i.e.
greedy sampling. But for gradient computation,
the Gumbel-Softmax distribution is used as a dif-
ferentiable alternative to the argmax operation:

p′t,i =
exp(log(pt,i) + gi)/τ∑|V |
j=1 exp(log(pt,j) + gj)/τ

, (5)

where g1, ..., g|V | are i.i.d samples drawn from the
Gumbel distribution G(0, 1) and τ represents the
softmax temperature. Jang et al. (2016) shows that
the Gumbel-Softmax distribution converges to the
one-hot distribution as τ → 0 and to the uniform
distribution as τ → ∞. We set τ = 0.1 in all the
experiments.

Two-stage Training. We find that the adversar-
ial training does not work well if we optimize both
the cross entropy (Eq. 1) and the min-max objec-
tive (Eq. 2) from the beginning. However, after we
warm up the generator model with only cross en-
tropy loss for several epochs, and then train with
the discriminator under both the cross entropy and
adversarial objective, the performance is consis-
tently boosted. We argue that during early stages,
the generator cannot produce meaningful output,
making the discriminator easy to overfit. It’s then
hard for generator to learn to fool the adversary.

We summarize our model AdvNLG and gradi-
ent computation process in Fig. 1.

4 Experiments

We conduct empirical tests on a number of bench-
marks for task-oriented dialogues over a variety of
domains such as restaurant booking, hotel book-
ing and retail. The datasets include the E2E-NLG
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task (Novikova et al., 2017) with 51.4K samples,
and the TV, Laptop, Hotel and Restaurant datasets
from RNN-LG (Wen et al., 2016), with 14.1K,
26.5K, 8.7K and 8.5K samples respectively. We
use BLEU-4 (Papineni et al., 2002) for the auto-
matic metric, computed by the official evaluation
scripts from E2E-NLG and RNN-LG.

4.1 Baselines
The baseline systems include TGen (Dušek and
Jurčı́ček, 2016), SC-LSTM (Wen et al., 2015),
RALSTM (Tran and Nguyen, 2017), Slug (Juraska
et al., 2018), S2S+aug (Nie et al., 2019) and NLG-
LM (Zhu et al., 2019). We also implement adver-
sarial training using reinforcement learning in the
same way as Li et al. (2017), denoted by RL. The
generator in RL is warmed up in the same way as
AdvNLG.

4.2 Training Details
In all experiments, the learning rate is 1e-3, the
batch size is 20 and the beam width in inference
is 10. According to WGAN, the discriminator’s
parameters are clipped at 0.1. We use RMSprop
(Ruder, 2016) as the optimizer. Teacher forcing
is used for training the generator, which means
that the decoder is exposed to the previous ground-
truth token. In warm-up phase, we train the gen-
erator for 2 epochs. In E2E-NLG dataset, the gen-
erator is updated 5 times before the discriminator
is updated once, which is typical in GAN training
(Wu et al., 2017). The hyper-parameters above are
chosen based on performance on the dev set. Other
hyper-parameters like dropout rate, dictionary di-
mension and RNN hidden size are the same with
Table 3 in Zhu et al. (2019).

For baseline models, we implemented NLG-
LM (Zhu et al., 2019) and reproduced its results.
We obtain the prediction results of Slug (Juraska
et al., 2018) from its open-source website.

4.3 Results
As shown in Table 2, our model AdvNLG achieves
new state-of-the-art results on TV, Laptop, Hotel
and Restaurant datasets, improving previous best
results by 0.8%, 3.8%, 0.6% and 3.6%. Statisti-
cal tests show that this advantage is statistically
significant with p-values smaller than 0.05. Our
model also obtains results on par with NLG-LM
on E2ENLG. We show some prediction examples
in Table 4. Generally, with adversarial training,
the generated output can group information from

Model E TV L H R

TGen 0.659 / / / /
Slug 0.662 0.529 0.524 / /
SCLSTM / 0.527 0.512 0.848 0.752
RALSTM / 0.541 0.525 0.898 0.779
S2S+aug 0.665 / / / /
NLG-LM 0.684 0.617 0.586 0.939 0.795

AdvNLG 0.683 0.625∗ 0.624∗ 0.945∗ 0.831∗
RL 0.674 0.605 0.606 0.932 0.796
-Adv. 0.671 0.618 0.564 0.931 0.753
-2 stages 0.662 0.621 0.557 0.932 0.782

Table 2: BLEU scores on E2ENLG (E), TV, Laptop
(L), Hotel (H) and Restaurant (R) testset. *: means
the result is statistically significant with p-value<0.05.
-Adv. means we only train the generator, with cross
entropy loss. -2 stages means that both the generator
and discriminator are trained together from scratch.

the same category together, while placing positive
and negative aspects (e.g. family-friendly and ex-
pensive) in different sentences.

Ablation Study. The bottom section of Table 2
shows that adversarial training can boost perfor-
mance by 0.7% to 7.8%. Our proposed two-stage
training is also very beneficial. If both genera-
tor and discriminator are trained from scratch, the
result drops significantly. RL-based adversarial
training achieves mixed results. On TV dataset,
it even hurts the performance. We attribute this to
the high variance and instability in training.

Model Naturalness Accuracy

Slug 2.51 (0.48) 2.89 (0.36)
NLG-LM 2.52 (0.46) 2.84 (0.41)
AdvNLG 2.84∗ (0.27) 2.97∗ (0.17)
-Adv. 2.45 (0.53) 2.63 (0.58)

Table 3: Average human evaluation ratings (1-3, 3 is
best) for naturalness and accuracy of output generated
by different models. Standard deviation is shown in
parenthesis. ∗: the p-value is smaller than 0.01.

4.4 Human Evaluation

We randomly sample 100 data-text pairs from
the test set of E2ENLG. We then ask 3 labelers
to judge the accuracy and naturalness of the ut-
terances generated by Slug, NLG-LM, AdvNLG
with and without adversarial training. The accu-
racy measures how precise the utterance expresses
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the dialogue act and meaning representation. The
naturalness is measured by how likely the labeller
thinks the utterance is spoken by a real human. In
addition to the model output, each labeler is also
given the meaning representation and the ground
truth. The labelers need to give an integer rating
from 1 to 3 (3 being the best) for each criterion.

Table 3 shows that our AdvNLG model has an
apparent lead in both naturalness and accuracy,
and the paired t-test shows that the result is statis-
tically significant with p-value smaller than 0.01.
And our ablation model -Adv. achieves the lowest
score, proving that adversarial training can boost
both naturalness and accuracy.

5 Conclusion

In this paper, we propose adversarial training us-
ing the Straight-Through Gumbel-Softmax esti-
mator in NLG for task-oriented dialogues. We
also propose a two-stage training scheme to fur-
ther boost the gain in performance. Experimen-
tal results show that our model, AdvNLG, consis-
tently outperforms state-of-the-art models in both
automatic and human evaluations.

In the future, we plan to apply this method to
other conditional generation tasks, e.g. produce
a natural utterance containing a given list of key-
words.

Acknowledgement

We thank the anonymous reviewers for their valu-
able comments. We thank William Hinthorn for
proof-reading the paper.

References
Martin Arjovsky, Soumith Chintala, and Léon Bot-
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MR name[Wildwood], eatType[restaurant], food[Indian], area[riverside], fami-
lyFriendly[no], near[Raja Indian Cuisine]

Ref. Located in the riverside area near the Raja Indian Cuisine, Wildwood offers Indian
food and a restaurant. It is not family friendly.

AdvNLG Wildwood is an Indian restaurant in the riverside area near Raja Indian Cuisine. It is
not family friendly.

-Adv. Wildwood is a restaurant providing Indian food. It is located in the riverside. It is near
Raja Indian Cuisine.

NLG-LM Wildwood is a restaurant providing Indian food. It is located in the riverside. It is near
Raja Indian Cuisine.

Comment Only AdvNLG places the two pieces of location information “riverside” and “near
Raja Indian Cuisine” together, which is aligned with human language patterns.

MR name[The Cricketers], eatType[restaurant], food[English], priceRange[high], cus-
tomer rating[1 out of 5], area[city centre], familyFriendly[yes], near[Café Rouge]

Ref. The Cricketers, an English restaurant located near Café Rouge in the city centre, offers
food at high price range. Although it has a customer rating of 1 out of 5, it also is
children friendly.

AdvNLG The Cricketers is a child friendly English restaurant in the city centre near Café Rouge.
It has a high price range and a customer rating of 1 out of 5.

-Adv. The Cricketers is a restaurant located in the city centre near Café Rouge. It is a high
priced restaurant that serves English food. It is rated 1 out of 5 and is children friendly.

NLG-LM The Cricketers is a high priced English restaurant located in the city centre near Café
Rouge. It has a customer rating of 1 out of 5 and is child friendly.

Comment AdvNLG model naturally put the negative aspects like “high price” and “rating 1 out of
5” together with conjunction “and”, whereas both -Adv. and NLG-LM juxtapose neg-
ative aspect (low customer rating) and positive aspect (kid-friendly) in one sentence,
which appears contradictory.

MR name[The Plough], eatType[restaurant], food[Chinese], priceRange[cheap],
area[riverside], familyFriendly[yes], near[Raja Indian Cuisine]

Ref. The Plough is a cheap Chinese restaurant located riverside by Raja Indian Cuisine. It
is a family friendly establishment.

AdvNLG The Plough is a cheap Chinese restaurant in the riverside area near Raja Indian Cuisine.
It is family friendly.

-Adv. The Plough is a cheap family friendly restaurant that serves Chinese food. It is located
in the riverside area near Raja Indian Cuisine.

NLG-LM The Plough is a restaurant providing Chinese food in the cheap price range. It is
located in the riverside. It is near Raja Indian Cuisine.

Comment AdvNLG places “Chinese” immediately before “restaurant”, and this is in line with
the human reference. And NLG-LM model has two less connected sentences at the
end.

Table 4: Example of predictions on E2E-NLG by reference, NLG-LM model and our model AdvNLG with and
without adversarial training. As E2E-NLG only has inform dialogue act, we show the meaning representation
(MR).


