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Ivan Vulić♦ Anna Korhonen♦ Goran Glavaš♣
♦ Language Technology Lab, TAL, University of Cambridge
♣ Data and Web Science Group, University of Mannheim

{iv250,alk23}@cam.ac.uk goran@informatik.uni-mannheim.de

Abstract

Work on projection-based induction of cross-
lingual word embedding spaces (CLWEs) pre-
dominantly focuses on the improvement of
the projection (i.e., mapping) mechanisms. In
this work, in contrast, we show that a simple
method for post-processing monolingual em-
bedding spaces facilitates learning of the cross-
lingual alignment and, in turn, substantially
improves bilingual lexicon induction (BLI).
The post-processing method we examine is
grounded in the generalisation of first- and
second-order monolingual similarities to the
nth-order similarity. By post-processing mono-
lingual spaces before the cross-lingual align-
ment, the method can be coupled with any
projection-based method for inducing CLWE
spaces. We demonstrate the effectiveness
of this simple monolingual post-processing
across a set of 15 typologically diverse lan-
guages (i.e., 15×14 BLI setups), and in combi-
nation with two different projection methods.

1 Introduction

Cross-lingual word embeddings (CLWEs) are a
mainstay of modern cross-lingual NLP (Ruder
et al., 2019b). CLWE models induce a shared
cross-lingual vector space in which words with
similar meanings obtain similar vectors regardless
of their language. Their usefulness has been at-
tested in tasks such as bilingual lexicon induction
(BLI) (Gouws et al., 2015; Heyman et al., 2017),
information retrieval (Litschko et al., 2018), ma-
chine translation (Artetxe et al., 2018b; Lample
et al., 2018), document classification (Klementiev
et al., 2012), and many others (Ruder et al., 2019b).

Importantly, CLWEs are one of the central mech-
anisms for facilitating transfer of language tech-
nologies for low-resource languages, which often
lack sufficient bilingual signal for obvious trans-
fer via machine translation. Lack of language re-

sources is the main reason for popularity of the so-
called projection-based CLWE methods (Mikolov
et al., 2013a; Artetxe et al., 2016, 2018a). These
models align two independently trained monolin-
gual word vector spaces post-hoc, using limited
bilingual supervision in the form of several hundred
to several thousand word translation pairs (Mikolov
et al., 2013a; Vulić and Korhonen, 2016; Joulin
et al., 2018; Ruder et al., 2018). Some models even
align the monolingual spaces using only identical
strings (Smith et al., 2017; Søgaard et al., 2018) or
numerals (Artetxe et al., 2017). The most recent
work focused on fully unsupervised CLWE induc-
tion: they extract seed translation lexicons relying
on topological similarities between monolingual
spaces (Conneau et al., 2018; Artetxe et al., 2018a;
Hoshen and Wolf, 2018; Alaux et al., 2019).

In this work, we do not focus on projection it-
self: rather, we investigate a transformation of input
monolingual word vector spaces that facilitates the
projection and leads to higher quality CLWEs. Re-
gardless of the actual projection method, the qual-
ity of the input monolingual spaces has a profound
impact on the induced shared cross-lingual space,
and, in turn, on the quality of induced bilingual
lexicons. We demonstrate that simple unsupervised
post-processing of monolingual embedding spaces
leads to substantial BLI performance gains across
a large number of language pairs. Our work is
inspired by observations that monolingual “embed-
dings capture more information than what is imme-
diately obvious” (Artetxe et al., 2018c). In other
words, the information surfaced in the pretrained
monolingual vector spaces may not be optimal for
an application such as word-level translation (BLI).

We rely on a monolingual post-processing
method of Artetxe et al. (2018c): a linear trans-
formation controlled by a single parameter that
adjusts the similarity order of the input embedding
spaces. We demonstrate that applying this trans-
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formation on both monolingual spaces before any
standard projection-based CLWE framework yields
consistent BLI gains for a wide array of languages.
We run a large-scale BLI evaluation with 15 typo-
logically diverse languages (i.e., 15×14 = 210 BLI
setups) and show that this simple monolingual post-
processing yields gains in 183/210 setups over the
current state-of-the-art BLI models which combine
self-learning (Artetxe et al., 2018a) with (weak)
word-level supervision (Vulić et al., 2019). We
further show that this monolingual post-processing
yields improvements on other BLI datasets (Glavaš
et al., 2019), for different projection-based CLWE
models, and also for BLI with 210 similar (major
European) languages (Dubossarsky et al., 2020),
indicating the importance and robustness of mono-
lingual post-processing for BLI.

2 Methodology

Projection-Based CLWEs: Preliminaries.
Projection-based CLWE models learn a linear
projection between two independently trained
monolingual spaces – X (source language Ls)
and Z (target language Lt) – using a word
translation dictionary D to guide the alignment.
XD ⊂ X and ZD ⊂ Z denote the row-aligned
subsets of X and Z containing vectors of aligned
words from D. XD and ZD are used to learn
orthogonal projections Wx and Wz defining the
bilingual space: Y = XWx ∪ ZWz . While
(weakly) supervised methods start from a readily
available dictionary D, fully unsupervised models
automatically induce the seed dictionary D (i.e.,
from monolingual data).1

Furthermore, it has been empirically validated
(Artetxe et al., 2017; Vulić et al., 2019) that ap-
plying an iterative self-learning procedure leads
to consistent BLI improvements, especially for
distant languages and in low-data regimes. In a
nutshell, at each self-learning iteration k, a dic-
tionary D(k) is first used to learn the joint space
Y (k) = XW

(k)
x ∪ ZW

(k)
z . The mutual cross-

lingual nearest neighbours in Y (k) are then used to
extract the new dictionary D(k+1). Relying on mu-
tual nearest neighbours partially removes the noise,
leading to better performance. For more technical

1Recent empirical studies (Glavaš et al., 2019; Vulić et al.,
2019) show that, under fair evaluation, (weakly) supervised
methods always outperform their unsupervised counterparts.
We thus base all our experiments in §4 on the weakly super-
vised setup; nonetheless, we observe substantial relative gains
for the fully unsupervised setup as well.

details on self-learning, we refer the reader to prior
work (Ruder et al., 2019a; Vulić et al., 2019).

Motivation. Most existing CLWE models ignore
the properties of the initial monolingual spaces X
and Z (i.e., they are taken “as-is”) and focus on im-
proving the projection. However, monolingual post-
processing of X and Z prior to learning the projec-
tions may facilitate the projection and be beneficial
for iterative setups such as self-learning. This intu-
ition is already confirmed by a number of monolin-
gual transformations, e.g., `2-normalisation, mean
centering, or whitening/dewhitening, that are “by
default” performed by toolkits such as MUSE (Con-
neau et al., 2018) and VecMap (Artetxe et al.,
2018b; Zhang et al., 2019). In this work, however,
we investigate a transformation to the monolingual
spaces which is applied before they undergo the se-
ries of standard normalisation and centering steps.

Further, we investigate a line of research that
leverages unsupervised post-processing of mono-
lingual word vectors (Mu et al., 2018; Wang et al.,
2018; Raunak et al., 2019; Tang et al., 2019) to
emphasise semantic properties over syntactic as-
pects, typically with small gains reported on intrin-
sic word similarity (e.g., SimLex-999 (Hill et al.,
2015)). In this work, we empirically validate that
these unsupervised post-processing techniques can
also be effective in cross-lingual scenarios for low-
resource BLI, even when coupled with the current
state-of-the-art CLWE frameworks that rely on “all
the bells and whistles”, such as self-learning and
additional vector space preprocessing.

Unsupervised Monolingual Post-processing.
We now outline the simple post-processing
method of Artetxe et al. (2018c) used in this work,
and then extend it to the bilingual setup. The
core idea is to generalise the notion of first-and
second-order similarity (Schütze, 1998)2 to
nth-order similarity. Let us define the (standard,
first-order) similarity matrix of the source language
space X as M1(X) = XXT (similar for
Z). The second-order similarity can then be
defined as M2(X) = XXTXXT , where it
holds M2(X) = M1(M1(X)); the nth-order
similarity is then Mn(X) = (XXT )n. The
embeddings of words wi and wj are given by the
rows i and j of each Mn matrix.

We are then looking for a general linear trans-
formation that adjusts the similarity order of input

2With second-order similarity, the similarity of two words
is captured in terms of how similar they are to other words.
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Language Family Type ISO 639-1

Bulgarian IE: Slavic fusional BG
Catalan IE: Romance fusional CA
Esperanto – (constructed) agglutinative EO
Estonian Uralic agglutinative ET
Basque – (isolate) agglutinative EU
Finnish Uralic agglutinative FI
Hebrew Afro-Asiatic introflexive HE
Hungarian Uralic agglutinative HU
Indonesian Austronesian isolating ID
Georgian Kartvelian agglutinative KA
Korean Koreanic agglutinative KO
Lithuanian IE: Baltic fusional LT
Bokmål IE: Germanic fusional NO
Thai Kra-Dai isolating TH
Turkish Turkic agglutinative TR

Table 1: Languages used in the main BLI experi-
ments (Vulić et al., 2019), along with family (IE=Indo-
European), morphological type, and ISO 639-1 code.

matrices X and Z. As proven by Artetxe et al.
(2018c), the nth-order similarity transformation
can be obtained as Mn(X) = M1(XR(n−1)/2),
with Rα = Q∆α, where Q and ∆ are the ma-
trices obtained via eigendecomposition of XTX
(XTX = Q∆QT ): ∆ is a diagonal matrix con-
taining eigenvalues of XTX; Q is an orthogonal
matrix with eigenvectors of XTX as columns.3

Finally, we apply the above post-processing on
both monolingual vector spaces X and Z. This re-
sults in adjusted vector spaces X′

αs
= XRαs and

Z′
αt

= ZRαt . Transformed spaces X′
αs

and Z′
αt

then replace the original spaces X and Z as input
to any standard projection-based CLWE method.

3 Experimental Setup

We evaluate the impact of unsupervised monolin-
gual post-processing described in §2 on BLI, focus-
ing on pairs of typologically diverse languages.4

Mean reciprocal rank (MRR) is used as the main
evaluation metric, reported as MRR×100%.5

Training and Test Data. We exploit the train-
ing and test dictionaries compiled from PanLex
(Kamholz et al., 2014) by Vulić et al. (2019): the
data encompasses 15 diverse languages listed in
Table 1 and a total of 210 distinct Ls → Lt BLI

3Although the post-processing motivation stems from the
desire to adjust discrete similarity orders, note that α is in
fact a continuous parameter which can be carefully fine-tuned
(negative values are also allowed). The code is available at:
https://github.com/artetxem/uncovec.

4The focus of this work is on the standard BLI task; how-
ever, it has recently shown (Glavaš et al., 2019) that some
downstream tasks strongly correlate with BLI.

5Our findings also hold for Precision@M, for M ∈ {1, 5}

setups.6 In addition, we evaluate on 15 European
languages (i.e., 210 pairs) from Dubossarsky et al.
(2020).7, and on diverse language pairs from the
BLI evaluation suite of Glavaš et al. (2019). Train-
ing and test dictionaries in all setups contain 5K
and 2K word translation pairs, respectively. We
create smaller training dictionaries (e.g., spanning
1K training translation pairs) by taking the most
frequent pairs from the 5K dictionaries.

Monolingual Embeddings. We use the 300-dim
vectors of Grave et al. (2018) for all languages,
pretrained on Common Crawl and Wikipedia with
fastText (Bojanowski et al., 2017).8 All vocabular-
ies are trimmed to the 200K most frequent words.

Projection-Based Framework. We base the in-
duction of projection-based CLWEs on the well-
known VecMap framework (Artetxe et al., 2018b);9

it shows very competitive and robust BLI perfor-
mance, especially for distant pairs, according to
the recent comparative studies (Glavaš et al., 2019;
Vulić et al., 2019; Doval et al., 2019). We analyse
the impact of unsupervised monolingual postpro-
cessing from §2 by (1) feeding the original vectors
X and Y to VecMap (BASELINE), and then by
(2) feeding their post-processed variants X′

αs
and

Y ′
αt

(POSTPROC). We experiment with projection
model variants without and with self-learning, and
with different initial dictionary sizes (5K and 1K).

Note that the POSTPROC variant requires
tuning of two hyper-parameters: αs and αt.
Due to a lack of development sets for BLI
experiments, we tune the two α-parameters
on a single language pair (BG–CA) via cross-
validation; we grid-search over the following val-
ues: [−0.5,−0.25,−0.15, 0, 0.15, 0.25, 0.5]. We
then keep them fixed to the following values: αs =
−0.25, αt = 0.15 in all subsequent experiments.

4 Results and Discussion

Main BLI results averaged over each source lan-
guage (Ls) are provided in Table 2, while addi-
tional results per language pair are available in

6github.com/cambridgeltl/panlex-bli. For
a detailed procedure on how the lexicons were obtained from
PanLex, we refer the reader to the work of Vulić et al. (2019).

7The languages are English, German, Dutch, Swedish,
Danish, Italian, Portuguese, Spanish, French, Romanian, Croa-
tian, Polish, Russian, Czech, Bulgarian.

8Experiments with other monolingual vectors such as the
original fastText and skip-gram (Mikolov et al., 2013b) trained
on Wikipedia show the same trends in the final results.

9https://github.com/artetxem/vecmap

https://github.com/artetxem/uncovec
github.com/cambridgeltl/panlex-bli
https://github.com/artetxem/vecmap
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BG-* CA-* EO-* ET-* EU-* FI-* HE-* HU-*

BASELINE (supervised, 5k) 34.3 33.5 30.4 30.1 22.8 32.4 28.7 35.4
BASELINE (self-learning, 5k) 36.1 35.6 33.6 31.6 24.4 34.8 29.4 37.4
POSTPROC (self-learning, 5k) 37.6 36.9 34.8 33.5 25.7 37.4 31.2 39.5
BASELINE (supervised, 1k) 14.6 12.9 9.8 11.7 6.5 11.7 9.6 14.3
BASELINE (self-learning, 1k) 34.1 32.7 30.2 29.3 21.2 32.9 26.8 35.4
POSTPROC (self-learning, 1k) 35.3 34.0 30.6 31.1 21.3 35.3 27.9 37.5
Improves for... (5k) 13/14 12/14 13/14 13/14 10/14 14/14 11/14 14/14
Improves for... (1k) 13/14 13/14 9/14 13/14 7/14 14/14 11/14 14/14

ID-* KA-* KO-* LT-* NO-* TH-* TR-* Avg

BASELINE (supervised, 5k) 26.1 25.0 23.9 30.2 33.2 15.4 28.3 28.6
BASELINE (self-learning, 5k) 27.2 26.3 25.1 31.0 35.6 14.8 29.9 30.2
POSTPROC (self-learning, 5k) 28.1 28.2 26.6 33.3 37.3 15.6 32.3 31.9
BASELINE (supervised, 1k) 8.9 7.9 6.1 11.1 12.7 4.4 9.1 10.1
BASELINE (self-learning, 1k) 24.3 23.7 20.3 28.4 33.7 10.3 27.4 27.4
POSTPROC (self-learning, 1k) 25.1 25.0 21.3 30.4 35.1 11.1 29.8 28.7
Improves for... (5k) 11/14 13/14 12/14 11/14 14/14 8/14 14/14 183/210
Improves for... (1k) 11/14 12/14 13/14 13/14 13/14 11/14 14/14 181/210

Table 2: BLI results (MRR×100%) for main models in comparison. We report the results with the supervised
BASELINE model based on the VecMap framework (Artetxe et al., 2018b), without any self-learning (i.e., super-
vised only), and with the most robust self-learning setup according to the comparative analysis of Vulić et al. (2019).
The scores are averaged over experimental setups where each of the 15 languages is used as the source language Ls

(e.g., BG-* averages scores over 14 setups in which Bulgarian (BG) is the source language). 5k and 1k denote seed
dictionary sizes. The Avg column shows averaged MRR scores for each model over all 15×14=210 BLI setups and
we also report the number of BLI setups in which the POSTPROC method improves over both BASELINE models.

RCSLS VecMap

BASELINE POSTPROC BASELINE POSTPROC
Pair (SUP) (SUP) (SUP+SL) (SUP+SL)

DE–HR 17.2 21.2 40.9 42.5
DE–TR 21.4 23.6 38.5 39.1
FI–FR 37.8 40.3 47.5 48.9
FI–HR 18.9 23.5 38.1 39.9
HR–IT 30.2 31.4 47.8 49.1
TR–FI 23.6 26.1 37.5 39.0

Table 3: BLI scores on 6 distant language pairs from
the evaluation sets of Glavaš et al. (2019). Supervised
models without (SUP) and with self-learning (SUP+SL).

the supplemental material. We also observe per-
formance gains with a “pure” supervised model
variant (i.e., without self-learning), but for clarity,
we focus our analysis on the more powerful base-
line, with self-learning. We note improvements in
183/210 (seed dictionary size 5K) and 181/210 BLI
setups (size: 1K) over the projection-based base-
lines that held previous peak scores using the same
data (Vulić et al., 2019). This validates our intuition
that monolingual vectors store more information
which needs to be “uncovered” via monolingual
post-processing. The effect of monolingual post-
processing pertains after applying other perturba-
tions such as `2-norm or mean centering. For some
languages – e.g., FI, TR, NO – we achieve gains in

all BLI setups with those languages as sources.
What is more, we have not carefully fine-tuned

αs and αt: we note that even higher scores can be
achieved by finer-grained fine-tuning in the future.
For instance, setting (αs, αt) = (−0.5, 0.25) in-
stead of (−0.25, 0.15) for TR–BG increases BLI
score from 37.8 to 39.5; the previous peak score
with BASELINE was 35.1. The baseline mapping is
simply obtained by setting (αs, αt) = (0, 0), and
we note that the tuned post-processing validated in
our work should be considered as a tunable option
for any projection-based CLWE method.

We further probe the robustness of unsupervised
post-processing by running experiments on addi-
tional BLI evaluation set of Glavaš et al. (2019)
and with another mapping model: RCSLS (Joulin
et al., 2018). While we again observe gains across
a range of different model variants and with differ-
ent seed dictionary sizes, we summarise a selection
of results in Table 3. Finally, small but consistent
improvements extend also to a set of 15 European
languages from Dubossarsky et al. (2020) (see Fot-
note 6): POSTPROC yields gains on average for all
15/15 source languages, and across 173/210 setups
(5K seed dictionary); the global average improves
from 43.9 (the strongest BASELINE) to 44.7. In
summary, these results further underline the useful-
ness of the monolingual post-processing method.
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5 Conclusion and Future Work

We have demonstrated a simple and effective
method for improving bilingual lexicon induction
(BLI) with projection-based cross-lingual word em-
beddings. The method is based on standalone un-
supervised post-processing of initial monolingual
word embeddings before mapping, and as such ap-
plicable to any projection-based CLWE method.
We have verified the importance and robustness of
this monolingual post-processing with a wide range
of (dis)similar language pairs as well as in different
BLI setups and with different CLWE methods.

In future work, we will test other unsupervised
post-processors, and also probe similar methods
that inject external lexical knowledge into mono-
lingual word vectors towards improved BLI. We
also plan to probe if similar gains still hold with
recently proposed more sophisticated self-learning
methods (Karan et al., 2020), non-linear mapping-
based CLWE methods (Glavaš and Vulić, 2020;
Mohiuddin and Joty, 2020). Another idea is to also
apply a similar principle to contextualised word
representations in cross-lingual settings (Schuster
et al., 2019; Liu et al., 2019).
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Ivan Vulić, Goran Glavaš, Roi Reichart, and Anna Ko-
rhonen. 2019. Do we really need fully unsuper-
vised cross-lingual embeddings? In Proceedings of
EMNLP, pages 4406–4417.
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A Supplemental Material

We report main BLI results for all 15× 14 = 210
language pairs based on PanLex training and test
data in the supplemental material, grouped by
the source language, and for two dictionary sizes:
|D| = 1, 000 and |D| = 5, 000 (while similar rel-
ative performance is also observed with other dic-
tionary sizes, e.g., |D| = 500). The results are
provided in Table 4–Table 18, and they are the ba-
sis of the results reported in the main paper. The
language codes are available in Table 1 (in the main
paper). As mentioned in the main paper, all results
are obtained with the two α-hyperparameters fixed
to the following values: αS = −0.25, αT = 0.15,
without any further fine-tuning. A more careful
language pair-specific fine-tuning results in even
higher performance for many language pairs.

In all tables, BASELINE refers to the best-
performing weakly supervised projection-based
approach without and with self-learning, as re-
ported in a recent comparative study of Vulić et al.
(2019); 5k and 1k denote the seed dictionary D
size. The scores in bold indicate improvements
over the BASELINE methods. All results are re-
ported as MRR scores: the MRR score of .xyz
should be read as xy.z% (e.g., the score of .432
can be read as 43.2%).

(The actual tables with the full results in all BLI
setups start on the next page.)
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Bulgarian: BG-

-CA -EO -ET -EU -FI -HE -HU -ID -KA -KO -LT -NO -TH -TR

BASELINE (supervised, 5k) .432 .327 .407 .250 .357 .361 .460 .283 .364 .205 .405 .398 .169 .349
BASELINE (self-learning, 5k) .456 .370 .405 .296 .374 .368 .475 .325 .367 .215 .407 .446 .179 .374
POSTPROC (self-learning, 5k) .473 .419 .420 .302 .386 .392 .489 .330 .371 .211 .419 .462 .203 .379
BASELINE (supervised, 1k) .229 .147 .211 .070 .129 .112 .254 .116 .157 .054 .230 .163 .044 .133
BASELINE (self-learning, 1k) .444 .357 .388 .279 .361 .345 .467 .314 .333 .186 .369 .441 .128 .357
POSTPROC (self-learning, 1k) .458 .408 .398 .286 .377 .376 .478 .321 .329 .188 .375 .458 .133 .362

Table 4: All BLI scores (MRR) with Bulgarian (BG) as the source language.

Catalan: CA-

-BG -EO -ET -EU -FI -HE -HU -ID -KA -KO -LT -NO -TH -TR

BASELINE (supervised, 5k) .396 .395 .356 .338 .329 .336 .431 .286 .309 .217 .366 .396 .196 .337
BASELINE (self-learning, 5k) .414 .456 .352 .391 .356 .357 .449 .322 .302 .245 .343 .433 .218 .348
POSTPROC (self-learning, 5k) .434 .510 .359 .409 .359 .373 .454 .326 .322 .242 .347 .448 .234 .351
BASELINE (supervised, 1k) .212 .167 .165 .116 .110 .103 .210 .126 .101 .046 .144 .138 .035 .133
BASELINE (self-learning, 1k) .395 .446 .300 .370 .319 .335 .435 .320 .253 .202 .295 .424 .142 .334
POSTPROC (self-learning, 1k) .413 .508 .309 .393 .321 .351 .439 .326 .274 .204 .306 .438 .146 .332

Table 5: All BLI scores (MRR) with Catalan (CA) as the source language.

Esperanto: EO-

-BG -CA -ET -EU -FI -HE -HU -ID -KA -KO -LT -NO -TH -TR

BASELINE (supervised, 5k) .367 .491 .334 .294 .329 .258 .400 .267 .281 .171 .343 .337 .107 .285
BASELINE (self-learning, 5k) .410 .533 .342 .354 .363 .288 .426 .315 .296 .184 .384 .390 .117 .299
POSTPROC (self-learning, 5k) .428 .546 .353 .369 .372 .299 .432 .342 .311 .186 .404 .405 .124 .292
BASELINE (supervised, 1k) .152 .221 .136 .083 .080 .044 .145 .099 .078 .024 .120 .083 .017 .087
BASELINE (self-learning, 1k) .385 .521 .314 .315 .328 .241 .411 .298 .255 .111 .358 .376 .056 .259
POSTPROC (self-learning, 1k) .404 .535 .318 .317 .316 .235 .404 .316 .271 .092 .368 .389 .061 .251

Table 6: All BLI scores (MRR) with Esperanto (EO) as the source language.

Estonian: ET-

-BG -CA -EO -EU -FI -HE -HU -ID -KA -KO -LT -NO -TH -TR

BASELINE (supervised, 5k) .393 .333 .271 .238 .430 .287 .432 .212 .258 .191 .360 .328 .168 .307
BASELINE (self-learning, 5k) .404 .357 .307 .238 .443 .301 .459 .223 .251 .185 .358 .383 .178 .331
POSTPROC (self-learning, 5k) .433 .401 .352 .239 .447 .320 .471 .253 .253 .192 .380 .407 .205 .334
BASELINE (supervised, 1k) .200 .121 .116 .099 .200 .069 .188 .065 .095 .052 .179 .112 .041 .102
BASELINE (self-learning, 1k) .381 .346 .297 .208 .437 .277 .449 .204 .215 .148 .337 .377 .108 .313
POSTPROC (self-learning, 1k) .415 .392 .337 .200 .446 .289 .461 .227 .224 .150 .356 .408 .108 .319

Table 7: All BLI scores (MRR) with Estonian (ET) as the source language.

Basque: EU-

-BG -CA -EO -ET -FI -HE -HU -ID -KA -KO -LT -NO -TH -TR

BASELINE (supervised, 5k) .292 .391 .245 .250 .233 .211 .259 .183 .197 .109 .242 .240 .095 .240
BASELINE (self-learning, 5k) .310 .441 .277 .248 .270 .206 .283 .225 .189 .106 .237 .287 .094 .248
POSTPROC (self-learning, 5k) .332 .453 .324 .255 .276 .207 .302 .238 .188 .108 .229 .309 .119 .254
BASELINE (supervised, 1k) .120 .142 .077 .088 .048 .037 .077 .049 .059 .021 .071 .053 .018 .055
BASELINE (self-learning, 1k) .276 .428 .253 .213 .247 .166 .266 .213 .147 .060 .169 .261 .056 .212
POSTPROC (self-learning, 1k) .294 .440 .292 .209 .232 .144 .263 .214 .136 .069 .157 .272 .059 .201

Table 8: All BLI scores (MRR) with Basque (EU) as the source language.
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Finnish: FI-

-BG -CA -EO -ET -EU -HE -HU -ID -KA -KO -LT -NO -TH -TR

BASELINE (supervised, 5k) .379 .377 .284 .409 .220 .323 .456 .263 .275 .222 .390 .419 .171 .346
BASELINE (self-learning, 5k) .397 .404 .320 .424 .271 .351 .474 .298 .289 .243 .405 .460 .168 .365
POSTPROC (self-learning, 5k) .423 .430 .386 .456 .302 .386 .477 .311 .329 .258 .434 .481 .196 .370
BASELINE (supervised, 1k) .174 .142 .077 .167 .054 .071 .226 .098 .084 .052 .158 .161 .028 .149
BASELINE (self-learning, 1k) .381 .396 .304 .416 .235 .331 .463 .300 .270 .211 .389 .455 .107 .353
POSTPROC (self-learning, 1k) .409 .413 .372 .447 .259 .369 .466 .307 .303 .228 .424 .477 .112 .360

Table 9: All BLI scores (MRR) with Finnish (FI) as the source language.

Hebrew: HE-

-BG -CA -EO -ET -EU -FI -HU -ID -KA -KO -LT -NO -TH -TR

BASELINE (supervised, 5k) .397 .376 .248 .288 .225 .329 .375 .239 .213 .204 .309 .316 .173 .328
BASELINE (self-learning, 5k) .378 .384 .278 .278 .211 .320 .393 .266 .217 .218 .301 .349 .192 .337
POSTPROC (self-learning, 5k) .401 .418 .307 .298 .212 .333 .402 .293 .213 .219 .308 .379 .238 .342
BASELINE (supervised, 1k) .180 .148 .087 .106 .065 .077 .135 .076 .067 .054 .105 .086 .042 .111
BASELINE (self-learning, 1k) .360 .371 .252 .250 .182 .293 .383 .251 .188 .187 .254 .343 .114 .321
POSTPROC (self-learning, 1k) .381 .401 .280 .255 .174 .311 .388 .274 .174 .184 .255 .366 .131 .326

Table 10: All BLI scores (MRR) with Hebrew (HE) as the source language.

Hungarian: HU-

-BG -CA -EO -ET -EU -FI -HE -ID -KA -KO -LT -NO -TH -TR

BASELINE (supervised, 5k) .431 .443 .344 .423 .282 .397 .349 .338 .326 .259 .411 .406 .173 .372
BASELINE (self-learning, 5k) .438 .477 .392 .433 .305 .407 .376 .374 .332 .285 .419 .441 .176 .380
POSTPROC (self-learning, 5k) .466 .495 .453 .457 .310 .418 .405 .403 .353 .293 .436 .457 .194 .387
BASELINE (supervised, 1k) .241 .221 .125 .196 .094 .168 .098 .147 .112 .063 .183 .149 .026 .184
BASELINE (self-learning, 1k) .427 .467 .369 .413 .274 .400 .356 .377 .306 .268 .381 .423 .113 .374
POSTPROC (self-learning, 1k) .458 .484 .431 .443 .276 .410 .385 .406 .331 .270 .401 .447 .126 .377

Table 11: All BLI scores (MRR) with Hungarian (HU) as the source language.

Indonesian: ID-

-BG -CA -EO -ET -EU -FI -HE -HU -KA -KO -LT -NO -TH -TR

BASELINE (supervised, 5k) .281 .300 .247 .281 .173 .233 .290 .349 .222 .193 .260 .294 .218 .316
BASELINE (self-learning, 5k) .287 .323 .274 .266 .220 .269 .295 .345 .200 .197 .242 .320 .241 .326
POSTPROC (self-learning, 5k) .307 .333 .303 .273 .225 .270 .298 .360 .205 .203 .242 .335 .256 .328
BASELINE (supervised, 1k) .121 .114 .092 .115 .038 .053 .093 .129 .063 .062 .086 .081 .052 .152
BASELINE (self-learning, 1k) .258 .316 .254 .213 .187 .250 .264 .337 .140 .175 .152 .309 .226 .319
POSTPROC (self-learning, 1k) .280 .327 .282 .221 .197 .252 .271 .346 .131 .184 .149 .325 .225 .322

Table 12: All BLI scores (MRR) with Indonesian (ID) as the source language.

Georgian: KA-

-BG -CA -EO -ET -EU -FI -HE -HU -ID -KO -LT -NO -TH -TR

BASELINE (supervised, 5k) .372 .297 .243 .282 .217 .292 .245 .308 .169 .154 .327 .214 .127 .257
BASELINE (self-learning, 5k) .376 .320 .265 .293 .216 .318 .251 .326 .172 .143 .340 .253 .139 .275
POSTPROC (self-learning, 5k) .412 .355 .307 .300 .218 .331 .270 .343 .200 .154 .342 .281 .153 .280
BASELINE (supervised, 1k) .153 .088 .083 .112 .068 .065 .046 .103 .048 .036 .138 .048 .025 .091
BASELINE (self-learning, 1k) .352 .305 .248 .271 .172 .306 .213 .308 .155 .103 .317 .238 .077 .255
POSTPROC (self-learning, 1k) .378 .341 .283 .279 .174 .308 .233 .323 .177 .098 .321 .260 .078 .249

Table 13: All BLI scores (MRR) with Georgian (KA) as the source language.
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Korean: KO-

-BG -CA -EO -ET -EU -FI -HE -HU -ID -KA -LT -NO -TH -TR

BASELINE (supervised, 5k) .190 .183 .083 .145 .102 .206 .166 .238 .142 .112 .156 .150 .076 .213
BASELINE (self-learning, 5k) .289 .283 .176 .242 .170 .273 .257 .326 .210 .178 .241 .256 .174 .278
POSTPROC (self-learning, 5k) .324 .330 .217 .247 .153 .310 .281 .367 .264 .180 .239 .313 .199 .301
BASELINE (supervised, 1k) .093 .078 .045 .059 .045 .066 .048 .096 .060 .039 .053 .047 .038 .085
BASELINE (self-learning, 1k) .245 .253 .110 .191 .108 .266 .232 .343 .206 .122 .150 .244 .089 .279
POSTPROC (self-learning, 1k) .268 .274 .134 .193 .106 .271 .239 .348 .236 .117 .152 .264 .102 .284

Table 14: All BLI scores (MRR) with Korean (KO) as the source language.

Lithuanian: LT-

-BG -CA -EO -ET -EU -FI -HE -HU -ID -KA -KO -NO -TH -TR

BASELINE (supervised, 5k) .462 .353 .317 .394 .236 .368 .299 .395 .184 .284 .168 .304 .162 .296
BASELINE (self-learning, 5k) .437 .363 .348 .383 .222 .385 .316 .413 .191 .304 .160 .336 .168 .319
POSTPROC (self-learning, 5k) .470 .408 .406 .400 .233 .394 .338 .426 .220 .300 .160 .372 .205 .326
BASELINE (supervised, 1k) .256 .138 .102 .190 .085 .143 .073 .159 .058 .097 .040 .081 .030 .097
BASELINE (self-learning, 1k) .408 .345 .332 .361 .181 .380 .286 .399 .168 .288 .109 .322 .094 .302
POSTPROC (self-learning, 1k) .438 .387 .388 .382 .191 .390 .306 .412 .195 .282 .117 .355 .109 .305

Table 15: All BLI scores (MRR) with Lithuanian (LT) as the source language.

Norwegian: NO-

-BG -CA -EO -ET -EU -FI -HE -HU -ID -KA -KO -LT -TH -TR

BASELINE (supervised, 5k) .394 .424 .323 .389 .261 .396 .319 .441 .306 .291 .220 .366 .188 .325
BASELINE (self-learning, 5k) .422 .457 .377 .395 .328 .419 .353 .452 .340 .298 .250 .351 .197 .341
POSTPROC (self-learning, 5k) .441 .474 .425 .411 .345 .424 .381 .455 .354 .315 .257 .367 .227 .346
BASELINE (supervised, 1k) .203 .198 .128 .172 .075 .153 .078 .206 .132 .088 .057 .132 .032 .123
BASELINE (self-learning, 1k) .411 .444 .374 .371 .300 .412 .336 .443 .339 .268 .228 .315 .140 .332
POSTPROC (self-learning, 1k) .433 .466 .419 .389 .313 .417 .366 .445 .352 .279 .236 .332 .136 .336

Table 16: All BLI scores (MRR) with Norwegian (NO) as the source language.

Thai: TH-

-BG -CA -EO -ET -EU -FI -HE -HU -ID -KA -KO -LT -NO -TR

BASELINE (supervised, 5k) .210 .134 .087 .186 .094 .173 .173 .178 .141 .116 .112 .214 .162 .177
BASELINE (self-learning, 5k) .174 .123 .073 .164 .093 .167 .203 .160 .170 .126 .097 .215 .147 .160
POSTPROC (self-learning, 5k) .176 .145 .068 .168 .098 .178 .176 .188 .203 .136 .118 .218 .143 .170
BASELINE (supervised, 1k) .049 .027 .021 .070 .029 .032 .057 .044 .044 .034 .040 .084 .029 .052
BASELINE (self-learning, 1k) .108 .084 .036 .128 .057 .094 .152 .111 .168 .073 .065 .145 .098 .121
POSTPROC (self-learning, 1k) .112 .104 .049 .120 .049 .104 .150 .127 .192 .079 .078 .151 .107 .125

Table 17: All BLI scores (MRR) with Thai (TH) as the source language.

Turkish: TR-

-BG -CA -EO -ET -EU -FI -HE -HU -ID -KA -KO -LT -NO -TH

BASELINE (supervised, 5k) .344 .360 .215 .307 .230 .294 .319 .378 .336 .205 .196 .295 .311 .170
BASELINE (self-learning, 5k) .351 .376 .238 .309 .244 .322 .323 .397 .370 .229 .214 .280 .346 .183
POSTPROC (self-learning, 5k) .378 .405 .291 .328 .252 .338 .361 .413 .395 .261 .226 .298 .369 .210
BASELINE (supervised, 1k) .150 .133 .052 .112 .062 .093 .076 .167 .131 .053 .050 .099 .073 .028
BASELINE (self-learning, 1k) .327 .364 .204 .274 .209 .310 .301 .398 .363 .201 .194 .215 .344 .137
POSTPROC (self-learning, 1k) .361 .394 .259 .289 .217 .326 .336 .411 .390 .245 .200 .234 .368 .142

Table 18: All BLI scores (MRR) with Turkish (TR) as the source language.


