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Abstract

We present a formal semantics (a version of
Type Theory with Records) which places clas-
sifiers of perceptual information at the core of
semantics. Using this framework, we present
an account of the interpretation and classifi-
cation of utterances referring to perceptually
available situations (such as visual scenes).
The account improves on previous work by
clarifying the role of classifiers in a hybrid
semantics combining statistical/neural classi-
fiers with logical/inferential aspects of mean-
ing. The account covers both discrete and
probabilistic classification, thereby enabling
learning, vagueness and other non-discrete lin-
guistic phenomena.

1 Introduction

Marconi (1997) distinguishes inferential and refer-
ential meaning. Inferential word meanings enable
inferences from uses of the word. Such mean-
ings are sometimes referred to as “high level” or
“symbolic”, and are typically modelled in for-
mal semantics. Referential meaning, on the other
hand, allows speakers to identify objects and sit-
uations referred to. Referential meaning is some-
times referred to as “low-level” or “subsymbolic”.
Our working hypothesis is that referential mean-
ing can be modelled using classifiers that output
formal representations (Larsson, 2011, 2015), thus
connecting “high level” formal representations to
“low level” perceptual information. This is a way
of addressing the symbol grounding problem put
forward by (Harnad, 1990) in a way that is com-
patible with formal semantics.

We also want a framework where meanings can
be learned from interactions, and where dialogue
participants can coordinate on meanings (Larsson
and Myrendal, 2017). To enable this, intensions
need to be represented independently of exten-
sions as structured objects which can be modi-
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fied (updated), and include classifiers of percep-
tual data.

In formal semantics in the Montague tradition
(Montague, 1974), the meaning of a word such as
“dog” is taken to be its extension, i.e. the set of
all dogs in the world (or in a possible world). This
type of semantic theory does not represent inten-
sions independently of extensions, which makes
it less well suited for modelling aspects of ref-
erential meaning using classifiers. For example,
modelling a classifier extensionally (as, say, a set
of ordered pairs of inputs and outputs) seems to
require some external classifier procedure to pro-
duce these sets. Taken as a model of natural lan-
guage meaning, this suggests an counter-intuitive
and unrealistic account of how humans encounter
new situations and classify them. Furthermore,
such a theory would exclude classification and
classification learning (which we take to be part
of the acquisition of word meanings) from seman-
tic theory proper, when we in fact believe that it is
central to semantics. For these reasons and others,
traditional Montagovian semantics does not seem
to us to be a satisfactory framework for classifier-
based semantics. However, we do believe that it
is crucial that the accumulated insights from work
in formal semantics over the last 50 decades are
integrated with the ideas put forward in this paper.

2 Background

We are developing a formal judgement-based se-
mantics where notions such as perception, classi-
fication, judgement, learning and dialogue coordi-
nation play a central role (Cooper, 2005; Larsson
and Cooper, 2009; Larsson, 2011; Dobnik et al.,
2011; Cooper, 2012; Dobnik and Cooper, 2013;
Cooper et al., 2015). A key idea introduced in
Larsson (2011) and Larsson (2015) is the mod-
elling of referential meanings as classifiers of real-

Proceedings of the Probability and Meaning Conference (PaM 2020), pages 62—68
October 14-15 2020 (©)2020 Association for Computational Linguistics



valued (perceptual) data, and training these classi-
fiers in interaction with the world and other agents.

There is a growing body of work in compu-
tational and formal semantics which is in line
with the approach taken here (Kennington and
Schlangen, 2015; Andreas et al., 2016; Schlangen
etal., 2016; Ghanimifard and Dobnik, 2017; Shore
and Skantze, 2018). We propose a way of connect-
ing this line of work to formal semantics, to enable
combining it with the successes of formal seman-
tics (compositionality, quantification, etc.).

Using a Type Theory with Records (Cooper
et al., 2014), Larsson (2015) presents a formal se-
mantics for perception, using classifiers to model
the relation between perception and linguistic ut-
terances. This paper substantially improves on the
formal machinery used in Larsson (2015) and in-
corporates insights from the implemented version
of TTR (Cooper, 2019) as well as related work on
visual question answering (Utescher, 2019).

3 TTR: A brief introduction

We will be formulating our account in a Type The-
ory with Records (TTR). We can here only give
a brief and partial introduction to TTR; see also
Cooper (2005) and Cooper (2012). To begin with,
s : T is a judgment that some s is of type 1. To
make explicit who is making this judgment, the of-
type relation may be subscripted with an agent A,
asin :4 T. One basic type in TTR is Ind, the type
of an individual; another basic type is R, the type
of real numbers. Given that 77 and 75 are types,
Ty — T5 is a functional type whose domain is ob-
jects of type T and whose range is objects of type

Ts.

Next, we introduce records and record
types. If a1 T1,as Tr(ai), ..., an
T.(a1,a2,...,an—1), where T(ay,...,a,) rep-

resents a type 7" which depends on the objects
ai,...,ay, the record to the left in Figure 1 is of
the record type to the right.

In Figure 1, ¢1,...4, are labels which can be
used elsewhere to refer to the values associated
with them. A sample record and record type is
shown in Figure 2.

Types constructed with predicates may be de-
pendent. This is represented by the fact that ar-
guments to the predicate may be represented by
labels used on the left of the ‘> elsewhere in the
record type. In Figure 2, the type of cyay is depen-
dent on ref (as iS Cyp).
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If r is a record and ¢ is a label in r, we can use
a path r.0 to refer to the value of ¢ in r. Simi-
larly, if 7" is a record type and ¢ is a label in T', T'.¢
refers to the type of ¢ in 7. Records (and record
types) can be nested, so that the value of a label
is itself a record (or record type). As can be seen
in Figure 2, types can be constructed from predi-
cates, e.g., “run” or “man”. Such types are called
ptypes and correspond roughly to propositions in
first order logic. Given a set of predicates and a set
of possible arguments, the set of possible ptypes
is PType, thus allowing for polymorphic predi-
cates. The arity of a ptype P is a set of tuple of
types Arity(P). For example Arity(run) = {{Ind)}.

A fundamental type-theoretical intuition is that
something of a ptype 7" is whatever it is that counts
as a proof of 7. One way of putting this is that
“propositions are types of proofs”. In Figure 2, we
simply use prf(7T") as a placeholder for proofs of
T'; below, we will show how low-level perceptual
input can be included in proofs.!

4 The left-or-right game

As an illustration, we follow Larsson (2015) in us-
ing a simple dialogue game called the left-or-right
(LoR) game. In this game, one agent places ob-
jects on a square surface, and the other agent clas-
sifies these objects as being to the right or not.
In first language acquisition, training of percep-
tual meanings typically takes place in situations
where the referent is in the shared focus of atten-
tion and thus perceivable to the dialogue partici-
pants. We assume that our DPs (dialogue partici-
pants) are able to establish a shared focus of atten-
tion. A (simple) sensor collects some information
(sensor input) from the environment and emits a
real-valued vector. The sensor is assumed to be
oriented towards the object in shared focus of at-
tention.

5 Classifiers and TTR

Again following Larsson (2015), we formalise the
notion of a simple perceptron classifier and pro-
vide its TTR type. The input to the classifier func-

"Note that TTR is not proof-theoretic like may other type
theories. TTR proofs are more like witnesses in situation se-
mantics (Barwise and Perry, 1983) or the proof objects in in-
tuitionistic type theory (Martin-Lo6f and Sambin, 1984). For
instance, there are no canonical proofs in TTR; there can be
several non-equivalent proofs of the same ptype. This is re-
lated to the fact that types in TTR are intensional, i.e., there
can be several different types with the same extension. Also,
there is no notion of a proof method in TTR.
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Figure 1: Schema of record and record type

T
b, = ap gn

ref Obj 123

Cman = Prf(man((’bj 123))

Crun = Prf(run(Obj 123))

ref Ind
Cman man(ref)
Crun run(ref)

Figure 2: Sample record and record type

tion 7,.;4p¢ 18 (1) a parameter record specifying a
weight vector w (a vector of real numbers) and
a threshold t (a real number) and (2) a situation
record specifying an object in the focus of atten-
tion, foo, and a sensor reading sr (a vector of real
numbers). Whereas a (non probabilistic) classifier
normally gives a Boolean output (corresponding
to whether the neuron triggers or not), we want as
output a ptype (or the negation thereof). The argu-
ment of the ptype predicate (right) is the object in
the shared focus of attention, i.e. the value of the
field foo in the situation record.

w:RT [foo:lnd

(D) Trighs : [t R sr :RJ — Dpe

such that if

e par: w o RY and
par-l ¢ . R

.- foo Ind
"l s Rt |’

then 7,;gn(par, r) =

{

Note that the function itself is defined outside
TTR. This allows any classifier to used with TTR,
no matter how it is implemented. Classifiers can

also be non-binary, as shown here for a fruit clas-
sifier FC:

right(r.foo)
— right(r.foo)

if r.sr - par.w > par.t
otherwise

Ind
Image

foo

) T fruit - Rt — img

Type
such that if

e par:R* and
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Ind
Image

[ foo

T .

img

then 7 p,.i¢(par, ) =
apple(r.foo)

orange(r.foo)

g

pear(r.foo)
ﬂ‘ fruit(r.foo)

if FC(r.img, par)=Apple
if FC(r.img, par)=Orange
if FC(r.img, par)=Pear

otherwise

6 Putting classification at the core

In this section, we present a version of TTR which
explicitly puts classifiers at the core of what it
is to understand natural language in relation to a
perceived situation. This version replaces that of
(Larsson, 2015) types and gives a clearer and more
perspicuous account of how judgement and classi-
fication are related.

6.1 Meanings for predicates

We start by accounting for predicate meanings in
TTR. Several types of expressions in natural lan-
guage (nouns, verbs, adjectives) can be modelled
semantically using predicates. We will represent
the (perceptual) meaning of predicates as records
containing four fields:

e Classifier parameters (params): a (possibly
empty) record containing classifier parame-
ters (e.g. weight vectors)

Background meaning (bg): a record type rep-
resenting assumptions about the context of
utterance (presuppositions)

Interpretation function (interp), taking a situ-
ation of type bg and providing a ptype encod-
ing a contextual interpretation of an utterance
in the context of that situation



e Classification function (clfr) that can be used
to make a judgement as to whether an (inter-
preted) utterance correctly describes a situa-
tion

Accrdingly, we define the type Mng of a mean-
ing entry as follows:

params Rec
| bg RecType
(3) Mng= intrp bg—Type
clfr bg—Type

Predicate meanings are defined for a predicate
with a certain arity. It is convenient to have a look-
ing function outputting the meaning of the pred-
icate used in a given ptype. We define such a
function Pred as follows (where P(ay,...,ay,) is
aptype, P(ay,...,a,)€ PType):

4) Pred(P(ay,...,an)) = Piry . 1,)

where
o (Th,...,T,) € Arity(P)
e ay:T1,...,a,: T,

For example, we get:
(5) Pred(right(objys))=right, 1,

Next, we define a function PredMng for looking
up the meaning of a predicate, whose domain is
{Pa| P € Pred, A € Arity(P)} and whose range
isin {r | r : Mng}. For example,

(6) PredMng(right r,,qy)=

arams = W= [0.800 0.010]
P = | =009
_ STpos Rt
bg B foo Ind ]
intrp = \r: bg - right(r.foo)
clfr = Ar:bg - mig(params,r)

We also define the interpretation of “right”:

(7) [right]=PredMng(right j,,q)).intrp
Finally, we define

(8) Clfr(T) = PredMng(Pred(T)).clfr

For example,

(9) Clfr(right(objss)) =

. [stpos:RT
AT foo :Ind

w=[0.800 0.010]

. 7Trighl( [t =0.090 .T)
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6.2 Classification and witness conditions

We now get to the crux of how to put classifiers at
the heart of our semantics. According to (Cooper,
in progress), for ' € PType,

(10) s: Tiff s € F(T)

where F'(T') is the witness cache, for type T —
a set of situations (in the case of ptypes) previ-
ously judged to be of type 7. The witness cache
for a type and an agent can represent the history of
judgements made by that agent with respect to the
type.

We modify this definition to include witness
conditions along the lines of PyTTR (Cooper,
2019) defined with respect to the classifier asso-
ciated with the predicate of the ptype:

(11) s : T iff CIfr(T)(s) = T or s € F(T)

This definition puts classifiers at the core of
TTR. New judgements are made using the Clfr
function. Previous judgements can be stored in the
witness cache for 7.

One issue that arises is in what to do first: ap-
ply the classifier, or check the witness cache? We
do not take a stand on this issue here, but we
note that checking the witness chache first makes
sense provided it can be assumed to be up to date.
Given that classifiers can be continuously trained
on new instances, previous judgements may no
longer be valid (in the sense that if they were made
using the retrained classifier, the results would be
different). Guaranteeing the validity of the wit-
ness cache would require that any changes in the
classifier(s) related to a type 7' result in purging
or re-evaluating the history of potentially affected
judgements stored in the witness cache.

7 Putting the model to work

In this section, we show an illustrative example of
how the framework above might be put to work in
the context of the LoR game, when contextually
interpreting utterances and when deciding whether
they describe the situation correctly.

7.1 Interpretation

Assume that an agent A places an object on the
surface and says “That one is to the right”, or just
“Right”.



(12)

Agent B watches and gets a position sensor
reading [0.900 0.100] which is part of B’s take
on the current situation (s1):

[0.900 0.100]
0bjy;

STpos

(13) 1= foo

B now interprets A’s utterance in the con-
text the situation s; by computing [right](s;),
which gives the result [right](s1) = right(obj,s).
How does this happen? Recall that [right]
PredMng(right 1,,4y).intrp, which means that

(14) [right](s1) =

(PredMng(right 1,,qy)-intrp)(s1) =

_ [srpos RT .

(Ar: [foo In d] right(r.foo))(
STpos=[0.900 0.100] )=
fOO =0bj45 -

right(obj;5)

7.2 Classification

Next, B decides if A’s utterance correctly de-
scribes (her take on) the situation, i.e. if

(15) s1 : [right](s1), i.e., if 51 : right(objs)
For T'=right(obj,5), we get

(16) s:right(obyj,s) iff
(PredMng(right<Ind>).clfr)(s)z right(obj,5) or
s € F(right(objs))

In Figure 3, we show how this is checked for for
S1.

The result is that (PredMng(right y,q)).clfr)(s)=
right(obj,5). Hence, s1 : right(obj,s) and (equiv-
alently) s : [right](s1). Consequently, this round
of the LoR game plays out thus:

A7)

A: “right”
B: “okay”
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8 Vagueness and Probabilistic TTR

In Fernandez and Larsson (2014), we formulate a
Bayesian noisy threshold classifier for vague con-
cepts such as “tall”. The classifier is trained on
previous observations of tall entities, and is sensi-
tive to the kind of entity (skyscraper, human, bas-
ketball player, ...). Instead of a binary judgement,
the classifier returns an probability distribution
over ptypes. This account connects to the prob-
abilistic extension of TTR (Cooper et al., 2014,
2015).

Adapting from Ferndndez and Larsson (2014)
to our current framework, the meaning of the
vague predicate “tall” could be formalised thus:

(18) PredMng(tall(s,q)

c Type
bg =| X c
h R
" |params=| ¥ T Hrall }
g = Otall
intrp =Ar:bg-tall(r.x)
clfr  =Ar:bg-kiqu(o(r.bg.c), u(r.bg.c), r.h)

ktatl © (R, R, bg)— [0, 1]

We are here employing a noisy probabilistic
threshold (cf. Lassiter (2011)) — a normal ran-
dom variable, represented by the parameters of its
Gaussian distribution, the mean p and the standard
deviation o (the noise width). Note that the prob-
abilistic threshold depend on the semantic class of
the individual being classified:

(19) priau:Type — R
20) oqu:Type — R

Interpretation works exactly as in the non-
probabilistic case. Regarding classification, the
probabilistic version of (11) above (ignoring the
witness cache for the moment) is simply:

@21) p(s : T) = Cifr(T)(s)

Since the output of the clfr function is now a
probability, so is the result of classification.

(22) p(s:tall(sally))e [0, 1]
9 Conclusion

We presented a version of Type Theory with
Records which places classifiers at the core of se-
mantics. Using this framework, we present an ac-
count of the interpretation and classification of ut-
terances referring to perceptually available infor-
mation (such as a visual scene). The account im-
proves on previous work by clarifying the role of



(PredMng(right ,q))-clfr)(s1)

[stposs BT [w=1[0.800 0.010]
O [foo:]nd} right( [t:0.090

] .y [srpos= [0.900 0.100]

)

foo =o0bj,5

i

(VT [0.800 0.010]] [srpos=[0.900 0.100]

~ Tmeht ¢ = 0,090 | foo =obj,s

_ [ right(objys)  if [0.900 0.100] - [0.800 0.010] > 0.090
B = right(obj5) otherwise

Figure 3: Example classification derivation

classifiers in a hybrid semantics combining statis-
tical/neural classifiers with logical/inferential as-
pects of meaning. The account covers both dis-
crete and probabilistic classification, thereby en-
abling learning, vagueness and other non-discrete
linguistic phenomena.

This account is intended as a starting point for a
comprehensive account of semantics encompass-
ing both referential and inferential meaning. Is-
sues to explore include e.g. how referential mean-
ings are coordinated between DPs, and how com-
positionality works for referential meaning (Lars-
son, 2017).
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