
Proceedings of the 14th International Workshop on Semantic Evaluation, pages 1221–1226
Barcelona, Spain (Online), December 12, 2020.

1221

BAKSA at SemEval-2020 Task 9: Bolstering CNN with Self-Attention for
Sentiment Analysis of Code Mixed Text

Ayush Kumar∗ Harsh Agarwal∗ Keshav Bansal∗ Ashutosh Modi
Indian Institute of Technology Kanpur (IITK)

{ayushk,harshaga,keshavb}@iitk.ac.in
ashutoshm@cse.iitk.ac.in

Abstract

Sentiment Analysis of code-mixed text has diversified applications in opinion mining ranging
from tagging user reviews to identifying social or political sentiments of a sub-population. In this
paper, we present an ensemble architecture of convolutional neural net (CNN) and self-attention
based LSTM for sentiment analysis of code-mixed tweets. While the CNN component helps in
the classification of positive and negative tweets, the self-attention based LSTM, helps in the
classification of neutral tweets, because of its ability to identify correct sentiment among multiple
sentiment bearing units. We achieved F1 scores of 0.707 (ranked 5th) and 0.725 (ranked 13th) on
Hindi-English (Hinglish) and Spanish-English (Spanglish) datasets, respectively. The submissions
for Hinglish and Spanglish tasks were made under the usernames ayushk and harsh 6 respectively.

1 Introduction

The research problem of Sentiment Analysis of Code-Mixed Social Media Text appeared as part of the
SemEval Shared Challenge 2020 (Patwa et al., 2020). Mixing languages while writing text, also called
code-mixing, is a typical pattern observed in almost all forms of communication, including social media
text. We only focus on two popular bilingual code-mixing styles namely Hinglish and Spanglish.

Sentiment Analysis is a term broadly used to classify states of human affection and emotion. Interpreting
code-mixed languages is difficult not only because the sentences may not fit a particular language model,
but also because mixed text on social-media usually contains tokens such as hashtags, and usernames.

In this paper, we present an ensemble of CNN and self-attention based LSTM, utilizing the XLM-R
embeddings (Conneau et al., 2019). While CNNs have been used for sentiment analysis before (Wang
et al., 2016; Yoon and Kim, 2017), none of the previous works have used a self-attention based LSTM
along with it. We found that while the CNN component worked well for positive and negative tweets,
the self-attention component worked better for neutral tweets, necessitating an ensemble of the two. The
implementation of our system is made available via Github1.

2 Related Work

Performing standard NLP tasks on code-mixed data has presented significant challenges. Vyas et al.
(2014) attempted to find methods for POS tagging of code-mixed social media text.

Another work by Joshi et al. (2016) used CNNs to learn subword level embeddings and then utilized
these embeddings in a BiLSTM network to learn subword level information from social media text.
Subword level representations are particularly important while dealing with noisy texts containing mis-
spellings and punctuations. However, this work doesn’t capture information about word-level semantics.

More recent work by Lal et al. (2019) uses two parallel BiLSTMs, which they call the Collective and
Specific Encoder and an additional feature network. This approach combines recurrent neural networks
utilizing attention mechanisms, which helps in evaluating the overall sentiment using attention weights
when presented with a mixture of local sentiments.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence
details: http://creativecommons.org/licenses/by/4.0/.

∗ Authors equally contributed to this work.
1https://github.com/keshav22bansal/BAKSA_IITK

1222

3 Proposed Approach

3.1 Pre Processing

@harsh watched Parasite. Kaa� achchi movie thi imo! :D #review

@harsh watched Parasite. काफी अच्छी movie थी imo! :D #review

watched Parasite. काफी अच्छी movie थी imo! #review

[<cls>, '_watched', '_Para', 'site', '.', '_काफी', '_अच्छी', '_movie', '_थी', '_', 'imo', '!', ‘_#’, ‘_ review’, <pad>{135}, <eos>]

192509 1720 11090 5 52170 75472 14277 9917 6 2414 380 1 2

{135}

468 132340

Subwords

Back Transliteration

Raw Tweet

Noise Removal

Tokens to Ids

Subword Ids
(150 sized vector)

Figure 1: Preprocessing Pipeline

Sentence Matrix

1@150x1024

Subword
 Ids

Embedding Vectors
(from last hidden state)

(subword embeddings)

 XLM-R
Encoder Classi�er

Figure 2: XLM-R Encoder

The tweets have been originally provided in the Latin script with their corresponding language tags.
Before feeding the tweets to any training stage, they are preprocessed using the following procedure
(Figure 1):

1. Back-Transliteration: All the words with “Hindi” language tags are converted into Devanagari words
using phonetic transliteration. Google’s Transliteration API2 was used for this purpose. The words
with “Spanish” language tags are not transliterated.

2. Noise removal: Usernames (annotated as @username), URLs, and emoticons present in the tweets
are removed altogether, while hashtags (annotated as #hashtag) are left as it is. We also experimented
with replacing emoticons by their corresponding textual meaning, but removing them led to better
performance.

3. Tokenization: Tweets after noise removal are tokenized into subwords using the XLM-R (Conneau
et al., 2019) vocabulary and later converted into their corresponding IDs.

3.2 Embedding layer

Since our data comprised of code-mixed tweets, it was essential to use a multilingual model. For our
proposed architecture, we used the XLM-R embeddings. XLM-R is a transformer-based masked language
model trained on one hundred languages, using more than two terabytes of filtered CommonCrawl data
(Conneau et al., 2019).

The subword IDs from the pre-processing stage are fed to the XLM-R encoder. The final hidden state
corresponding to each token is used for the classification task as inputs to the proceeding components
(See figure 2). The XLM-R encoder is fine-tuned during training to generate better encodings for the
code-mixed text.

We also experimented with the Multilingual BERT (henceforth, M-BERT), released by Devlin et al.
(2018). We found that XLM-R performed much better than M-BERT for our dataset.

2https://www.google.com/inputtools/services/features/transliteration.html

1223

3.3 Architecture

We propose an ensemble model comprising of two main components.

1@150x1024

Sentence Matrix

2@2x1024

2@3x1024

2@4x1024

Convolution

2@149x1

2@148x1

 Max
Pooling

2@1x1

Concat

FC Layer Softmax

 Prediction
Probabilities

 Latent
Repesentation

2@1x1

2@1x1

1@6x1
1@3x1 1@3x1

2@147x1

Figure 3: CNN Classifier

BiLSTM LayerSubword Embeddings
 (1024 sized vector)

 Attention
 Weights
(Normalized)

Softmax

 Hidden States
(256 sized vectors)

FC layer

 Latent
 Representation
(256 sized vector)

 Prediction
Probabilities

Figure 4: Self-Attention Classifier

3.3.1 CNN Classifier
The first component is a convolutional neural network (Lecun, 1989) (henceforth, CNN). CNNs, to some
extent, take into account the ordering of the words and the context in which each word appears.

We generate the required embedding by passing the subword embeddings of a sentence individually
into 1-D CNN. We perform a convolution with 3 different filter sizes (2, 3 and 4), before adding a bias
and applying a non-linear RELU activation.

The idea behind using several filter sizes was to capture contexts of varying lengths. The convolution
layer is used to extract local features around each word window, while the max-pooling layer is used to
extract the essential features in the feature map. XLM-R embeddings are passed through this component
and, ultimately, through a softmax function to obtain the predictions of the first component. We call these
predictions pCNN .

3.3.2 Self-Attention Classifier
The second component is a self-attention based classifier (See figure 4). It helps in choosing the overall
sentiment when presented with a mixture of sentiments. We use soft-attention (Xu et al., 2015), a
deterministic, differentiable attention mechanism, where a softmax gives the weights for each subword,
and the output of the attention module is a weighted sum of hidden representations at each location.

The self-attention component comprises a BiLSTM (Hochreiter and Schmidhuber, 1997) layer, which
takes as input the output of the XLM-R encoder. The hidden state obtained from the BiLSTM layer for
each subword is used to calculate the attention scores.

Suppose a sequence is given by the subwords (w1, w2, ..., wn). Let the ith forward hidden state in
the BiLSTM be represented by

−→
hi and ith backward hidden state by

←−
hi . The combined annotation ki is

obtained by concatenating
−→
hi and

←−
hi . We first concatenate the forward and backward hidden states to

obtain a combined annotation (k1, k2, ..., kn).

ki = [
−→
hi ;
←−
hi] (1)

The attention mechanism gives a score ei to each subword i in the sentence S, as given by (2).

ei = ki
Tkn (2)

Then the attention weight ai of each ki is computed by normalizing the attention score ei

ai =
exp(ei)∑n
j=1 exp(ej)

(3)

1224

We then calculate the sentence latent representation vector h using equation (4)

h =
n∑

i=1

ai × ki (4)

The representation is thus a weighted combination of all the hidden states. The representation vector h
is then passed through a fully connected layer followed by a softmax to obtain predictions patt.

The predictions from the first and second components are aggregated (See figure 5) using element wise
product (denoted by ◦) to obtain the final predictions (pfinal = pCNN ◦ patt). We experimented with
other aggregating techniques like linearly weighted average, but element-wise product worked out better.

Self-Attention Classi�er

CNN Classi�er

1@13x1024

Sentence Matrix

Aggregator
 Function

Output
 Logits

Figure 5: Ensemble Classifier

Dataset Positive Neutral Negative
Train Hinglish 5264 4634 4102

Spanglish 6005 3974 2023
Validation Hinglish 982 1128 890

Spanglish 1498 994 506
Test Hinglish 1000 1100 900

Table 1: Statistics of training and development data

4 Data Description

We used the dataset provided by the organizers of Task-9 of SemEval 2020 (Patwa et al., 2020) for training
both Hinglish and Spanglish models. The data has been annotated semi-automatically. The statistics of
the dataset are shown in Table 1. The dataset for Hinglish is balanced while that of Spanglish is highly
unbalanced. For hyperparameter tuning, we used the validation set provided by the organizers.

5 Experiments and Results

We first trained a vanilla CNN model on the provided dataset using the XLM-R embeddings. The CNN
model seemed to be confused on neutral data points but worked well on positive and negative tweets.

Figure 6: Confusion matrix for Ensemble on
Hinglish test data

Figure 7: Confusion matrix for Ensemble on
Spanglish validation data 3

The self-attention model outperforms the previous model on neutral data points though it performs
worse on the positive and negative samples. The good performance on neutrals can be attributed to the fact
that neutral tweets may contain multiple sentiment bearing units which the model is capable of handling.

Combining the results of CNN with those of the Self-Attention model was the primary motivation for
using an ensemble of the two. The ensemble outperforms all our previous models, achieving a recall
of 0.705 with an F1-score of 0.707 on the Hinglish test dataset and a recall of 0.696 with an F1-score
of 0.725 on the Spanglish test dataset (See table 2). The confusion matrices for the ensemble on both
datasets are shown in figure 6 and 7 (o : neutral, + : positive, - : negative). Our team was ranked 5th

among 62 teams in Hinglish and 13th among 29 teams in Spanglish.
3Validation data was used for constructing the confusion matrix for spanglish as true labels for test data were not available

1225

F1 Macro Macro

o + - Macro Precision Recall
Hinglish 0.640 0.762 0.729 0.707 0.712 0.705

Spanglish 0.135 0.825 0.375 0.725 0.763 0.696

Table 2: Performance of Ensemble system on Hinglish and Spanglish test datasets

6 Analysis

6.1 Visualization of the individual components
To visualize the sentence embeddings learned by the model for the Hinglish test dataset, we projected the
sentence vectors obtained before the final fully connected layer onto a lower-dimensional subspace using
the t-SNE algorithm (van der Maaten and Hinton, 2008) for the two components (See figure 8).

For CNN, the positive and negative tweets seem to form two distinct clusters, while the neutral tweets
are scattered among them. In contrast, for the self-attention component, neutrals seem to form a distinct
cluster, while the positive and negative classes are partially dispersed in a wide region. Thus, the two
components, in a way, complement each other for better predictions over all the three classes.

Figure 8: Visualisation of CNN and Self-Attention Sentence Vectors

6.2 Error Analysis
Most of the misclassifications were made by our model on the following three types of tweets -

1. Neutral - Despite the improvement due to the self-attention classifier, the performance on neutral
tweets still lags much behind positive and negative tweets.

2. Sarcastic - Sarcasm is the use of irony to mock or convey contempt. Tweets such as Best wishes
to pseudo atheist In new country in advance. Bon voyage are challenging to classify due to their
hidden context and are falsely predicted as positive by our model.

3. Mildly negative - Due to exorbitant amount of abusive tweets in the data, some mildly negative ones
like South africa team bekar h jab tak ushme ABD villers na ho are falsely predicted as neutral.

7 Conclusion

For our system, we use an ensemble of CNN and Self Attention architectures with XLM-R multilingual
embeddings. We analyze which models work better for different classes of tweets. Our self-attention
system helps in better classification of neutral tweets, which are difficult to classify due to multiple
sentiment bearing units. Creating an ensemble with CNN helps in better classification of all the three
classes. We also visualize how our model performs on different classes of tweets using the t-SNE
algorithm. Our results show an improvement over some of the previous works in this field.

1226

References
Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán,

Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Unsupervised cross-lingual repre-
sentation learning at scale.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: pre-training of deep bidirec-
tional transformers for language understanding. CoRR, abs/1810.04805.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation, 9:1735–80, 12.

Aditya Joshi, Ameya Prabhu, Manish Shrivastava, and Vasudeva Varma. 2016. Towards sub-word level compo-
sitions for sentiment analysis of Hindi-English code mixed text. In Proceedings of COLING 2016, the 26th
International Conference on Computational Linguistics: Technical Papers, pages 2482–2491, Osaka, Japan,
December. The COLING 2016 Organizing Committee.

Yash Kumar Lal, Vaibhav Kumar, Mrinal Dhar, Manish Shrivastava, and Philipp Koehn. 2019. De-mixing senti-
ment from code-mixed text. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics: Student Research Workshop, pages 371–377, Florence, Italy, July. Association for Computational
Linguistics.

Yann Lecun, 1989. Generalization and network design strategies. Elsevier.

Parth Patwa, Gustavo Aguilar, Sudipta Kar, Suraj Pandey, Srinivas PYKL, Björn Gambäck, Tanmoy Chakraborty,
Thamar Solorio, and Amitava Das. 2020. Semeval-2020 task 9: Overview of sentiment analysis of code-mixed
tweets. In Proceedings of the 14th International Workshop on Semantic Evaluation (SemEval-2020), Barcelona,
Spain, December. Association for Computational Linguistics.

Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE. Journal of Machine Learning
Research, 9:2579–2605.

Yogarshi Vyas, Spandana Gella, Jatin Sharma, Kalika Bali, and Monojit Choudhury. 2014. POS tagging of
English-Hindi code-mixed social media content. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 974–979, Doha, Qatar, October. Association for Computa-
tional Linguistics.

Jin Wang, Liang-Chih Yu, K. Robert Lai, and Xuejie Zhang. 2016. Dimensional sentiment analysis using a
regional CNN-LSTM model. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 225–230, Berlin, Germany, August. Association for Computational
Linguistics.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C. Courville, Ruslan Salakhutdinov, Richard S. Zemel,
and Yoshua Bengio. 2015. Show, attend and tell: Neural image caption generation with visual attention. CoRR,
abs/1502.03044.

Joosung Yoon and Hyeoncheol Kim. 2017. Multi-channel lexicon integrated CNN-BiLSTM models for sentiment
analysis. In Proceedings of the 29th Conference on Computational Linguistics and Speech Processing (RO-
CLING 2017), pages 244–253, Taipei, Taiwan, November. The Association for Computational Linguistics and
Chinese Language Processing (ACLCLP).

