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Abstract

‘Fake news’ — succinctly defined as false or misleading information masquerading as legitimate
news — is a ubiquitous phenomenon and its dissemination weakens the fact-based reporting of the
established news industry, making it harder for political actors, authorities, media and citizens
to obtain a reliable picture. State-of-the art language-based approaches to fake news detection
that reach high classification accuracy typically rely on black box models based on word em-
beddings. At the same time, there are increasing calls for moving away from black-box models
towards white-box (explainable) models for critical industries such as healthcare, finances, mili-
tary and news industry. In this paper we performed a series of experiments where bi-directional
recurrent neural network classification models were trained on interpretable features derived from
multi-disciplinary integrated approaches to language. We apply our approach to two benchmark
datasets. We demonstrate that our approach is promising as it achieves similar results on these
two datasets as the best performing black box models reported in the literature. In a second
step we report on ablation experiments geared towards assessing the relative importance of the
human-interpretable features in distinguishing fake news from real news.

1 Introduction

The topic of ‘disinformation’ — an umbrella term used to encompass a wide range of types of informa-
tion disorder, “including ‘fake news’, rumors, deliberately factually incorrect information, inadvertently
factually incorrect information, politically slanted information, and ‘hyperpartisan’ news* (Tucker et al.,
2018) — is attracting more and more attention. This reflects a deeper concern that the prevalence of
disinformation leads to an increased political polarization, decreases trust in public institutions, and un-
dermines democracy. For example, the spread of 'fake news’ — concisely defined as intentionally false
information masquerading as genuine news — for financial and political gains had a potential impact
on the contentious Brexit referendum or 2016 U.S. presidential elections (Allcott and Gentzkow, 2017;
Ward, 2018). Against this background, it is hardly surprising that there has been an increased interest
in the development of methods, measures and computational tools that efficiently and effectively detect
disinformation using machine learning and deep learning techniques. Among different approaches to
fake news detection, language-based approaches have emerged as promising (for more details, see Sec-
tion 2). Here the term ‘language-based’ is used in a broad sense to include a variety of approaches, such
as those that employ traditional linguistic features, readibility features, style-based features, discourse
and rhetorical features or those that draw on word embedding techniques. The latter have proven to be
particularly successful in detecting fake news. Despite their success, however, their detection is based on
latent features that are not human interpretable and thus cannot explain why a piece of news was detected
as fake news. As recently pointed out by Shu et al. (2019), white-box (explainable) approaches to fake
news detection are desirable, since model-derived explanations can (1) provide valuable insights origi-
nally hidden to different stakeholders, such as policy makers, professional journalists and citizens and
(2) can contribute to further improvement of fake news detection systems. This paper seeks to respond to
recent calls for more explainable (white-box) approaches to fake news detection by performing a series
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of experiments where bi-directional recurrent neural network classifiers were trained on interpretable
features derived from multi-disciplinary integrated approaches to language. The data come from two
benchmark datasets and fake news detection is formulated as a binary classification and as a multiclass
classification tasks correspondingly. The results of our experiments are promising, as our classification
models achieve similar performance as the best-performing black box models reported in the literature.
In a second step we report on ablation experiments geared towards assessing the relative importance of
the human-interpretable features in distinguishing fake news from real news. The remainder of the paper
is organized as follows: After a concise overview of related work in Section 2, Section 3 introduces the
two data sets, Section 4 describes our approach to automated text analysis and six groups of language
features used in the paper, Section 5 describes the model architecture, the training procedure and the
method used to assess the relative feature importance. Sections 6 presents and discusses the main results
and concluding remarks follow in Section 7.

2 Related Work

Here we provide a concise overview of recent approaches geared towards fake news detection that em-
ploy machine learning and deep learning techniques and we focus in particular on language-based ap-
proaches that are most pertinent to the purposes of this paper (for a more systematic and comprehensive
overviews, see recent reviews and surveys by Shu et al. (2018), Oshikawa et al. (2020), Zhang and
Ghorbani (2020) and Zhou and Zafarani (2020). Fake news detection is most often formulated as a
binary classification task. However, categorizing all the news into two classes (fake vs real) is not the
only conceivable way, since there are cases where the news is partially real and partially fake. A com-
mon practice is to add more classes distinguishing between several degrees of truthfulness and thus
formulating fake news detection as a multi-class classification task. As will become evident later in this
paper, we apply our approach to both scenarios. Three approaches to fake news detection frequently
described in the literature are: (1) knowledge-based fake news detection (commonly using techniques
from information retrieval to determine the veracity/truthfulness of news), (2) language-based fake news
detection (drawing on traditional linguistic, style-related, readability or rhetorical features or using word
embedding methods to distinguish between fake and real news) and (3) propagation-based fake news de-
tection (typically using network analyses to determine the credibility of news sources at various stages,
being created, published online and their spread via social media). Compared to knowledge-based and
propagation-based approaches, language-based approaches are advantageous for several reasons, includ-
ing: (1) they enable near real-time feedback (proactive rather than retroactive), i.e. they are not restricted
to being applied only a posteriori (Potthast et al., 2017) and (2) they are scalable. A guiding assumption
of language-based approaches is that there are statistical regularities inherent in natural languages and
distributional patterns of language use indicative of fake news that are not consciously accessible to fake
news creators. Space limitations prevent us from going into further details (but see reviews and survey
cited above). In what follows, we will zoom in on previous studies on fake news detection conducted
on the bases of the publicly available benchmark datasets used in the corpus study: the ISOT dataset,
an ‘entire article’ dataset comprising 20k+ real and fake news texts (Ahmed et al., 2018), and the LIAR
dataset, a ‘claims dataset’ comprising 12k+ real-world short statements collected from a variety of online
sources (Wang, 2017) (see section 3 for details). Upon introduction of the ISOT dataset, (Ahmed et al.,
2018) report on the results of experiments using n-gram features with two different features extraction
techniques - Term Frequency (TF) and Term Frequency-Inverted Document Frequency (TF-IDF) - and
six different machine learning techniques - Stochastic Gradient Descent, Support Vector Machines, Lin-
ear Support Vector Machines (LSVM), K-Nearest Neighbour and Decision Trees. Their best-performing
model reached a classification accuracy of 92% using TF-IDF for feature extraction and an LSVM clas-
sifier, showing that real and fake news can be discriminated with high accuracy on the basis of the use
of multiword sequences. However, subsequent studies have demonstrated that classification accuracy
on this dataset can be pushed even higher - beyond the 99% accuracy mark - through the employment
of deep neural networks trained on word embedding vectors: (Kula et al., 2020) reported classification
accuracy between 95.04% and 99.86% using an LSTM neural network trained on different word em-
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beddings (glove, news, Twitter, crawl) implemented in the Flair NLP framework (Akbik et al., 2019).
Goldani et al., (2020) achieved a classification accuracy of 99.8% using a non-static capsule network
and ‘glove.6B.300d’ word embeddings (Pennington et al., 2014). While the dataset ISOT involves a bi-
nary classification (fake vs. real), the LIAR dataset presents a six-way multiclass classification problem,
where individual claims statement was evaluated for its truthfulness and received a much more fine-
grained veracity label. In the experiments presented upon publication of the LIAR dataset, (Wang, 2017)
provided several benchmarks based on several shallow learning classifiers (e.g. logistic regression and
support vector machines) trained on n-gram features and deep learning classifiers (bi-directional long
short-term memory and convolutional neural networks architectures) using pre-trained 300-dimensional
word2vec embeddings from Google News (Mikolov et al., 2013). The latter reached a classification
accuracy task of up to 27%. Incorporating available meta-data about the subject, speaker and context
raised classification accuracy to 27.4%. Subsequent studies have shown that the classification accuracy
on the LIAR set can be further increased to just over 45% by more complex hybrid models that integrate
the linguistic information with speaker profiles into an attention based LSTM model (Long, 2017), by
supplementing the data with verdict reports written by annotators (Karimi et al., 2018) or by replacing
the credibility history in LIAR with a larger credibility source (Kirilin and Strube, 2018). Importantly,
however, all state-of-the-art models designed to detect the veracity of a news article or claim exploit the
information contained in high-dimensional word embeddings that are uninterpretable to humans, thereby
severely limiting our ability to understand ‘why’ a given claim or news article was predicted to be fake
or real.

3 Data

The experiments were conducted on two recently released datasets for fake news detection, the ISOT
dataset compiled by the Information Security and Object Technology research lab (Ahmed et al., 2018)
and the LIAR dataset introduced in (Wang, 2017). The datasets were selected based on their comple-
mentary attributes in terms of text types (full articles with average length of about 400 words vs. short
statements with an average length of just under 20 words) and the granularity of the veracity labels
(binary labels based on source selection and six-way classification based on ratings by politifac.com edi-
tors). Both datasets are sufficiently large for training deep models. The ISOT dataset consists of 40,000+
real and fake news articles collected from real-world sources between 2016 and 2017. The real (truthful)
news articles were obtained by crawling articles from Reuters.com. The fake news articles were col-
lected from unreliable websites that were flagged by politifact.com, a fact-checking organization in the
USA, and Wikipedia. The ISOT dataset contains articles on a variety of topics with a focus on political
and world news topics (see Table 2). For each article the following information is provided: article title,
text, type (topic) and publication date. Close inspection of the dataset revealed that all and only instances
of real news were introduced by the words "WASHINGTON (Reuters)”, indicating the place and name
of the news agency that has provided the news article. To prevent our models from capitalizing on this
information, all instances of this string were deleted. We also checked for and removed all duplicates
in the dataset (N = 6251). Table 2 presents the distribution of articles across news types (real/fake) and
topics before and after deduplication (original/cleaned). The dataset was split in training, development,
and testing sets using a 80/10/10 split. The LIAR dataset is a recent benchmark dataset for fake news
detection that in includes 12,836 real-world short statements collected from a variety of online sources -
including Facebook posts, tweets, news releases, TV/radio interviews, campaign speeches, TV ads and
debates - on a range of topics - including economy, healthcare, taxes, federal-budget, education, jobs,
state budget, candidates-biography, elections, and immigration. Each statement was labeled by an edi-
tor from politifact.com on a six-level ordinal scale of truthfulness ranging from “True”, for completely
accurate statements, to ’Pants on Fire” (from the taunt “Liar, liar, pants on fire”) for false and ludicrous
claims. The distribution of the six labels is relatively well-balanced: with the exception of 1,050 in-
stances of the ‘pants-fire’ category, the instances for all other labels range from 2,063 to 2,638. The
LIAR set further includes a rich set of meta-data for each speaker including party affiliation, current job
and home state. The statements in the dataset are also fairly balanced across the two major political par-
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ties of the US - democrats and republicans - and also contain a significant amount of posts from online
social media. The dataset is distributed into training, validation and testing sets in a 80/10/10 manner.

4 Automated Text Analysis

The raw texts from the two datasets were automatically analyzed using CoCoGen, a computational tool
that implements a sliding window technique to calculate within-text distributions of feature scores (see
recently published papers that use this tool, (Strobel et al., 2018; Kerz et al., 2020b; Kerz et al., 2020a).
In contrast to the standard approach implemented in other tools for automated text analysis that rely
on aggregate scores representing the average value of a feature in a text, the sliding-window approach
generates a series of measurements representing the ‘local’ distributions of scores. A sliding window
can be conceived of as a window of size ws, which is defined by the number of sentences it contains.
The window is moved across a text sentence-by-sentence, computing one value per window for a given
feature. The series of measurements faithfully captures a typically non-uniform distribution of features
within a text and is referred here to as a ‘contour’.! To compute the value of a given feature in a given
window m (w(m)), a measurement function is called for each sentence in the window and returns a
fraction (wn,, /wd,,). CoCoGen uses the Stanford CoreNLP suite (Manning et al., 2014) for performing
tokenization, sentence splitting, part-of-speech tagging, lemmatization and syntactic parsing (Probabilis-
tic Context Free Grammar Parser (Klein and Manning, 2003)). In its current version, CoCoGen supports
a total 154 of features that fall into six categories: (1) features of syntactic complexity (N=19), (2) fea-
tures of lexical density, sophistication and variation (N=12), (3) information-theoretic features (N=3), (4)
register-based n-gram frequency features (N=25), (5) LIWC-style (Linguistic Inquiry and Word Count)
features (N=61) and (6) Word-Prevalence measures (N=36). A brief overview of the features and their
short descriptions are provided in Table 4 in the Appendix. The inclusion of these features? is motivated
by contemporary language and cognitive sciences characterized by an integrated, multi-method, and
transdisciplinary approach needed to advance our understanding of the human processing and learning
mechanisms (Christiansen and Chater, 2017). The first three sets of features are derived from the litera-
ture on language development showing that, in the course of their lifespan, humans learn to produce and
understand complex syntactic structures, more sophisticated and diverse vocabulary and informationally
denser language (see, e.g., Berman, 2007; Lu, 2010, 2012; Hartshorne and Germine, 2015; Ehret and
Szmrecsanyi, 2019). The fourth set of features is derived from research on language adaptation (Chang et
al., 2012) and research that looks at language from the perspective of complex adaptive systems (Beckner
et al., 2009; Christiansen and Chater, 2016) indicating that, based on accumulated language knowledge
emerging from lifelong exposure to various types of language inputs, humans learn to adapt their lan-
guage to meet the functional requirements of different communicative contexts. The features in set five
are based on insights from many years of research conducted by Pennebaker and colleagues (Pennebaker
et al., 2003; Tausczik and Pennebaker, 2010), showing that the words people use in their everyday life
provide important psychological cues to their thought processes, emotional states, intentions, and moti-
vations. And finally, the inclusion of features in group six is motivated by recent efforts to estimate of of
how well words are known in the population through crowdsourcing and corpus-based techniques. An
accumulating body of evidence shows that such word prevalence measures are good predictors of human
perfomance on various language tasks (Brysbaert et al., 2019; Johns et al., 2020)

5 Classification Models

For the classification, we used Bi-directional Recurrent Neural Network (BRNN) classifiers with Gated
Recurrent Unit (GRU) cells (Cho et al., 2014). BRNNs have been shown to outperform unidirectional
RNNSs in application areas ranging from acoustic modeling (Sak et al., 2014) to machine translation
(Bahdanau et al., 2014). Bi-directional neural network models have also been employed in previous

'In general, for a text comprising n sentences, there are w = n — ws + 1 windows. Given the constraint that there has to
be at least one window, a text has to comprise at least as many sentences at the ws is wide n > w.

2CoCoGen was designed with extensibility in mind, so that additional features can easily be implemented. It uses an abstract
measure class for the implementation of additional features.
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studies on the two datasets investigated here (Wang, 2017; Kula et al., 2020), making them well suited
for purposes of comparison and, more specifically, for examining whether and to what extent a classifier
trained on human-interpretable features can approximate the performance of a state-of-the-art classifier
trained on word embeddings. Since the two datasets differ in terms of the availability of meta-data (ISOT:
no meata-data, LIAR: rich information on subject, speaker and context) and with respect to the granu-
larity at which truthfullness was assessed (ISOT: binary, LIAR: 6-way multiclass), the BRNN classifiers
were adapted so as to take these differences into account.Figure 1 shows the architecture of models used
in the present paper. X = (z1,22,...,x,) is the output from CoCoGen, which is a sequence of 154-
dimensional vectors. To integrate the context information, the words in the context description were
mapped to 300-dimensional word embedding vectors using the dependency based word-embedding im-
plemented in spaCy (Honnibal and Montani, 2017), represented by C' = (c1, ¢, ..., ¢,). Instead of
one-hot encoding, we use word embeddings and BRNN to encode the context meta information here,
as otherwise the feature vector for context information would result in 5075-dimensional sparse one-hot
vectors. J = (j1, j2, - - -, jn) is a sequence of word embeddings for the job title of the speaker of a given
text, following the same reasoning as above. S = (s1, s2,...,7,) and P = (p1, S2,...,py) are 70 and
25 dimensional on-hot vector for state information and party affiliation of the speaker. The structure of
the classifier for ISOT dataset is shown in 1 on the left hand side in Figure 1. The lower part encircled
by the dashed red line represents the recurrent network, where the CoCoGen output for a given text is
fed into a 2-layer BRNN consisting of GRU cells with 200 hidden units in each layer. hig, hog represent
the initial hidden states of the first and second layer of the BRNN respectively in the forward direction
and R, hly, represent the initial hidden states of the first and second layer of BRNN respectively in the
backward direction. hg, and hj,, represent the last hidden states of the second layer of the BRNN in
the forward and backward direction respectively. These layers are concatenated and passed through a
feed-forward neural network, encircled by the blue dashed line in Figure 1. This network consists of
three linear layers, whose output dimensions are 200, 100 and 2. Between layers 1 and 2 as well as
between layers 2 and 3 we inserted a Batch Normalization (BN) layer, a Parametric ReLU (PReLU)
activation function layer and a Dropout layer with a dropout rate of 0.5. A softmax layer is applied
before the final output ¢. For the LIAR dataset, we built three BRNN models: (1) a model using only
the CoCoGen output (X), (2) a model using CoCoGen output and the context information (X + C) and
(3) a model using CoCoGen output, the context information and the speaker profile, which comprises
information about the job, the state and the party of the of a speaker (X + C +J + S + P). The structure of
CoCoGen-only model is identical to model built for the ISOT dataset, with the exception that the output
layer has a size of 6 instead of 2. In the CoCoGen + Context model shown in sub-figure 2 in Figure 1, the
sequence vector X = (z1,z2,...,x,) represents the CoCoGen output as described for the ISOT model
above. BRNN blocks in sub-figure 2 has a same structure as the lower part of sub-figure 1, which is a
2-layer bidirectional RNN, whose output is a concatenation of the last hidden state of uppermost layer
in forward and backward direction respectively. The BRNN on the left size in sub-figure 2 has a hidden
state size of 200, while the BRNN on the right side has one of 10. The Feed-forward 1 block is identical
to the Feed-forward part shown in sub-figure 1. Sub-figure 3 shows the structure of model making use of
CoCoGen features + context + speaker profiles. S and P are one-hot encoded vectors described as above.
They are squeezed to 10-dimensional vectors through a feed-forward neural network, Feed-forward 2,
whose structure is shown in the lower right part of Figure 1. Feed-forward 2 consists of two linear lay-
ers, the output of which are 20 for Linear 1 and 10 for Linear 2 respectively. The BRNN for CoCoGen
output and context are identical to the corresponding BRNN blocks mentioned above. The BRNN for
job title information encoding has the same structure and hidden state size as BRNN for context. All
output from BRNN blocks and Feed-forward 2 blocks are concatenated and fed into Feed-forward 1
block, whose structure is shown in the upper part of sub-figure 1 with the exception that linear layers
have output size of 210, 105 and 5 respectively. Since the labels of the LIAR dataset are ordinal in nature,
i.e. pants-fire < false < barely-true < half-true < mostly-true < true, the classification of instance in liar
dataset can be treated as an ordinal classification problem. To adapt the neural network classifier to the
ordinal classification task, we followed the NNRank approach described in (Cheng et al., 2008), which
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Figure 1: Structure of the BRNN classifiers built for the ISOT and LIAR datasets: The structure in 1
represents the model architecture used for ISOT and LIAR that makes use of textual information only (all
CoCoGen features). The structures in 2 and 3 represent the model extensions that incorporate contextual
meta-data (C) and speaker profiles (J = job title, P = party affiliation, S = speaker).

is a generalization of ordinal perception learning in neural networks(Crammer and Singer, 2002) and
outperforms a neural network classifier on several benchmark datasets. Instead of one-hot encoding of
class labels and using softmax as the output layer of a neural network, in NNRank, a class label for class

k is encoded as (y1,vy2,---,Yi,---,Yc—1), in which y; = 1 for i < k and y; = 0 otherwise, where C' is
the number of classes. For the output layer, a sigmoid function was used. For prediction, the output of
the neural network (01, 09, ...,00—1) is scanned from left to right. It stops after encountering o;, which

is the first element of the output vector that is smaller than a threshold 7" (e.g. 0.5), or when there is no
element left to be scanned. The predicted class of the output vector is the index & of the last element,
whose value is greater than or equal to 1. Finally, for the purpose of comparison, we also recreated
the convolutional neural network (CNN) model described in (Wang, 2017). This CNN model consists
of filters of size 2, 3 and 4. Each size has 128 filters with a max-pooling operation being performed
on each output filter. The result of the max-pooling was fed into a feed-forward neural network for the
classification. As an additional baseline, we further built structurally equivalent BRNN classifiers based
on sentence embeddings from Sentence-BERT (SBERT) (Reimers and Gurevych, 2019).3

All models are implemented using PyTorch (Pytorch, 2019). For the BRNNs and the CNN that don’t
use the ordinal information cross entropy loss was used as a loss function:

C
L(V,¢) = =3 ply) log(p(3:))
i=1

where c is the true class label of the current observation, C'is the number of classes, (p(y1), ..., p(yc))
is a one-hot vector with
1 i1=c¢
p(yi) = {

0 otherwise

and Y = (p(§1), p(42), - - ., p(§ic)) is the output vector of the softmax layer, which can be viewed as the
predicted probabilities of the observed instance falling into to each of the classes. For training BRNNs

3SBERT is a finetuned BERT network using siamese and triplet network structures that. It has been shown to outperform
other state-of-the-art sentence embeddings methods on common semantic textual similarity and transfer learning tasks (Reimers
and Gurevych, 2019).
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using ordinal information binary cross entropy was used:
. 1 &
LY, €) = =5 D_(vilog(®) + (1 — yi) log(1 — 7))

=1

in which ¢ = (y1,42,...,yn),C = 14 is number of responses and Y = ({1, 72,...,Jn) is the
output vector of the sigmoid layer rounded to closest integer. We tuned all hyperparameters on the
validation set using a grid search over sets of optimizers S = {Adamax, Adagrad, RMSprop}, learning
rates L = {0.01,0.001,0.0001} and normalization methods N = {Standardization, Min-max}. The
optimal hyperparameter combinations are provided in Table 5 in the Appendix.

To determine the relative importance of the language features groups, we conducted feature ablation
experiments. Classical forward or backward sequential selection algorithms that proceed by sequentially
adding or discarding features require a quadratic number of model training and evaluation in order to
obtain a feature ranking (Langley, 1994). In the context of neural network models, training a quadratic
number of models can become prohibitive. To alleviate this problem, we used an adapted version of the
iterative sensitivity-based pruning algorithm proposed by (Diaz-Villanueva et al., 2010). This algorithm
ranks the features based on a ‘sensitivity measure’ (Moody, 1994; Utans and Moody, 1991) and removes
the least relevant variables one at a time. The classifier is then retrained on the resulting subset and a new
ranking is calculated over the remaining features. This process is repeated until all features are removed.
In this fashion, rather than training % models required for sequential algorithms, the number of
models trained is reduced to -, where m is the number of features or feature groups that can be removed
at each step. We report the results obtained after the removal of a single feature group at each step. At
step t, a neural network model M, is trained on the training set. The training set at step ¢ consists of
instances with feature groups F; = {f1, fo, ..., fp,} where fi,... fp, are the remaining feature groups
at the current step, whose importance rank is to be determined. We define X; as the test set with feature
set Iy and X ,? as the same dataset as X except we set the it feature fi of each instance within the dataset
to its average. Furthermore, we define g(X') as the classification accuracy of M; ,, for a dataset X. The
sensitivity of a feature group f; at step ¢ is obtained from:

Sia = 9(Xe) = 9(X])
The most important feature group at step ¢ can be found by:

[ i =iger (Sit)

Then we set the rank for feature f;:
Rank; =t

In the end, feature f; is dropped from F; and the corresponding columns in training and test dataset are
also dropped simultaneously:

Fip=F—{f;}

This procedure is repeated, until |Fy/| = 1.

6 Results

The performance metrics of the classification models for both datasets (global accuracy, precision and
recall) are presented in Table 1, along with comparisons with the results of previous studies (a extended
version of the table with performance data of additional models is provided in the Appendix). The re-
sults of our BRNN classifiers trained on interpretable features are highly competitive with those obtained
from state-of-the-art RNN, CNN and capsule networks that exploit word embeddings to represent textual
contents. In fact, in both datasets, our classifiers match the performance of the best-performing models
within half a percent: For ISOT, the CAPSULE-glove (Goldani et al., 2020) and LSTM-glove (Kula et
al., 2020) both achieve an accuracy of 99.8%, while BRNN CoCoGen achieves 99.3%. Moreover, the
BRNN CoCoGen model outperformed the LSTMs presented in Kula et al. (2020) that utilize three other
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word embeddings implemented in the Flair library (news, Twitter, crawl) by up to 4.3% and improved
on the performance on the n-gram-based LSVM model by 7.3%. For the LIAR data set, the difference in
classification accuracy between BRNN CoCoGen and the CNN utilizing 300-dimensional word embed-
dings trained on Google News presented in Wang (2017) amounts to 0.2%, when meta-data on context
and speaker profiles is taken into account. Excluding all meta-data, the BRNN CoCoGen (ordered) model
reached an accuracy of 27.7%, which is even slightly higher than the performance of the Bi-LSTM 300-
dim word2vec embeddings (Google news) model. Our CNN CoCoGen model achieved a classification
accuracy of 25.6%, which is 1.4% below the performance of the corresponding CNN model presented in
Wang (2017) , CNN 300-dim word2vec embeddings (Google News). Interestingly, however, this model
suffered from a substantial drop in accuracy to 24.8%, once it was infused with contextual meta-data. In
contrast, all BRNN CoCoGen models invariably benefited from the addition of any type of meta-data.
While performance with the CAPSULE-glove networks presented in Goldani et al. (2020) is limited by
their selective integration of meta-data, it is worth noting that the CNN CoCoGen model outperformed
all their models without recourse to meta-data. Taken together these results present strong evidence
that successful detection of fake news can be achieved without sacrificing transparency. It is also worth
pointing out that approaching the fake news detection task as an ordinal classification problem had con-
siderable effects on a classifiers performance. Specifically, we observed (1) that classification accuracy
slightly increased by 0.6% relative to a unordered classification approach and (2) that classification be-
havior shifted from a bias towards recall to a bias towards precision. Furthermore, comparison of the
confusion matrices of our classifiers revealed that changing to the ordinal classification approach had
positive effects on the distribution of errors: The ordinal classification problem is monotonic, meaning
that the further a misclassification is from the main diagonal of a confusion matrix, the more severe it is.
The confusion matrix of the best-performing BRNN CoCoGen model shows that for five out of the six
classes (pants-fire, false, half-true, mostly-true, true) the most frequent prediction was the true class and
the number of misclassifications decreases with increasing distance to the true class. In contrast, in the
case of the unordered classifiers, we observed that the extreme categories (‘pants-fire’ and ‘true’) were
avoided and predictions to the intermediate categories were preferred, especially in classifiers without
meta-data information (confusion matrices for all models are provided in the Appendix). To the best of
the authors knowledge, current models on multi-class fake news detection do not concern with the order
of labels (Oshikawa et al., 2018). Our results indicate that future work can benefit from taking an ordinal
classification approach. The results of our feature ablation experiments revealed a similar rank order in
feature importance in both datasets (detailed results can be found in Table 14 in the Appendix): In each
case, classification performance was mainly driven by features from the groups Lexical, LIWC, Syntactic
and register-based n-grams, and to a lesser extent by information theoretic and word-prevalence-based
features. Specifically, Table 14 indicates that - in the casse of the ISOT dataset - dropping the features
from the LIWC group results in the largest decrease in classification accuracy of 5.1% on the validation
set, resulting in a drop in accuracy on the test set to 93.8%. Re-training the model without the LIWC
features yields the new baseline of 99.1%, indicating that the remaining features contained enough in-
formation to allow the retrained model to compensate for the loss of the LIWC information. After the
elimination of the next two most-important feature groups, the syntactic and lexical groups, the retrained
model at iteration 3 is still able to achieve an accuracy on the validation set of 97.9%. However, after the
drop of the n-gram feature group, classification accuracy on the drops to 76.3% (validation) and 76.2%
(test), indicating that the lost information from the four top-feature groups cannot be compensated for
by information from the remaining feature groups, i.e. information theoretic and word-prevalence-based
features. In the case of the the LIAR dataset, the relative influence of the six feature groups is more even
and the predictive power of the model (27.2% accuracy on the test set) appears to stem from exploit-
ing information from all six feature groups. For a closer examination of how individual features within
each feature-group distinguished between real and fake news, we derived standard scores by performing
z-standardization on all indicators and determined the difference between mean standard scores of real
and fake news (DeltaScoreindes i = SCOT€inder i, fake news — S COT€index i, real news) (@ complete table
with the DeltaScores for the top-20 features for both datasets is provided in the Appendix). Inspection
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Validation set Test set

Dataset Model Accuracy Precision Recall Accuracy Precison Recall

ISOT  LSVM unigram 50k’ — - — 0.920 - -~
LSTM-glove? — - — 0.998 — —
CAPSULE-glove® - - - 0.998 - -
BRNN SBERT 0.998 0.998  0.998  0.997 0.997  0.997
BRNN CoCoGen 0.994 0.994 0994  0.993 0.993  0.993

LIAR  Bi-LSTM 300-dim word2vec*  0.223 - - 0.233 - -
embeddings (Google News)
CNN 300-dim word2vec* 0.247 - - 0.274 - -

embeddings (Google News)
+ context + speaker profile

CAPSULE-glove + Party? 0.261 - - 0.240 — —
CAPSULE-glove + State® 0.240 - - 0.243 - -
CAPSULE-glove + Job? 0.254 - - 0.251 - -
BRNN SBERT (ordered) 0.292 0272 0327 0270 0296 0.249
BRNN CoCoGen (ordered) 0.251 0281 0218 0237 0217 0207
BRNN CoCoGen (ordered) 0.264 0280 0241 0253  0.281 0.238
+ context

BRNN CoCoGen (ordered) + 0.284 0.305 0.263  0.272 0.304  0.258
context + speaker profile

Table 1: Evaluation results on the ISOT and LIAR datasets on the validation and test sets.! = Ahmed et
al., 2018; 2 = Kula et al., 2020; * = Goldani et al., 2020; * = Wang, 2017

of the Delta Scores revealed some interesting patterns. For example, real news articles and claims are
characterized by (1) relatively higher lexical diversity (as measured by type-token ratio features), (2)
stronger reliance of multiword sequences from the news and academic register (measured by register-
based n-gram frequency measures), (3) greater phrasal syntactic complexity (as measured, e.g., by the
number of complex nominals per clause) and (4) more frequent use or word from particular domains,
such as work, money, power or word classes, such as preposition and quantifiers. In contrast, fake news
are characterized by (1) greater syntactic complexity (as measured by, e.g. by the number of clauses per
sentence), (2) frequent use of multiword sequences form the domain of fiction, (3) higher lexical sophis-
tication scores (as measured in terms of relatively infrequent words) and (4) a strong reliance on personal
pronouns, adverbs and emotion words. While limitations of space preclude an in-depth discussion, these
results demonstrate that the use of interpretable features can provide new insights and knowledge about
the characteristics of fake news and explain “why” a piece of news was detected as fake news see (Shu
et al., 2019) for a discussion of explainable fake news detection.

7 Conclusion and Future Work

In recent years, there is a growing recognition of the need to move away from black-box models towards
white-box models for solving practical problems, in particular in the context of critical industries, includ-
ing healthcare, criminal justice, and news (Rudin, 2019). This is due to the fact that human experts in a
given application domain need both accurate but also understandable models (Loyola-Gonzalez, 2019).
In this paper, we have made a contribution to this development in the domain of fake news detection. We
have demonstrated that models trained on human interpretable features in combination with deep learn-
ing classifiers can compete with black box models based on word embeddings. In the future we intend
to extend this work in two directions: First, we plan to apply our approach to fake news detection in
German whose research still lags far behind that available for English. Second, we also plan to apply our
approach to the detection of rumours and conspiracy theories to tackle and combat the ongoing Covid-19
infodemic.
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Appendix

Table 2: Composition of the ISOT dataset; sizes indicate the number of articles in a given category;

‘cleaned’ refers to the datasets after deduplication

News Type Total size Topic Size

Real News original: 21417; cleaned: 21192 World-News original: 10145; cleaned: 9978
Politics-News original: 11272; cleaned: 11214

Fake-News original: 23481: cleaned: 17455 Government-News original: 1570; cleaned: 514
Middle-east original: 778; cleaned: 0
US News original: 783; cleaned: 783
Left-News original: 4459; cleaned: 683
Politics original: 6841; cleaned: 6425
News original: 9050; cleaned: 9050

Table 3: Composition of the LIAR dataset

Training set size 10,269
Validation set size 1,284
Testing set size 1,283
Avg. statement length (tokens) 17.9
Top-3 Speaker Aliations

Democrats 4,150
Republicans 5,687
None (e.g., FB posts) 2,185
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Table 4: Concise overview of the six feature groups

Feature group Size | Subtypes Example/Description
Syntactic complexity | 18 | Length of production unit e.g. mean length of clause
Subordination e.g. clauses per sentences
Coordination e.g. Coordinate phrases per clause
Particular structures e.g. Complex nominals per clause
Lexical richness 12 | Lexical density e.g. ration contents words / all words
Lexical diversity e.g. type token ratio
Lexical sophistication e.g. words on General Service List
Register-based 25 | Spoken (n € [1,5]) measures of frequencies
n-gram frequency Fiction (n € [1,5]) of n-grams of order 1-5
Magazine (n € [1,5]) from five language registers
News (n € [1,5])
Academic (n € [1,5])
Information theory 3 Kolmogorovpefiate measures use Deflate algorithm
Kolmogorovpefiate Syntactic and relate size of compressed file
Kolmogorovpefiate Morphological | tO size of original file
LIWC-style 60 | 2300 words from > 70 classes include e.g.
classes function, grammar
perceptual, cognitive
and biological processes,
personal concerns, affect,
social, basic drives, ...
Word-Prevalence 36 | crowdsourcing-based measures capture information on
corpus-based word frequency, contextual
diversity and semantic
distinctiveness differentiated
across language variety (US, UK)
and gender (male, female)
Dataset Model Optimizer learning rate Normalization Method
ISOT BRNN Adamax 0.001 Standardization
LIAR BRNN (ordered) Adamax 0.001 Standardization
BRNN (unordered) RMSprop 0.001 Min-Max
CNN RMSprop 0.01 Standardization
BRNN + context Adamax 0.0001 Standardization
BRNN + context + speaker profile (unordered) RMSprop 0.0001 Standardization
BRNN + context + speaker profile (ordered) Adamax 0.001 Standardization

Table 5: Optimal combinations of optimizer, learning rate and normalization methods identified via grid

search.
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Validation set Test set

Dataset Model Accuracy Precision Recall Accuracy Precison Recall
ISOT  LSVM unigram 50k - - - 0.920 - -
(Ahmed et al. 2018)
LSTM-glove - - - 0.998 - -
LSTM-news - - - 0.950 - -
LSTM-twitter - - - 0.980 - -
LSTM-crawl - - - 0.976 - -
(Kula et al., 2020)
CAPSULE-glove - - - 0.998 - -
(Goldani et al., 2020)
BRNN SBERT (ordered) 0.292 0.272 0327 0.270 0.296  0.249
BRNN CoCoGen 0.994 0.994 0994  0.993 0.993  0.993
LIAR  Bi-LSTM 300-dim word2vec ~ 0.223 - - 0.233 - -
embeddings (Google News)
CNN 300-dim word2vec 0.260 - - 0.270 - -
embeddings (Google News)
CNN 300-dim word2vec 0.277 - - 0.248 - -
embeddings (Google News)
+ context
CNN 300-dim word2vec 0.247 - - 0.274 - -

embeddings (Google News)
+ context + speaker profile
(Wang, 2017)

CAPSULE-glove + Party 0.261 - - 0.240 - -
CAPSULE-glove + State 0.240 - - 0.243 - -
CAPSULE-glove + Job 0.254 - - 0.251 - -
(Goldani et al., 2020)

BRNN SBERT (ordered) 0.292 0.272  0.327  0.270 0.296 0.249

BRNN CoCoGen (unordered)  0.269 0.186  0.227 0.244 0.172  0.207
BRNN CoCoGen (ordered) 0.251 0.281 0.218  0.237 0.217  0.207
CNN CoCoGen (unordered) 0.266 0.357 0.224  0.256 0.155 0.216
BRNN CoCoGen (ordered) 0.264 0280 0.241  0.253 0.281 0.238
+ context

BRNN CoCoGen (unordered)  0.288 0.233  0.253  0.266 0.217 0.231
context + speaker profile

BRNN CoCoGen (ordered) +  0.284 0.305 0.263  0.272 0.304  0.258
context + speaker profile

Table 6: Evaluation results on the ISOT and LIAR datasets on the validation and test sets. Models in-
dexed as "CoCoGen” comprise textual features only. Models with ’+” are hybrid models with textual and
meta-data. The labels ”ordered” and ’unordered” indicate whether an ordinal and nominal classification
method was applied.
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Table 7: Add caption

Top-20 Measures Fake News

LIAR ISOT
Measure Delta Score Measure Delta Score
1 Lexical Density 0.183 LIWC Adverb 0.894
2 LIWC Focus future 0.132 LIWC Ipron 0.733
3 LIWC Relig 0.117 ngram 2 fic 0.728
4 Lexical Div CNDW 0.115 LIWC You 0.681
5 Lexical Div TTR 0.115 LIWC Focuspresent 0.677
6 Lexical Soph BNC 0.114 Mor Kolmogorov 0.670
7 LIWC Verb 0.106 Syntactic ClausesPerSentence 0.664
8 LIWC Hear 0.099 Base Kolmogorov 0.652
9 MeanLengthWord 0.098 LIWC Certain 0.630
10 Base Kolmogorov 0.095 Syntactic Kolmogorov 0.629
11 LIWC Negate 0.091 ngram 3 fic 0.620
12 Lexical Soph ANC 0.091 LIWC See 0.561
13 LIWC Posemo 0.087 Syntactic DepClausesPerTUnit 0.502
14 Morphological Kolmogorov 0.087 LIWC Interrog 0.498
15 Syntactic Kolmogorov 0.084 LIWCI 0.438
16 Syntactic VerbPhrasesPerTUnit 0.081 LIWC They 0.431
17 MeanSyllablesPerWord 0.076 LIWC Shehe 0.420
18 Lexical Soph NGSL 0.075 LIWC Female 0.385
19 LIWC Risk 0.062 LIWC Swear 0.380
20 LIWC Focuspresent 0.059 ngram 1 fic 0.370
Top-20 Measures Real News
LIAR ISOT
Measure Delta Score Measure Delta Score
1 LIWC Quant -0.212 Syntactic ComplexNomPerClause -0.940
2 LIWC Compare -0.197 Syntactic MeanLengthClause -0.929
3 LIWC Adj -0.171 LIWC Prep -0.763
4 ngram 2 news -0.148 LIWC Hear -0.747
5 ngram 2 acad -0.147 LIWC Power -0.739
6 ngram 2 mag -0.145 LIWC Work -0.734
7 LIWC Time -0.133 LIWC Article -0.723
8 WordPrevalence -0.132 LIWC Focus past -0.666
9 ngram 1 acad -0.131 LIWC Space -0.545
10 ngram 3 acad -0.128 Syntactic CoordPhrasesPerClause -0.509
11 ngram 3 mag -0.123 NP PreModWords -0.493
12 ngram 3 news -0.122 Lexical Div TTR -0.465
13 ngram 1 mag -0.120 Lexical Div CNDW -0.465
14 ngram 1 fic -0.118 Lexical Div RTTR -0.413
15 ngram 1 news -0.118 Lexical Div CTTR -0.403
16 LIWC Number -0.116 LIWC Money -0.314
17 ngram 1 spok -0.111 Lexical Soph BNC -0.309
18 LIWC Space -0.110 ngram 5 news -0.306
19 LIWC Prep -0.106 LIWC Achieve -0.303
20 ngram 2 spok -0.105 Lexical Density -0.302
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pants-fire false barely-true half-true mostly-true true

pants-fire 1 23 24 31 11 2
false 2 49 55 84 53 6
barely-true 3 36 62 80 27 4
half-true 1 38 58 108 55 5
mostly-true 1 19 41 104 74 2
true 3 19 43 71 66 6
Table 8: confusion matrix of liar dataset BRNN model

pants-fire false barely-true half-true mostly-true true
pants-fire 0 43 2 31 16 0
false 0 107 4 65 73 0
barely-true 0 78 8 61 65 0
half-true 0 83 9 84 89 0
mostly-true 0 44 3 84 110 0
true 0 60 0 60 88 0

Table 9: confusion matrix of liar dataset BRNN model (non-ordinal)

pants-fire false barely-true half-true mostly-true true

pants-fire 0 42 1 29 20 0
false 0 114 3 57 75 0
barely-true 0 86 2 71 52 1
half-true 0 88 4 97 76 0
mostly-true 0 77 2 51 111 0
true 0 74 1 46 87 0

Table 10: confusion matrix of liar dataset CNN model

pants-fire false barely-true half-true mostly-true true

pants-fire 15 29 22 14 11 1
false 8 57 65 62 49 8
barely-true 8 38 62 66 33 5
half-true 5 35 72 99 50 4
mostly-true 3 22 50 86 77 3
true 3 18 51 68 58 10

Table 11: confusion matrix of liar dataset BRNN model meta context

pants-fire false barely-true half-true mostly-true true

pants-fire 20 27 18 14 12 1
false 8 54 64 74 44 5
barely-true 5 39 59 65 42 2
half-true 2 32 46 111 69 5
mostly-true 1 21 36 85 94 4
true 3 25 31 64 79 6

Table 12: confusion matrix of liar dataset BRNN model all meta
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pants-fire false barely-true half-true mostly-true true

pants-fire 0 49 17 9 14 3
false 0 108 20 54 38 29
barely-true 0 73 27 55 42 15
half-true 0 76 23 83 61 22
mostly-true 0 43 15 70 88 25
true 0 57 12 45 63 31

Table 13: confusion matrix of liar dataset BRNN model all meta (non-ordinal)

Dataset Feature Accuracy base model  Accuracy after drop  Accuracy after drop
Group (validation) (validation) (test)
ISOT LIWC 0.993 0.942 0.938
Syntactic 0.991 0.964 0.965
Lexical 0.988 0.915 0.912
N-grams 0.989 0.763 0.762
Info theory 0.979 0.822 0.823
Word-prevalence 0.933 0.482 0.475
LIAR Lexical 0.255 0.217 0.209
LIWC 0.252 0.204 0.192
Syntactic 0.232 0.193 0.215
N-grams 0.224 0.188 0.218
Word-prevalence 0.210 0.190 0.205
Info theory 0.209 0.193 0.208

Table 14: Results of the feature ablation experiments for the ISOT dataset (top) and the LIAR dataset
(bottom).
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