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Abstract

This paper describes the system we built for SemEval-2020 task 3. That is predicting the scores of
similarity for a pair of words within two different contexts. Our system is based on both BERT
embeddings and WordNet. We simply use cosine similarity to find the closest synset of the target
words. Our results show that using this simple approach greatly improves the system behavior.
Our model is ranked 3rd in subtask-2 for SemEval-2020 task 3.

1 Introduction

A word meaning can be affected by its context. For polysemous words, the change in meaning is usually
clear and evident. But even for words that are not necessarily considered polysemous, there can be subtle
changes in their meaning. In SemEval-2020 Task 3 (Armendariz et al., 2020a), one goal is to predict how
similar two words are in a given context, specifically given two different shared contexts for each pair of
target words.

Identifying the meaning of words in context is known as Word Sense Disambiguation (WSD). It is a
core task of Natural Language Processing (NLP) and has many potential applications. In (Navigli, 2009),
the authors presented the motivations for solving the ambiguity of words.

Example 1
Context 1 Small arms include handguns, rifles, machine guns, etc.
Context 2 He stretched his arms and rifled through the drawer
Example 2
Context 1 He proposed a simple solution to solve the problem.

Context 2
He promised him to solve his school debt if he found
the right ratios of the chemical solution.

Figure 1: Input example: There are two target words (boldfaced). These target words are presented in two
different contexts.

We have participated in Task-3 Subtask-2. In this task, given two target words in a shared context, we
want to score how similar they are. We then put the same two words in a different context and re-score
their similarity. The input to our system is a pair of words within two different contexts. The output would
be the two similarity scores, one for each context.

Figure 1 shows the input examples. We consider the words ‘rifle’ and ‘arm’ as our target words. In the
first context, the words refer to the same meaning, a weapon. In the second context, they refer to different
senses, (‘arm’ as a body part, and ‘rifle’ meaning ‘to search’). Similarly, in the first context, the words
‘solution’ and ‘solve’ have the same sense, solving a problem. In the second context, ‘solution’ means a
chemical mixture and ‘solve’ means to clear a debt.
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In this paper, we tackle the problem of multiple senses for target words. Inspired by (Levine et al.,
2019), we compose multiple embeddings for target words from sets of synonymous words using BERT
(Devlin et al., 2018). To obtain multiple embeddings for the target words, we use WordNet (Fellbaum
and others, 1998) to get the different senses of the target words. We put these different senses into
auxiliary contexts such that we can compute different embedding using BERT again. Given the multiple
word contexts, we find the closest sense of the target word and fuse it with its original contextual BERT
embedding. This fusion results in a new embedding for the target word that is more representative of its
meaning.

By incorporating word senses information into the word embedding, the harmonic mean of Pearson
and Spearman correlations improved from 0.573 when we use the BERT embedding baseline to 0.723
when evaluated on SemEval-2020 Task3 dataset (Armendariz et al., 2020b). Our system was ranked third
among the competing systems.

Figure 2: System Illustration: The process is repeated for each shared context. The shaded part shows the
BERT baseline. Our approach generates K auxiliary contexts for each target word. Then we compute
K different BERT embeddings for each target word given their corresponding auxiliary contexts. We
average the target word embedding with the most similar out of the K auxiliary embeddings. Finally, we
compute the cosine similarity between the target words based on the new embedding.

2 System Overview

Figure 2 illustrates how our system works, and the pipeline is described below:

1. We extract the contextualized embeddings of the target words T1 and T2. This is done by obtaining
the embedding for the whole context through BERT (Devlin et al., 2018). Hence we obtain two
vectors w1 and w2.

2. We use WordNet to get the senses of the target words. WordNet is a lexical database that links words
into semantic relations, such as synonyms and hypernyms. Synonymous words that correspond to
the same sense are grouped into synsets with short definitions and usage examples.

T1.Senses = {WordNet.synsets(T1)}
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3. For each target word, we select the top K synsets. We use the definition included in the synset to
create an auxiliary context for the target word, as shown below.

T1.AuxContext(i) = T1 + ‘is’ + T1.Senses(i).definition() 1 < i < K

Example:
Target word: solution

Definition: the successful action of solving a problem

Auxiliary Context: Solution is the successful action of solving a problem

4. We then run the created auxiliary context through BERT to get an embedding for the target word. For
the selected K senses, we get K embeddings. We select the sense that has minimum cosine distance
with the embedding from the original context.

w1Aux(i) = BERT (T1.AuxContext(i))

T1.Dist(i) = 1− < w1, w1Aux(i) >

max(‖w1‖2 ‖w1Aux(i)‖2,∈)

w∗
1 = w1aux(argmini(T1.Dist))

5. We then adjust the new representation for the target word to the mean of its embedding from the
original context and the auxiliary context.

w1Final = Mean(w1, w
∗
1)

6. Steps 2-5 are repeated for the second target word. Finally, the similarity score between the two target
words is the cosine similarity between their final embedding vectors.

Sim(T1, T2) =
< w1Final, w2Final >

max(‖w1Final‖2 ‖w2Final‖2,∈)

3 Experimental Setup

We use pre-trained BERT base embeddings from PyPI1. To get word senses, we use the WordNet interface
from NLTK2.

As an evaluation metric, we use the harmonic mean of the Pearson and Spearman correlations against
the gold scores by human annotators. We evaluate our technique on SemEval-2020 Task3 evaluation data
and the Stanford Contextual Word Similarity (SCWS) dataset (Huang et al., 2012). We used the (SCWS)
dataset to evaluate our different models since the practice data for the task was very small in size.

We evaluated our method on English data only. SemEval-2020 Task3 evaluation data covers three other
languages; Croatian, Finnish, and Slovenian. Unfortunately, the tool we used to access the wordnets does
not support these languages. We can use other tools to access the wordnets3. It would be interesting to
apply our method to other languages and see the performance.

3.1 Contextual embedding baseline
We compare our technique against a simple baseline that uses BERT. It computes the cosine similarity
between BERT embeddings of the two target words and uses it as the similarity score. The highlighted
part in Figure 2 is a simple illustration of the baseline.

1https://pypi.org/project/bert-embedding/
2https://www.nltk.org/howto/wordnet.html
3http://compling.hss.ntu.edu.sg/omw/
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SCWS SemEval
BERT (Devlin et al., 2018) 0.66 0.573
AuxBERTconcat 0.67 0.695
AuxBERT(official) 0.692 0.719
AuxBERTmean 0.692 0.723

Table 1: Results on the SCWS dataset and SemEval evaluation dataset. Using BERT embeddings of
the original context (BERT). And using BERT embeddings of both the original and auxiliary contexts
(AuxBERT). The scores are the harmonic mean of the Pearson and Spearman correlations.

4 Results

As shown in Table 1, the techniques that used the information about the senses of the target words got
better scores. Also, it shows that averaging the embedding vectors from the original and auxiliary contexts
gives better results than concatenation.

AuxBERT(official) in Table 1 refers to the official submitted result during the evaluation phase. This
result was obtained by selecting the word sense from the top-five senses. Further experiments showed that
having the top-three senses to choose from is a better choice.

Table 2 compares our results on the SCWS dataset and the results reported by (Huang et al., 2012).
Using our technique, the score increased from 65.7 to 68.1.

Spearman Correlation
(Huang et al., 2012) 65.7
AuxBERT 68.1

Table 2: Spearman’s correlation on the SCWS dataset

Figure 3: Harmonic mean of Pearson and Spearman correlations using different number of word senses.
Setting K=3 provides the best score for our approach.

4.1 Post-evaluation

In this section, we discuss the experiments we did in the post-evaluation phase of SemEval-2020. We
discuss how changing the number of word senses affect the results. And we show the results of testing our
technique on subtask-1.
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Selecting the closest word sense from the top-three senses is the best choice. Figure 3 shows that
choosing from a larger or smaller number of senses reduces the score. This could be because the top-three
senses are the most frequently used for most words. Hence, choosing from a group larger than three gives
more chance for error.

Pearson Correlation
BERT (Devlin et al., 2018) 0.713
AuxBERT 0.76

Table 3: Pearson correlation for Subtask-1: Predicting Change of Similarity scores

By subtracting the similarity scores of the two contexts, we get the change in similarity. That is the
objective in subtask-1. Table 3 shows our results against the BERT baseline.

5 Conclusion

We presented a system that requires no training and uses a simple method to generate word embeddings
that represent the word sense. We improved BERT embeddings by using information about the word
senses. We varied the number of word senses from which we choose the closest sense and found the
optimum number that reduces the error. We experimented with different aggregation methods. By using
our technique, the score increased from 0.573 when we use the BERT embedding baseline to 0.723 when
evaluated on SemEval dataset.
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