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Abstract

We evaluate the compositionality of general-
purpose sentence encoders by proposing two
metrics to quantify compositional understand-
ing capability of sentence encoders. We in-
troduce a novel metric, Polarity Sensitivity
Scoring (PSS), which utilizes sentiment per-
turbations as a proxy for measuring composi-
tionality. We then compare results from PSS
with those obtained via our proposed exten-
sion of a metric called Tree Reconstruction
Error (TRE) (Andreas, 2019) where composi-
tionality is evaluated by measuring how well
a true representation-producing model can be
approximated by a model that explicitly com-
bines representations of its primitives.

1 Introduction

Compositionality is the principle inherent in human
language whereby the meaning of a complex, com-
pound language expression can be deduced from
the meanings of its constituent parts and how they
are combined. Compositionality can be thought of
as a key ingredient towards making artificial intel-
ligence more like general human intelligence since
it enables understanding of highly complex con-
cepts by breaking them down into simpler, more
manageable, and modular components. The last
couple of years have seen a breathtaking expan-
sion in the research around transfer learning for
natural language understanding. BERT (Devlin
et al., 2019) has proven to be a highly successful
model for learning general, task-agnostic sentence
representations that can equal or outperform task-
specific ones. Given the strong intuitive connection
between compositionality and generalization of rep-
resentation learning, but the relative difficulty in
often quantifying it, our goal is to propose evalu-
ation metrics for compositional understanding of
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sentence encoders and evaluate the level of compo-
sitional understanding in the current state-of-the-art
sentence encoder models.

We propose two new methods to evaluate the
compositionality of sentence embedding models.
First, we propose a new method called Polarity
Sensitivity Scoring (PSS) which measures com-
positionality via the ability of sentence encoding
models to be sensitive to minor perturbations in
the input that would flip the sentiment polarity of
a sentence. Next, we extend Tree Reconstruction
Error (TRE) (Andreas, 2019) to work sentences.

2 Related Work

With the rapid improvement of natural language
understanding models in recent years, there has
simultaneously been a large increase in research on
the nuances and pitfalls of these models, especially
in the area of compositionality. Among other meth-
ods, measuring performance in classification tasks
targeting semantic understanding (Ettinger et al.,
2016), lexical composition (Shwartz and Dagan,
2019), synonym substitution (Hupkes et al., 2020),
and divergence (Keysers et al., 2020) have all been
proposed.

Many researchers have shown evidence that in-
ducing compositionality into deep and shallow
models have helped in generalization, data effi-
ciency, and interpretability. Fyshe et al. (2015)
evaluates compositionality at the phrase level to
make representations more interpretable. Baroni
(2020) finds that neural networks are capable of
subtle grammar-dependent generalizations, but do
not rely on systematic compositional rules. Dessı̀
and Baroni (2019) found that, perhaps counter-
intuitively, CNNs were able to significantly out-
perform LSTMs and GRUs on the more difficult
jump and around-right tasks in the SCAN chal-
lenge proposed by Lake and Baroni (2017) and
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Loula et al. (2018). However, they still find that
CNNs also are not good at learning rule-like com-
positional generalizations as the mistakes it makes
are not systematic and they are evenly spread across
different commands.

Stone et al. (2017) explores the compositional
properties of deep CNNs for image recognition.
Their method quantifies compositionality as the dif-
ference in higher layer CNN activations between
a network which takes a normal multi-object im-
age as input and masks all activations outside the
spatial location of one of the objects and a network
which takes as input the same image as above with
all other objects except the target object zeroed out.
The intuition is that if CNNs are inherently com-
positional, then the difference in two activations
should be zero.

3 Polarity Sensitivity Scoring (PSS)

Our primary contribution is a method we propose
is called Polarity Sensitivity Scoring. Here, we
posit that a model that has strong compositional
understanding can adapt to small changes in the
constituent components of a sentence such as sen-
timent polarity. Generally, the sentiment of a sen-
tence is localized to a small fraction of the words,
which can be separated from the overall content
of the sentence that is not sentiment bearing. We
hypothesize that if a model can accurately detect
a sentiment switch when its thematic content re-
mains constant, but only its tonality changes, then
it should have a good semantic understanding of
the nuances of composition structure. We define
the equation for PSS as:

PSS =
1

N

N∑
n=1

1[ŷs = ys ∧ ẑs′ = zs′ ]

where ys is the ground truth label for the sentence
s and ŷs is the predicted label produced by a sen-
timent model trained using the sentence encoding
model. Similarly, zs′ and ẑs′ are the ground truth
and predicted labels, respectively, for the sentence
s′ for which the polarity has been flipped. For PSS,
we need sentence pairs which have the same con-
tent but differ only in certain sentiment specific at-
tributes. Ideally, we would want human-generated
pairs but since that can be cumbersome and expen-
sive we utilize outputs of an off the shelf model
for synthetic data generation which generates the
sentiment switched sentence. The approach we use
was proposed by Li et al. (2018) and the interested

reader is encouraged to read the paper to gain a
better understanding of the algorithm details. This
formula for PSS calculation would be sufficient if
the sentiment switching model was perfect, how-
ever, this is not the case. To account for this we
manually reviewed a subset of examples to come
up with a set of rules which removed error-prone
switches making our synthetic pairs closer to a gold
standard. Details are described in appendix B.

The perturbation-driven nature of PSS might
lead one to question whether PSS really captures
compositional understanding or is it just a test of
the robustness of sentence representations to noise.
We believe that, at least with respect to the re-
quired compositional understanding to correctly
classify sentiment (Socher et al., 2013), it does and
might also be more general than that. PSS can actu-
ally complement the consistency score proposed by
Hupkes et al. (2020) which measures substitutivity,
one of the five tests for compositionality. While
they replace words with their synonyms and ex-
pect the same classification, we replace sentiment
bearing words and expect the model to accurately
reflect this change in sentiment. Since changing a
classification label establishes a more direct causal
link between change in text and change in label,
we believe that our method is better at least for the
substitutivity test.

3.1 Experimental Results

We leverage the same dataset used in Li et al. (2018)
for our experiments: a sentiment corpus of Yelp
Business Reviews. The dataset contains 270K pos-
itive examples and 180K negative ones in the train
set and an equally balanced 4000-example devel-
opment set and 1000-example test set. Since our
end goal is evaluating compositionality and not de-
veloping the most performant sentiment model, we
use static hyperparameter configurations (learning
rate=2e-5 for BERT and 3e-3 for others) and re-
port test accuracy by combining dev and test sets.
For the sentiment switched pairs we directly uti-
lize the 500 reference test pairs released 1. After
the cleaning rules (see appendix) to remove prob-
lematic pairs we are left with 353 example pairs
for which we have a high degree of confidence that
they belong to opposite sentiments. Our PSS metric
is therefore calculated on these 353 sentence pairs.
If our models predict the correct label for both the

1https://github.com/rpryzant/delete_
retrieve_generate

https://github.com/rpryzant/delete_retrieve_generate
https://github.com/rpryzant/delete_retrieve_generate
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Encocder Type Final Layers Finetune mode Test Accuracy PSS Relative
BERT Linear FB 79.2 59.5 75.1
BERT Linear FT 81.3 73.7 90.7
ELMo Linear FB 75.3 57.2 76.0
ELMo Linear FT 75.8 67.9 89.6
ELMo DNN FB 77 57.5 74.7
ELMo DNN FT 77.2 70 90.7
USE DAN DNN FB 75.3 62.3 82.8
USE DAN DNN FT 79.6 69.4 87.2
USE DAN Linear FB 69.3 49.9 71.9
USE DAN Linear FT 78.1 69.1 88.5
USE Transformer Linear FB 76.5 65.7 85.9
USE Transformer Linear FT 82.3 73.7 89.5
USE Transformer DNN FB 78.7 65.7 83.5
USE Transformer DNN FT 80.2 69.4 86.5

Table 1: Results from Polarity Sensitivity Scoring (PSS). Linear: Linear projection from sentence embedding to
labels. DNN: 2 layer deep neural network. Relative: PSS / Test Accuracy×100. Finetune mode: FT: encoder
finetuned, FB: encoder parameters frozen with final layers only trained

positive and negative versions of the sentence, an
example gets a score of 1 else 0 and these values
are averaged to get the PSS score for a model.

We compare four encoder types: BERT (Devlin
et al., 2019), ELMo (Peters et al., 2018), Universal
Sentence Encoder (USE) deep averaging network
(DAN), and USE Transformer (Cer et al., 2018).
For all encoders except BERT, we experiment with
different final layer types to isolate impact from the
classification layer to the encoding layers: single
linear layer (Linear) or 2 layer feedforward deep
neural network (DNN) with 500 and 100 units in
the first and second layers, respectively. For all
encoders, we experiment with the finetuning mode
(FT): train the all encoder and classification layers
and feature-based mode (FB): freeze the encoder
layers and only train the classification layers.

Table 1 shows the results of our polarity sen-
sitivity experiment. Since each encoder has
a different sentiment classification performance,
we also consider the relative PSS, defined as
(PSS/TestAcc.)×100, which helps us normalize
the compositional understanding capability against
its task performance.

We observe that BERT FT and USE Transformer
FT, both Transformer Vaswani et al. (2017) ar-
chitectures, are the leading models on absolute
PSS and BERT FT and ELMo in DNN FT con-
figuration are joint leaders on relative PSS. The
fact that BERT leads in both categories is no sur-
prise given its well known superior performance

on wide-ranging tasks. On absolute PSS alone,
ELMo and USE DAN are the least compositional.
Given USE DAN’s bag of words type architecture
this makes sense but is slightly surprising for the
ELMo LSTM architecture even though ELMo does
better when we normalize by the sentiment classifi-
cation accuracy. We note that the consistency score
of Hupkes et al. (2020) shows quite similar results
where the Transformer architecture outperforms
both LSTM and CNN architectures substantially.
Across the board, models that finetune the sentence
encoder decidedly do better in absolute and relative
terms than not finetuning which makes sense as en-
coders should generally be better equipped to pick
up compositional generalizations than the classi-
fication layers which are the only trainable layers
in FB mode. Additionally, comparison of the per-
formance of DNN vs linear classifier types is less
conclusive further suggesting that the difference in
compositional understanding is most dependent on
the sentence encoder versus the classifier chosen.

Since BERT FT is joint best with USE Trans-
former FT Linear on absolute PSS and they also
are both among the top-performing models on test
accuracy it validates our key motivation that good
compositional understanding contributes towards
good downstream performance. However, if we
look at when we do not finetune BERT and USE
Transformer encoders, we see that even though
BERT FB has decent test accuracy, the PSS of
BERT FB is 59.5% compared to 65.7% for USE
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Transformer FB (linear and DNN). On the surface
one would expect that true measurement of raw
compositional understanding of a representation
must be calculated without encoder fine-tuning
however, we must remember that the pre-training
mechanism of BERT and USE is quite different.
While BERT is completely pre-trained using un-
supervised Masked LM and next sentence predic-
tion, USE is also trained using the supervised SNLI
dataset (Bowman et al., 2015) which the authors
note improves the transfer learning capability of
USE. Given that natural language inference is a task
that would be very hard to do well without some
compositional understanding, it stands to reason
that the pre-training phase of USE provides some
implicit compositional advantages. This is equally
valid for other types of models and so for accurate
comparisons across models, we must default to FT
mode.

Given that the above results correlate well with
our a priori expectations based on both theoretical
and empirical knowledge about these encoders, we
feel confident that absolute and relative PSS can be
good estimates of compositional understanding of
sentence representation models.

4 Tree Reconstruction Error (TRE)

TRE (Andreas, 2019) measures the vector space
distance between a target vector representation pro-
duced by an encoding model and a vector repre-
sentation that is generated from compositions of its
primitive units. In the case of sentences, the target
representation is produced by a sentence encoding
model and the primitives are generally the words
in the sentence. The compositions are represented
by syntactic parses of the sentences where at every
subtree, the representations of the child nodes are
composed using some composition function. The
primitive representations (word vectors) are trained
using RMSProp, fixing the sentence representation
and compositional functions, to minimize the co-
sine distance between the sentence encoding and
the output of the compositional function applied to
primitives.

We aim to extend TRE 2 from phrases to sen-
tences. Unfortunately, there are not many open
source datasets with human-labeled compositional-
ity scores for sentences that we could find. There-
fore, using the Stanford Sentiment Treebank (SST)
we propose two automated methods to generate

2https://github.com/jacobandreas/tre

ground truth compositionality labels for the SST
dataset by using phrase-level sentiment labels in
SST.

4.1 Tree Impurity

We start by traversing the constituency parsed tree
of each SST sentence and collect the labels of all
sub-components and phrases within the parse tree.
To compute the Tree Impurity, we take the absolute
difference between the root label and the average
of all phrase labels within a tree. To understand
why this metric is meaningful, let’s consider the
following example sentence from SST:

“A coda in every sense, The Pinochet Case
splits time between a minute-by-minute account
of the British court’s extradition chess game and
the regime’s talking-head survivors.”

As seen in Figure 3 (appendix), the phrase la-
bels of the two children of the root and all of their
children have a label of 2 (neutral). However, at
the top, the root level label is 4 (highly positive).
This constitutes an example of a sentence with a
high degree of compositionality i.e. the overall
meaning of a sentence is not just the meaning of
the components but also how they are composed.

4.2 Weighted Node Switching (WNS)

Tree Impurity loses crucial information regarding
the compositionality within subtrees. Weighted
node switching seeks to counteract this by introduc-
ing more local compositional information. Here,
for every subtree where both children have a sen-
timent label, we calculate the absolute difference
between the sentiment label of the root of the sub-
tree and the average sentiment labels of its children.
To introduce global information, we weight this
label difference by the height of the root node of
the subtree, wherein nodes closer to the tree root
are given higher weights than those closer to the
leaves. These weighted absolute differences are
then averaged to get a measure of the overall com-
positionality of the entire sentence.

Both methods are generalizable to subtrees
whose roots have multiple children and so can be
used with constituency and dependency parses. Go-
ing forward in our experiments we solely use WNS
as our approximation of compositionality scores
given that it is more linguistically robust than Tree
Impurity.

https://github.com/jacobandreas/tre
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Encoder Type SST Correlation
BERT -0.1997
ELMo -0.344
USE DAN -0.485
USE Transformer -0.168

Table 2: Rank correlations.
* p-value indicated that they are uncorrelated

4.3 Experimental Results

We use SST for compositionality evaluation with
TRE. Using TRE, we evaluated the compositional-
ity of sentence representations from BERT (Devlin
et al., 2019), ELMo (Peters et al., 2018), Universal
Sentence Encoder (USE) deep averaging network
(DAN) and USE Transformer (Cer et al., 2018).
The lower the value of TRE, the more composi-
tional a given phrase or sentence is. Since we hy-
pothesize that WNS is positively correlated with
the degree of compositionality, then the more nega-
tively correlated WNS is with TRE, the more com-
positional the sentence representation is overall.
We evaluate compositionality using the rank corre-
lation between TRE and the WNS compositionality
scores.

In Table 2, we notice that the Spearman rank
correlations are all negative, indicating that all the
sentence representations encode some level of com-
positionality in their sentence representations. The
more negative the correlation, the more composi-
tional the sentence representation. By this metric,
USE Transformer seems to be the least compo-
sitional while USE DAN seems to be the most
compositional.

The under-performance of BERT, at least as mea-
sured by compositionality, is quite surprising given
the widespread success of BERT on a multitude
of downstream tasks and also the PSS metric we
proposed and tested above. Given that our results
are dependent on machine-generated ground truth
compositionality scores, more investigation is cru-
cial.

5 Discussion

Even though our observations from PSS and TRE
approaches are not directly correlated, we observe
certain consistencies and see that Transformer ar-
chitectures are different compared to others. While
they are more compositional as measured by PSS,
they appear to be less compositional according to

TRE. We believe this could be because the two
methods are quantifying different kinds of com-
positionality. Pelletier (2011) described two dif-
ferent senses of compositionality; ontological and
functional. TRE seems to measure more of the
former since it, by nature of its definition, tries to
make combination of primitives equal to the whole
while PSS measures functional compositionality
as it calculates a type of sensitivity which only
a model with good compositional understanding
can grasp. Furthermore, phrases that are similar in
vector space can have opposite sentiment. For ex-
ample, the warm and cool could be close in vector
space, but could have a high impact on WNS.

In the current state, we believe that PSS is a
more mature method to estimate compositionality
for sentences especially since our extension of TRE
to sentences depends on the efficacy of WNS as a
good estimate of sentence compositionality. Fur-
thermore, even if we did not use WNS and had
humans tag sentences with scores for composition-
ality, this would still be quite hard to quantify even
for humans given how subjective it can be. Ex-
pert labelers would be needed for such labeling
tasks. However, looking at a positive sentence and
switching its sentiment to negative or vice-versa is
a much easier task for a human, so dataset creation
and evaluation for PSS is much more practical.

6 Conclusion

We explored two approaches to measure the compo-
sitionality of sentence representations. Our primary
contribution was proposing polarity switching as a
possible measure of compositionality which corre-
lated well with empirical results and our knowledge
about inductive biases in sentence encoders. We
also extended TRE as proposed in Andreas (2019)
beyond bigram phrases to sentence representations.
To do this, we needed to come up with a heuris-
tic approximation of a compositional score for a
sentence which we did by using weighted node
switching.
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A Encoder Models

For BERT, we use Bert as a service3 with parame-
ter weights of BERTbase from Google Research4.
For ELMo, we use AllenNLP5 for TRE and Ten-
sorflowHub 6 for PSS. For Universal Sentence En-
coder, we used TensorflowHub7

A.1 BERT

This model architecture is a multi-layer bidirec-
tional Transformer (Vaswani et al., 2017). BERT
was able to outperform the previous state-of-the-art
on the GLUE Benchmark by 7%. The input rep-
resentation can be an individual sequence or a se-
quence pair, such as a sentence or question/answer
pairs, respectively. The final embeddings are a
combination of token embeddings and special clas-
sification and segmentation tokens. For our exper-
iments, we take the average of token embeddings
to obtain the sentence embeddings. BERT was
pre-trained using two novel unsupervised learning
tasks: Masked Language Model (LM) and Next
Sentence Prediction. BERT is that it is trained in a
bidirectional manner, while other language models
can only be trained using one direction at a time
since being able to see the next word in the clas-
sical setting trivializes the task. In Masked LM, a
certain percentage of the input tokens are masked
at random, and the model is asked to predict the
masked words. This allows for the preservation
of a learning objective, because the transformer’s
encoder will not know which words it will need
to predict in the future or which words have been
replaced by random words, so it is forced to keep
a contextual representation of every word in the
vocabulary.

A.2 ELMo

ELMo (Embeddings from Language Models) vec-
tors are derived from a bidirectional LSTM that is

3https://github.com/hanxiao/
bert-as-service

4https://github.com/google-research/
bert

5https://allennlp.org/
6https://tensorflow.org/hub
7https://tensorflow.org/hub

trained with a coupled language model (LM). We
learn a weighted linear combination of the vectors
stacked above each input word for each end task.
Since ELMo generates three layers of embedding
outputs for each word, we leverage the common
pooling strategy of averaging across the layers to
create a final word-level representation. Sentence-
level embeddings are created by simply averaging
the final word-level vectors.

A.3 Universal Sentence Encoder

We use two models of the Universal Sentence En-
coder: one where the encoder is a deep averaging
network (DAN) (Conneau et al., 2017) and one
where the encoder is a Transformer (Vaswani et al.,
2017). The embeddings are trained on tasks that
demand to extract information beyond the word-
level. Both models are trained with the aim of
dynamically accommodating a wide variety of nat-
ural language understanding tasks. The input is
variable-length English text and the output is a 512-
dimensional vector.

B Synthetic data considerations

The formula for PSS calculation would be suffi-
cient if we were fully confident that our sentiment
switching model was always 100% accurate. How-
ever, as we know from Li et al. (2018), this is not
the case. The polarity switching model at times gen-
erates an exact duplicate of its provided input and at
other times only removes certain sentiment specific
words. For the former case, it is not fair to expect
any model to switch polarity, so we remove such
examples. Furthermore, we also remove examples
where the model only deletes (does not add) senti-
ment specific keywords as on manual evaluation,
the model more often would remove a word/phrase
that would not fully preserve the content and only
at times removals resulted in negative sentiment
switching to positive (e.g. removing “not”). There-
fore, we only consider examples where the model
adds some words in its generation that were not
present in its input. Given that the model adds pos-
itive words (for a negative to positive switch), it
is much more likely that if a sentiment classifier
gets such an example switch wrong (cannot detect
negative to positive switch), it is more a function of
the sentiment classifier and therefore the sentence
encoder and not an error of the data generator.

https://github.com/hanxiao/bert-as-service
https://github.com/hanxiao/bert-as-service
https://github.com/google-research/bert
https://github.com/google-research/bert
https://allennlp.org/
https://tensorflow.org/hub
https://tensorflow.org/hub
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Figure 1: Experimental workflow design: TRE

Figure 2: Experimental workflow design: Polarity Sensitivity Scoring

C Effects of the direction of sentiment
switch

Given the way PSS is defined, it does not depend
on the direction of the sentiment switch. As long
as our ground truth sentiment label before and after
switching is accurate, PSS does not differentiate
between positive to negative or negative to posi-
tive switch. As mentioned above, the only source
of sensitivity to the polarity switching direction
comes from the sentiment switching model. Li
et al. (2018) does not highlight any major differ-
ences in the direction.
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Original Sentence (Negative) Generated Sentence (Positive)
so , no treatment and no medication to help
me deal with my condition . failure

so good , honest treatment and easy to help me
deal with my condition .

at this location the service was terrible . at this location the service was great .
overcooked so badly that it was the consistency
of canned tuna fish .

so good that it was the best consistency of tuna
fish .

Table 3: Examples of sentences output by the Polarity Switching Model.

Figure 3: Examples of a sentence sentiment parse tree. The Tree Impurity metric for compositionality gives a
somewhat high score of 1.95 while Weighted Node Switching gives it a lower score of 0.37. The higher score TI
score is likely due to high numbers of label 1 and 2 nodes, contributing most to the overall average, which is quite
different from the root node of 4. WNS, however, considers more local compositionality information which shows
that most of the subtrees are not very compositional, that coupled with the overall large quantity of those subtrees,
leads to the lower WNS. Additionally, WNS brings in global information via its weighting scheme which more
correctly gives higher weights to when local node switches have a sentence level effect.

Sentence TI WNS
If Steven Soderbergh ’s ‘ Solaris ’ is a failure it is a glorious failure 2.51 1.65
A sober and affecting chronicle of the leveling effect of loss . 0.0 0.23
Cool ? 0.33 2.5
Nothing is black and white . 0.0 0.0

Table 4: Examples of sentences and their ground truth compositionality scores via both proposed metrics: Weighted
Node Switching (WNS) and Tree Impurity (TI) methods. Higher scores equate to higher compositionality of the
sentence. These examples represent the far ends of the spectrum on on method or the other, as 2.51 is the highest
score in TI and 2.5 is the highest score in WNS, and 0.0 is the lowest possible compositionality score for both
methods. One of the most telling examples of WNS’s superiority over TI can be show in sentence three. Adding a
”?” to ”Cool” completely changes the tone of the sentence; WNS captures that nuance where TI struggles.


