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Abstract

In this paper, we conduct a magnetoen-
cephalography (MEG) lexical decision exper-
iment and computationally model morpho-
logical processing in the human brain, espe-
cially the Visual Word Form Area (VWFA)
in the visual ventral stream. Five neuro-
computational models of morphological pro-
cessing are constructed and evaluated against
human neural activities: Character Markov
Model and Syllable Markov Model as “amor-
phous” models without morpheme units, and
Morpheme Markov Model, Hidden Markov
Model (HMM), and Probabilistic Context-
Free Grammar (PCFG) as “morphous” models
with morpheme units structured linearly or hi-
erarchically. Our MEG experiment and com-
putational modeling demonstrate that “mor-
phous” models outperformed “amorphous”
models, PCFG was most neurologically accu-
rate among “morphous” models, and PCFG
better explained nested words with non-local
dependencies between prefixes and suffixes.
These results strongly suggest that morphemes
are represented in the human brain and parsed
into hierarchical morphological structures.

1 Introduction

Under the single-route decomposition model of
morphologically complex visual word recognition
(Taft, 1979, 2004; Taft and Forster, 1975), there
are three functionally different stages of morpho-
logical processing: morphological decomposition,
lexical access, and morphological recombination.
In the first stage of morphological decomposition,
morphologically complex words are visually de-
composed into component morphemes. In the sec-
ond stage of lexical access, meanings of decom-
posed morphemes are lexically retrieved from the
mental lexicon. In the last stage of morphological
recombination, retrieved meanings of decomposed
morphemes are semantically composed.

In the cognitive neuroscience literature,
Fruchter and Marantz (2015) employed magne-
toencephalography (MEG) to spatiotemporally
dissociate those stages of morphological process-
ing. Specifically, the first stage of morphological
decomposition has been indexed by evoked
response components such as M170 (Zweig
and Pylkkänen, 2009; Solomyak and Marantz,
2010; Lewis et al., 2011; Fruchter et al., 2013;
Gwilliams et al., 2016) or Type II (Tarkiainen
et al., 1999; Helenius et al., 1999) in the visual
ventral stream of the human brain (Pylkkänen
and Marantz, 2003; Hickok and Poeppel, 2007).
Moreover, Dehaene et al. (2005) proposed local
combination detectors (LCDs) where linguistic
units such as characters, syllables, and morphemes
are convolutionally represented and processed in
the visual ventral stream from posterior occipital
to anterior temporal cortices and, importantly,
morphemes have been localized to the left
fusiform gyrus known as the Visual Word Form
Area (VWFA; Cohen et al., 2000, 2002; Dehaene
et al., 2001, 2002). For example, Solomyak and
Marantz (2010) and Lewis et al. (2011) computed
transition probabilities from stems to suffixes (e.g.
P (Suffix|Stem)) to successfully predict neural
responses to real (e.g. teach-er) and pseudo (e.g.
corn-er) bimorphemic words, respectively. These
results have suggested that morphemes may be
neurologically real in the human brain.

However, “amorphous” models without mor-
pheme units have recently been proposed in the
morphological processing literature (Baayen et al.,
2011; Virpioja et al., 2017). For instance, Baayen
et al. (2011) and Milin et al. (2017) proposed
Naive Discriminative Learning (NDL), a connec-
tionist model with direct mappings from forms
to meanings, to explain morphological process-
ing without morpheme units. In addition, Virpioja
et al. (2017) and Hakala et al. (2018) employed



Morfessor, an unsupervised finite-state model with
statistically induced “morphs” (Creutz and Lagus,
2007), to predict human reaction times and neu-
ral responses without linguistically defined mor-
phemes. Furthermore, as correctly pointed out by
Libben (2003, 2006), bimorphemic words exclu-
sively tested in the previous literature (Zweig and
Pylkkänen, 2009; Solomyak and Marantz, 2010;
Lewis et al., 2011) cannot distinguish linear mor-
phological decomposition from hierarchical mor-
phological parsing (cf. Song et al., 2019; Oseki
et al., 2019). Therefore, whether morphemes are
represented in the human brain and, if so, pro-
cessed linearly or hierarchically remains to be em-
pirically investigated.

In this paper, we conduct an magnetoen-
cephalography (MEG) experiment where partic-
ipants perform visual lexical decision on mor-
phologically complex words and, generalizing the
computational modeling technique developed in
the sentence processing literature (Frank et al.,
2015; Brennan et al., 2016), computationally
model morphological processing in the human
brain, with special focus on the VWFA in the
visual ventral stream. Specifically, five neuro-
computational models of morphological process-
ing are constructed and evaluated against human
neural activities: Character Markov Model and
Syllable Markov Model as “amorphous” models
without morpheme units, and Morpheme Markov
Model, Hidden Markov Model (HMM), and Prob-
abilistic Context-Free Grammar (PCFG) as “mor-
phous” models with morpheme units structured
linearly or hierarchically.

2 Methods

2.1 Participants
The participants were 26 native English speak-
ers recruited at New York University. All partic-
ipants were right-handed according to the Edin-
burgh Handedness Inventory (Oldfield, 1971) and
with normal or corrected-to-normal vision. They
provided written informed consent and were paid
$15/hour for their participation. We excluded
6 participants based on their behavioral perfor-
mance: 3 participants excluded due to low accu-
racy (< 75%) and 3 participants excluded due to
slow (> 2000 ms) or fast mean reaction times (<
500 ms). Thus, 20 participants were included in
the statistical analyses (10 males and 10 females,
M = 28.4, SD = 9.27).

2.2 Stimuli
The stimuli were 800 morphologically complex
trimorphemic words and nonwords. The stim-
uli creation procedure consisted of several steps.
First, 600 trimorphemic words were created based
on the CELEX database (Baayen et al., 1995) in
accordance with syntactic (syntactic categories),
morphological (affix combinations), and phono-
logical (orthographic adjustments) selectional re-
strictions of derivational affixes, but without se-
mantic selectional restrictions explicitly taken into
consideration. In this sense, these trimorphemic
words are grammatical (“possible”) but not nec-
essarily acceptable (“actual”) words (cf. Halle,
1973; Bauer, 2014). These 600 trimorphemic
words were subcategorized into 300 linear words
[X [Y [Z

p
Root] Suffix] Suffix] with productive

derivational suffixes (Plag and Baayen, 2009) and
300 nested words [X Prefix [Y [Z

p
Root] Suf-

fix]] with productive derivational prefixes (Zirkel,
2010). Furthermore, these trimorphemic words
have zero surface frequencies in the CELEX
database, thereby enhancing the possibility that
those words have never been encountered by par-
ticipants and stored in the mental lexicon (Hay,
2003). Second, in order to weed out semantically
implausible words, 600 trimorphemic words were
normed with crowdsourced acceptability judg-
ment experiments, where participants judged them
on 1⇠7 Likert scale. Third, 500 trimorphemic
words (250 linear and 250 nested) with higher
acceptability judgments (> 3.5) and lower stan-
dard deviations (< 2.5) were selected and, cor-
respondingly, 500 trimorphemic nonwords (250
linear and 250 nested) were also created based
on the CELEX database in violation of syntactic
selectional restrictions of inner derivational suf-
fixes, resulting in 1000 trimorphemic words and
nonwords. Fourth, in order to ensure that words
and nonwords are correctly judged as such, 1000
trimorphemic stimuli were further normed with
crowdsourced lexical decision experiments, where
participants decided whether presented stimuli
were possible English words or not as quickly and
accurately as possible. Finally, 400 trimorphemic
words (200 linear and 200 nested) and 400 trimor-
phemic nonwords (200 linear and 200 nested) with
higher accuracies (> 75%) were selected, result-
ing in the balanced and extensively normed set of
800 trimorphemic stimuli to be tested in this ex-
periment. The stimuli are summarized in Table 1:
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Word
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p
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n = 200

Table 1: Summary of stimuli. The horizontal dimension is morphological structure: linear vs. nested. The vertical
dimension is lexicality status: word vs. nonword. The asterisk (*) on subtrees (Y) of nonwords indicates that inner
derivational suffixes violate syntactic selectional restrictions on syntactic categories of roots.

2.3 Procedure
The experiment was conducted in the Neuro-
science of Language Lab at New York Univer-
sity, New York. Before MEG recording, each
participant’s head shape was digitized with a Pol-
hemus FastSCAN laser scanner (Polhemus, Ver-
mont, USA) and five fiducial points were marked
on his/her forehead, onto which marker coils were
attached during the recording. In order to famil-
iarize the participants with visual lexical decision,
the participants completed one practice block with
16 practice stimuli, 4 stimuli per each stimulus
type, that do not overlap with the target stimuli.
The task instructions were exactly the same as
the main experiment, but the participants received
feedback after each trial (“CORRECT” or “IN-
CORRECT”) during the practice block.

A 157-channel axial gradiometer whole-head
MEG system (Kanazawa Institute of Technology,
Kanazawa, Japan) recorded the MEG data contin-
uously at a sampling rate of 1000 Hz (1 datapoint
per each millisecond), while the participants lay in
a dimly lit magnetically shielded room (MSR) and
performed visual lexical decision. The MEG data
were filtered online between DC and 200 Hz with
a notch filter at 60 Hz. Five marker coils were at-
tached to the corresponding fiducial points marked
on the forehead and their positions were measured
before and after the main experiment, in order to
align the MEG data and head shapes and estimate

how much the participants moved during the MEG
recording. The main experiment itself lasted for
about 35 minutes.

The stimuli were presented with PsychoPy
package (Peirce, 2007, 2009) in Python. They
were projected on the screen approximately 50
cm away from the participants and presented in
white 30 lowercase Courier New font on a grey
background. The 800 stimuli were randomly dis-
tributed into 8 blocks of 100 stimuli with 25 stim-
uli from each stimulus type. First, the explanation
appeared on the screen: “In this experiment, you
will read English words and determine whether
you think they are possible English words. We are
not concerned with whether or not these words are
actual English words already listed in a dictionary.
Instead, we are interested in whether or not these
words could be used by a native speaker of En-
glish”. Then, the task instruction appeared on the
screen: “The experiment is about to begin. Please
fixate on the cross in the center of the screen. Re-
spond with your index finger if the string is word.
Respond with your middle finger if it is not a
word”. Each trial consisted of the fixation cross
(+) for 500 ms, the blank for 300 ms, and the stim-
ulus until the participants respond with their index
finger (YES) or middle finger (NO) of their left
hand. The inter-stimulus interval (ISI) followed
the standard normal distribution with the mean of
400 ms and the standard deviation of 100 ms.



2.4 Computational models
Five computational models were implemented
with Natural Language Tool Kit package (Bird
et al., 2009) in Python: Character Markov Mod-
els (Character), Syllable Markov Models (Syl-
lables), Morpheme Markov Models (Markov),
Hidden Markov Model (HMM), and Probabilis-
tic Context-Free Grammar (PCFG). Those mod-
els were trained on the entire CELEX database
via Maximum Likelihood Estimation with token
weighting and Lidstone smoothing at ↵ = 0.1. The
architectures of Markov Model, HMM, and PCFG
are summarized below.

2.4.1 Markov Model
Markov Models (also called n-gram models) are
defined by n-order Markov processes that com-
pute transition probabilities of linguistic units
(e.g. characters, syllables, morphemes) at posi-
tion i given i–n context (e.g. P (xi|xi�n, xi�1)).
Since the length of morphologically complex
words is inherently limited relative to syntacti-
cally complex sentences, Markov Models were
defined with n = 1 (i.e. bigram models),
which compute transition probabilities of lin-
guistic units at position i given the immediately
preceding unit (e.g. P (xi|xi�1)). For train-
ing, Markov Models were trained on character
strings (Character Markov Model), syllable strings
(Syllable Markov Model), and morpheme strings
(Morpheme Markov Model), respectively, where
character and morpheme strings were available
from the CELEX database, while syllable strings
were generated with syllabify module im-
plemented in Python by Kyle Gorman through
ARPABET transcriptions assigned by LOGIOS
Lexicon Tool in the Carnegie Mellon University
Pronouncing Dictionary. For testing, those trained
Markov Models then computed morpheme proba-
bilities of morphologically complex words equiv-
alent to their transition probabilities given the
Markov assumption. Markov Models are linear
models, which should accurately predict local de-
pendencies of linear words (e.g. digitally), but not
non-local dependencies of nested words (e.g. un-
predictable) because local dependencies (e.g. *un-
predict) are unattested in the training data.

2.4.2 Hidden Markov Model
HMMs generalize Markov Models with n-order
Markov processes defined over “hidden” linear
strings. HMMs compute transition probabilities of

part-of-speech (POS) tags at position i given i–n
context (e.g. P (ti|ti�n, ti�1)), and emission prob-
abilities of morphemes at position i given POS
tags at the same position i (e.g. P (mi|ti)). Like
Markov Models, HMMs were also defined with n
= 1, which compute transition probabilities of POS
tags at position i given the immediately preceding
POS tag (e.g. P (ti|ti�1)). For training, HMMs
were supervisedly trained on tagged morpheme
strings generated from morphological structures
available from the CELEX database (e.g. [(digit,
N), (al, A), (ly, B)]). For testing, those trained
HMMs then computed morpheme probabilities of
morphologically complex words as the ratio of
prefix probabilities at position k to position k–
1, where prefix probabilities are the sum of path
probabilities compatible with morphemes until po-
sition k (Rabinar, 1989). HMMs are linear mod-
els, which should accurately predict local depen-
dencies of linear words (e.g. N-A-B for digitally),
but also non-local dependencies of nested words
(e.g. unpredictable) if component local dependen-
cies (e.g. A-V for *unpredict) are attested in the
training data.

2.4.3 Probabilistic Context-Free Grammar
PCFGs generalize Context-Free Grammars
(CFGs) with probability distributions defined
over hierarchical structures. PCFGs compute
nonterminal probabilities of right-hand sides
given left-hand sides of nonterminal production
rules (e.g. P (rhs|lhs)), and terminal probabilities
of right-hand side terminals given left-hand
side nonterminals of terminal production rules
(e.g. P (mi|ti)), equivalent to HMM emission
probabilities. Nonterminal production rules are
head-lexicalized, which model syntactic selec-
tional restrictions of derivational affixes (e.g. N !
A ness). For training, PCFGs were supervisedly
trained on morphological structures available
from the CELEX database (e.g. [B [A [N digit] al]
ly]). For testing, those trained PCFGs then com-
puted morpheme probabilities of morphologically
complex words as the ratio of prefix probabili-
ties at position k to position k–1, where prefix
probabilities are the sum of tree probabilities
compatible with morphemes until position k (Ear-
ley, 1970; Stolcke, 1995). PCFGs are hierarchical
models, which should accurately predict not only
local dependencies of linear words (e.g. digitally),
but also non-local dependencies of nested words
(e.g. unpredictable).



2.5 Evaluation metrics
The information-theoretic complexity metric, sur-
prisal, was employed as linking hypothesis that
bridges the gap between representation and pro-
cessing (Hale, 2001; Levy, 2008). Surprisal of
morpheme m, I(m), is defined as Equation (1):

I(m) = log2
1

P (m)
= � log2 P (m) (1)

where P (m) is the probability of morpheme m
computed by computational models via respective
incremental algorithms. Surprisal was originally
proposed to explain behavioral measures such as
reading times in self-paced reading experiments
and fixation durations in eye-tracking experiments
(Boston et al., 2008; Demberg and Keller, 2008;
Roark et al., 2009; Frank and Bod, 2011; Fos-
sum and Levy, 2012). Recently, surprisal has also
been extended to neural measures like N400 com-
ponents in EEG experiments and BOLD signals
in fMRI experiments (Frank et al., 2015; Brennan
et al., 2016; Willems et al., 2016; Henderson et al.,
2016; Nelson et al., 2017; Lopopolo et al., 2017).

Assuming further that morphological process-
ing is incremental (cf. prefix stripping; Taft and
Forster, 1975; Stockall et al., 2019), we compute
surprisal of morphologically complex words as
cumulative surprisal, the cumulative sum of sur-
prisal of component morphemes. Cumulative sur-
prisal of word w, I(w), is defined as Equation (2):

I(w) = I(m1, ...,mn) =
nX

i=1

I(mi) (2)

where I(m) is the surprisal of morpheme m com-
puted by computational models.

Two evaluation metrics are then derived from
cumulative surprisal: neurological and error accu-
racies (cf. Frank et al., 2015; Sprouse et al., 2018).
The neurological accuracy of model M, NA(M),
is defined as Equation (3):

NA(M) = DB �DM (3)

where DB and DM are deviance defined as –2
times log-likelihoods of baseline and target mod-
els, respectively. Neurological accuracy quantifies
decreases in deviance (��D) and evaluates how
well computational models explain human neural
activities beyond control predictors included in the
baseline model (cf. Frank et al., 2015).

The error accuracy of model M, EA(M), is de-
fined as Equation (4):

EA(M) =
nX

i=1

|✏B(wi)|� |✏M (wi)| (4)

where ✏B(w) and ✏M (w) are residual errors of
baseline and target models for word w, respec-
tively. Error accuracy quantifies decreases in ab-
solute residual errors (��|✏|) and evaluates cost-
benefit tradeoffs of computational models (cf.
Sprouse et al., 2018). We compute error accura-
cies of computational models with respect to linear
and nested morphological structures to address the
question whether hierarchical models make better
predictions for nested words than linear models.

2.6 Statistical analyses
We performed linear mixed-effects regression
(Baayen et al., 2008) by averaging neural activi-
ties within the functionally defined region of inter-
est (fROI) based on spatiotemporal cluster permu-
tation regression (Maris and Oostenveld, 2007). In
the previous literature (cf. Gwilliams et al., 2016),
lemma frequency has been proposed as a signif-
icant predictor of the M170 and, thus, employed
as the predictor of interest for spatiotemporal re-
gression. Lemma frequency (cf. del Prado Martin
et al., 2004) is defined as the sum of frequencies
of words that share the same lemma. For example,
the lemma frequency of globalization is the sum of
frequencies of globe, global, globalize, and so on.
Spatiotemporal regression in the left inferior tem-
poral lobe and the 150-200 time window with log-
transformed lemma frequency as target predictor
and squared length as control predictor identified
the significant cluster where the clear M170 peak
can be observed, as shown in Figure 1. Finally,
the neural activities were averaged over space and
time within the fROI to compute by-trial dSPMs
(Dale et al., 2000), which were then exported to R
for mixed-effects regression.

Linear mixed-effects regression was imple-
mented with lme4 package (Bates et al., 2015)
in R. The baseline regression model was first fit-
ted with by-trial dSPMs as the dependent variable,
control predictors as fixed effects, and by-subject
and by-word random intercepts as random effects.
For each computational model, the target regres-
sion model was then fitted with cumulative sur-
prisal included as an additional fixed effect on top



Figure 1: fROI for linear mixed-effects regression. Left: spatial extent defined as the significant cluster identified
via spatiotemporal regression in the left inferior temporal lobe and the 150-200 time window with log-transformed
lemma frequency as target predictor and squared length as control predictor; Right: temporal extent averaged
over the significant cluster and categorized by linear and nested morphological structures. The x-axis is time in
milliseconds, while the y-axis is neural activities in dSPM (Dale et al., 2000). Color indicates two morphological
structures: yellow = linear, blue = nested. Pink vertical span marks the 150-200 ms time window.

of control predictors and random effects held con-
stant. The control predictor was squared length
(New et al., 2006) also included to functionally de-
fine the ROI. Mixed-effects models were fitted via
Maximum Likelihood Estimation with nlminb
optimizer in optimx package and the maximum
number of iterations R permits. Given that the
baseline and target models are minimally different
only in cumulative surprisal, computational mod-
els can be evaluated with nested model compar-
isons via log-likelihood ratio tests based on �2-
distribution with df = 1, where df is the difference
in number of parameters between nested models.

3 Results

3.1 Neurological accuracy
Neurological accuracies of computational models
are summarized in Figure 2, where the x-axis is
computational models and the y-axis is neurolog-
ical accuracies (i.e. decreases in deviance). The
horizontal dashed line is �2 = 3.84, the critical �2-
statistic at p = 0.05 with df = 1.

Nested model comparisons via log-likelihood
ratio tests revealed that while no “amorphous”
models were statistically significant, all “mor-
phous” models were statistically significant (p <
0.01). Among those “morphous” models, PCFG
was most neurologically accurate: PCFG (�2 =
8.48, p < 0.01) > Markov Model (�2 = 8.15, p
< 0.01) > HMM (�2 = 6.92, p < 0.01) > Charac-
ter (�2 = 0.19, ns) > Syllable (�2 = 0.02, ns).

3.2 Error accuracy
Error accuracies of computational models are
summarized in Figure 3, where the x-axis is com-
putational models and the y-axis is error accura-
cies (i.e. decreases in absolute residual errors),
categorized into linear and nested morphological
structures and averaged across individual deriva-
tional affixes. The horizontal dashed line indicates
a “tie” borderline where computational models do
not diverge from the baseline model. More posi-
tive and negative error accuracies mean better and
worse predictions relative to the baseline model.

For linear words, all neurologically accurate
“morphous” models made significant contribu-
tions, among which Markov Model made best pre-
dictions relative to the baseline model. For nested
words, interestingly, PCFG was the only computa-
tional model which reduced residual errors, while
linear models such as HMM and Markov Model
made only slight or even worse predictions rela-
tive to the baseline model, respectively.

4 Discussion

In summary, our MEG experiment and com-
putational modeling demonstrated that “mor-
phous” models of morphological processing out-
performed “amorphous” models and, importantly,
PCFG was most neurologically accurate among
those “morphous” models. We can conclude
from these results that morphemes are neurologi-
cally represented in the human brain (pace Baayen



Figure 2: Neurological accuracies of computational models. The x-axis is computational models, while the y-axis
is neurological accuracies (i.e. decreases in deviance). Points represent computational models: blue = Character
Markov Model, orange = Syllable Markov Model, yellow = Morpheme Markov Model, green = Hidden Markov
Model, purple = Probabilistic Context-Free Grammar. The horizontal dashed line is �2 = 3.84, the critical �2-
statistic at p = 0.05 with df = 1. All “morphous” models were statistically significant (p < 0.01).

et al., 2011; Milin et al., 2017) and parsed into
hierarchical morphological structures (pace Virpi-
oja et al., 2017; Hakala et al., 2018). In addi-
tion, this paper successfully generalized the com-
putational modeling technique developed in the
sentence processing literature (Frank et al., 2015;
Brennan et al., 2016) to morphological processing.

Moreover, error accuracies of computational
models indicated that PCFG better explained
nested words with non-local dependencies be-
tween prefixes and suffixes than linear models
such as Markov Model and HMM. This result fol-
lows straightforwardly from formal language the-
ory, where linear and nested words are finite-state
and context-free languages in the Chomsky hier-
archy (Hopcroft and Ullman, 1979; Partee et al.,
1990; Sipser, 1997), the former of which can be
modeled by both linear and hierarchical models,
but the latter of which can only be parsed by hi-
erarchical models like PCFG. Furthermore, from
the probabilistic perspective, linear models have
trouble with transition probabilities from prefixes
to roots in nested words (e.g. unpredictable) be-
cause prefixes (e.g. un-) and roots (e.g. predict)

form no morphological constitutes (e.g. *unpre-
dict) and thus never appear in the training data.

Now the theoretical question arises why low-
level visual evoked response components like
M170 in the visual ventral stream “know” high-
level linguistic representations like abstract hierar-
chical structures. One possibility is that, given the
functional connectivity between the left fusiform
gyrus and the left inferior frontal gyrus in visual
word recognition (Pammer et al., 2004), M170
can be modulated in a top-down feedback manner
by “Broca’s area”, the traditional “language” area
proposed to process abstract hierarchical struc-
tures (Friederici, 2002, 2012). This possibility be-
comes even less surprising if visual cortex can be
sensitive to abstract hierarchical structures (Dikker
et al., 2009). Therefore, the functional connectiv-
ity between the left fusiform and inferior frontal
gyri remains to be empirically investigated in the
future research (Carreiras et al., 2014; Woodhead
et al., 2014).

Nevertheless, there are several limitations with
our computational modeling. One of the several
important issues is that “amorphous” models in-



Figure 3: Error accuracies of computational models. The x-axis is computational models, while the y-axis is error
accuracies (i.e. decreases in absolute residual errors), categorized into linear (Left) and nested (Right) morpho-
logical structures and averaged across individual derivational affixes. The horizontal dashed line indicates a “tie”
borderline where computational models do not diverge from the baseline model, and more positive and negative
error accuracies mean better and worse predictions relative to the baseline model.

vestigated in this paper are too simplistic as com-
pared to computational models recently proposed
in the morphological processing literature such
as Naive Discriminative Learning (Baayen et al.,
2011; Milin et al., 2017) or Linear Discriminative
Learning (Baayen et al., 2018, 2019). Those state-
of-the-art computational models of morphological
processing remain to be constructed and evaluated
against human neural activities and computational
models investigated in this paper.

5 Conclusion

In this paper, we conducted a magnetoencephalog-
raphy (MEG) experiment where participants per-
formed visual lexical decision on morphologically
complex words and, generalizing the computa-
tional modeling technique developed in the sen-
tence processing literature (Frank et al., 2015;
Brennan et al., 2016), computationally modeled
morphological processing in the human brain,
with special focus on the VWFA in the visual
ventral stream. Five neuro-computational models
of morphological processing were constructed and
evaluated against human neural activities in order

to investigate whether morphemes are neurologi-
cally represented in the human brain and parsed
into hierarchical morphological structures: Char-
acter Markov Model and Syllable Markov Model
as “amorphous” models without morpheme units,
and Morpheme Markov Model, Hidden Markov
Model (HMM), and Probabilistic Context-Free
Grammar (PCFG) as “morphous” models with
morpheme units structured linearly or hierarchi-
cally. Our MEG experiment and computational
modeling demonstrated that “morphous” models
of morphological processing outperformed “amor-
phous” models, PCFG was most neurologically
accurate among those “morphous” models, and
PCFG better explained nested words with non-
local dependencies between prefixes and suffixes.
These results strongly suggest that morphemes
are neurologically represented in the human brain
and parsed into hierarchical morphological struc-
tures. In conclusion, neuro-computational model-
ing of natural language must be a promising fu-
ture direction in the cognitive computational neu-
roscience of language (Kriegeskorte and Douglas,
2018; Naselaris et al., 2018).
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