
Proceedings of the Probability and Meaning Conference (PaM 2020), pages 73–77
October 14-15 2020 c©2020 Association for Computational Linguistics

73

Towards functional, agent-based models of dogwhistle communication

Robert Henderson
Department of Linguistics University of Arizona

rhenderson@email.arizona.edu

Elin McCready
Department of English

Aoyama Gakuin University
mccready@cl.aoyama.ac.jp

Abstract

Henderson and McCready 2017, 2018, 2019
build a novel theory of so-called ‘dogwhistle’
communication by extending the social mean-
ing games of Burnett 2017. This work re-
ports on an ongoing project to build systems
to model the evolution of dogwhistle commu-
nication in a population based on probabil-
ity monads (Erwig and Kollmansberger, 2006;
Kidd, 2007). The ultimate results will be use-
ful not just for dogwhistles, but modeling the
diffusion and evolution of social meaning in
populations in general. The initial results pre-
sented here is a computational implementation
of Henderson and McCready 2018, which will
serve as the basis for models with multiple
speakers and repeated interactions.

1 Introduction

It is the 2016 US presidential election and Jill
Stein is in a predicament. She is doing a Red-
dit AMA1 and has just been asked about vaccines.
We assume she believes her base is uniformly anti-
corporate, but also contains a passionate anti-vax
minority that hold a position others in her party
don’t like. She knows that her anti-corporate bona
fides are solid, but the question wouldn’t be com-
ing up unless there was some uncertainty about her
stance on vaccines. This is the perfect occasion for
a dogwhistle. She says:

By the same token, being “tested”
and “reviewed” by agencies tied to big
pharma and the chemical industry is
also problematic.

Phrases like ‘big pharma’ and ‘chemical indus-
try’ could be read as generic anti-corporate speak,
but people familiar with anti-vax discourse know

1An AMA (‘Ask Me Anything’) is an online forum for
free discussion hosted by Reddit.

that these phrases are a staple of that genre. By us-
ing phrases like this, the general population of lis-
teners, who are unfamiliar with anti-vax discourse,
might assume that Stein is being anti-corporate,
while anti-vaxers, who are obviously familiar with
this discourse, might assume that Stein is one of
them because she speaks like one of them. That
is, Stein can use a dogwhistle to signal allegiance
to ingroup members, while signaling a different,
more palatable allegiance to naive outgroup mem-
bers. Crucially, this signal is plausibly deniable.
When outgroup members who were savvy about
anti-vax discourse called out Stein for using dog-
whistles, she could fall back on statements she had
made asserting the efficacy of vaccines.

This is an isolated example, but dogwhis-
tles have been well studied in the political sci-
ence (Albertson, 2015; Hurwitz and Peffley, 2005;
Mendelberg, 2001; White, 2007) and advertising
literature (Kanner, 2000; Palmer, 2000). In par-
ticular, Albertson 2015 shows that religious dog-
whistles are in fact effective in signaling religious
affiliation to ingroup prospective voters in ways
that non-religious voters who would othwerise dis-
approve of religious appeals in politics are unable
to detect. The linguistic work on dogwhistles is
sparse, but Henderson and McCready 2017, 2018,
2019 build a novel theory by extending the so-
cial meaning games of Burnett 2017, which itself
builds of of work in game-theoretic pragmatics, in
particular, Bayesian Rational Speech Act theory
(e.g., Goodman and Frank 2016; Franke and Jäger
2016; Franke and Degen 2016).

Having an account of dogwhistles, especially
one that connects with social meaning and prag-
matic reasoning more broadly, is an advance, but
the proposal in Henderson and McCready 2017,
2018, 2019 makes no attempt to study the dynam-
ics of dogwhistles in a population. As we have
seen though, even the rather schematic Stein ex-
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ample, the structure of the population is critical.
The Stein example imagines a scenario with three
groups—ingroup, naive outgroup, and savvy out-
group. Dogwhistles should evolve under the fol-
lowing conditions: (i) ingroup members, in virtue
of speaking with each other, should develop lin-
guistic variants that occur at a lower rate than
outgroup members, (ii) most outgroup members
(naive) should be unaware of these linguistic vari-
ants that signal ingroup members, though some
savvy outgroup members may be away of ingroup
language, and (iii) group membership is punished
by outgroup members, but rewarded by ingroup
members. In this scenario, and in a specific com-
munication event, speakers could choose one of
these linguistic variants if the structure of the au-
dience (proportion of ingroup / savvy outgroup /
naive outgroup) is such that it will lead to a posi-
tive payoff.

Understanding how dogwhistles arise, are used
in particular speech situations, and then fall out
of use clearly calls for some kind of agent-based
modeling. The fact that Henderson and McCready
do not do so is due to lack of tooling. There are
currently no existing, off-the-shelf resources for
computationally modeling populations of agents
playing social meaning games, or even the simpler
games discussed in the RSA literature. This pa-
per will present ongoing efforts to develop agent-
based models of dogwhistle communication in a
population based on probability monads (Erwig
and Kollmansberger, 2006; Kidd, 2007), espe-
cially the implementation of simple RSA models
in Bumford and Charlow 2018.

2 Dogwhistles in social meaning games
with probability monads

The Haskell2 type system provides a clean way to
lay out social meaning models, that is, the mod-
els in which expressions have their social mean-
ing.3 One of the core ideas of so-called Third Wave
variationist sociolinguistics (see Eckert 2012 for a
review), is that sociolinguistic practice is deeply
creative, with speakers, though their linguistic
choices constantly creating a place for themselves

2We direct the intererested reader who is not fa-
miliar with Haskell to Hackage, https://hackage.
haskell.org/, which provides documentation of built-in
functions used here.

3One can see the complete code discussed here with a
working example at https://github.com/bkeej/
SocialMeaningExp/blob/master/src/RSAsoc.
hs

in social space. Under this view, linguistic varia-
tion is the ferment from which speakers construct,
entrench, and mutate social identities though their
stylistic practices. Eckert (2008) calls this ferment
the indexical field, which is made up of oppos-
ing features. Speakers, through selection of lan-
guage variants creatively construct persona which
are sets of these features.

In our Stein example, we treat features as types
which can be grouped into an indexical field, or
list of indexes of opposing types.

(1) data F e a t u r e =
AntiVax | ProVax | ProCorp |

Ant iCorp
type Index = [ F e a t u r e ]
i n d i c e s =

[ [ AntiVax , ProVax ] , [ Ant iCorp ,
ProCorp ] ]

A persona is a maximally consistent list of fea-
tures drawn from the indexical field. The set of all
personas is what Burnett (2017) calls the Eckert-
Montague Field. We can generate all possible per-
sonas, or the EMField, from selecting one Feature
by each Index in every way possible.4

(2) p e r s o n a e : : [ Index ] −> EMField
p e r s o n a e p = sequence p

We can now introduce messages with social
meaning. We assume that messages have their
normal truth conditional meaning, but when we
turn to social meaning they are not interpreted in
worlds, but instead denote sets of Features. In the
Stein example, we assume that expressions like
‘Big Pharma’ is both anti-vax and anti-corporate
language, while Stein could have selected some
other variant, like ‘Corporate Scientists’, which
would be anti-corporate, but in virtue of invoking
science, could be interpreted as pro-vax.

(3) data Message = BigPharma | CorpSc i
type D e n o t a t i o n = Message −> [

F e a t u r e ]
deno : : D e n o t a t i o n
deno BigPharma = [ AntiVax , Ant iCorp ]
deno CorpSc i = [ ProVax , Ant iCorp ]

The effect of uttering one of these variants is
for the listener to rule out assigning the speaker
any persona that is inconsistent with that variant.
That is, ‘Big Pharma’ tells the listener the speaker
is definitely not both pro-vax and pro-corporate.
Eval implements this logic, which takes a message
and a context (some field of possible personas),

4Not all these personas may be active in a community.
Following a reviewer’s suggestion, we could set the prior that
an agent bears such a persona to 0 in a community to model
this.

https://hackage.haskell.org/
https://hackage.haskell.org/
https://github.com/bkeej/SocialMeaningExp/blob/master/src/RSAsoc.hs
https://github.com/bkeej/SocialMeaningExp/blob/master/src/RSAsoc.hs
https://github.com/bkeej/SocialMeaningExp/blob/master/src/RSAsoc.hs
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and returns just those personas that overlap with
the denotation of the message.

(4) type Lexicon = Message −> EMField −>
[ P e r s o n a ]

e v a l : : Lex icon
e v a l m f = nub $ [ i | i <− f ,

p <− i ,
p ‘ elem ‘ ( deno m) ]

This completes the implementation of the
model theoretic aspects of social meaning in Hen-
derson and McCready 2017, 2018, 2019. The real
action takes place as speakers use these expres-
sions and listeners infer their personas in a proba-
bilistic setting. Before defining this, though, note
that there are actually different kinds of listeners,
and these are meant to react differently to dog-
whistles. We have ingroup listeners, as well as two
kinds of outgroup listeners, those savvy to ingroup
language and those who are naive.

(5) data Group = I n g r o u p | Naive | Savvy

The listener’s priors for the speaker’s persona,
as well as how speakers of different personas tend
to speak, will now now be conditioned what group
they belong to. The probability monad toolkit
as described in Kidd 2007; Erwig and Kollmans-
berger 2006 and implemented in Bumford and
Charlow 2018 is built on a set of monad trans-
formers that enrich monads with probabilistic no-
tions that can be computed in the background (e.g.,
weights, Bayes’ theorem, etc.), separating them
from code describing the structure at hand.

For instance, the PerhapsT monad transformer
attaches probabilities to each computation in the
list monad, while the MaybeT monad transformer
allows us to throw out branches of of the compu-
tation that fail, which permits an implementation
of Bayes’ theorem via normalizing probabilities of
non-failed branches.

(6) type BBDist = MaybeT DDist

We start by setting priors for personas via calls
to weighted, which constructs a weighed distribu-
tion from a list of weights and values.

(7) p e r s o n a P r i o r : : D i s t m =>
Group −> m P e r s o n a

p e r s o n a P r i o r g =
w e i g h t e d [ Mass 5 [ ProVax , ProCorp

] . . .

In principle, priors for the speaker’s persona
can vary by listener type, but for this exam-
ple, we assume that all listeners are fairly cer-
tain Stein is not ProVax,ProCorp=5%, most likely
not AntiVax,ProCorp=%15, but think it is equally

likely that she is AntiCorp,AntiVax=40% or An-
tiCorp,AntiVax=40%. This uncertainty is what
makes using a dogwhistle a potentially profitable
strategy.

Listeners also have beliefs about the probabil-
ity that they will hear certain messages. The
fact that these beliefs can vary by listener type
is what will make a particular linguistic expres-
sion a dogwhistle. That is, an Ingroup member on
knowing a speaker is AntiVax might expect them
to use BigPharma because they are familiar with
anti-vax rhetoric (the same for Savvy outgroup
members). In contrast, a Naive outgroup member
would assign a lower probability, maybe placing
more probability on purely AntiCorp speakers us-
ing the phrase. We see this in the definition of
messagePrior:
(8) m e s s a g e P r i o r : : D i s t m =>

Group −> P e r s o n a −> m Message
m e s s a g e P r i o r I n g r o u p [ AntiVax ,

Ant iCorp ] =
w e i g h t e d [ Mass 80 BigPharma , . . .

m e s s a g e P r i o r Naive [ AntiVax , Ant iCorp
] =

w e i g h t e d [ Mass 15 BigPharma , . . .

Finally, we can define the recursive RSA-style
reasoning, following the example in Bumford and
Charlow 2018, where the literal speaker produces
messages based on their persona and priors on how
speakers with that persona speak, while listeners
guess the speaker’s persona based on their priors
and a model of what the literal speaker will do. By
providing higher integers we get a tower of back-
and-forth, probabilistic reasoning between speak-
ers and listeners. Note the guard condition in the
literal speaker. The computation will fail for mes-
sages whose denotation is not consistent with the
given persona. This triggers a reapportioning of
probability mass over the surviving branching by
the monad transformer BBDist. The result is that
Bayesian reasoning happens in the background,
while we preserve a clean presentation in code of
the structure of these games, exactly as promised
by the probability monads.
(9) s p e a k e r : : I n t −> Group −> P e r s o n a

−>
Lexicon −> BDDist Message
s p e a k e r n g p sem = bayes $ do

m <− m e s s a g e P r i o r g p
s c a l e P r o b m $
i f n <= 0 −− l i t . s p e a k e r

then guard ( p ‘ elem ‘ sem m f i e l d )
e l s e do −− l i t . l i s t e n e r
p ’ <− l i s t e n e r n g m sem
guard ( p ’ == p )

re turn m



76

(10) l i s t e n e r : : I n t −> Group −> Message
−>

Lexicon −> BDDist P e r s o n a
l i s t e n e r n g m sem = bayes $ do

p <− p e r s o n a P r i o r g
m’ <− s p e a k e r ( n−1) g p sem
guard (m’ == m)
re turn p

With this recursive reasoning, we can already
observe the dogwhistle effect. For instance, as-
suming the message priors above, on hearing Stein
say ‘Big Pharma’, an Ingroup or Savvy outgroup
member assigns a 60% probability that Stein is
AntiVax, up from 40%, while the Naive outgroup
member only assign a 42% chance, just slightly up
from the prior of 40%.

Starting from the speaker’s perspective (i.e.,
literal-speaker vs. literal-listener) makes sense in
these sociolinguistic games. Actually, already, be-
fore worrying about issues of audience design, we
have implemented a probabilistic model so-called
‘First Wave’ sociolinguistics. That is, speak-
ers are assigned a persona and mechanistically
produce variants at a rate given by that speech
community—i.e., by messagePrior. We have seen
that we can produce the dogwhistle effect even
in this First Wave model. As discussed above,
Third Wave sociolinguistics is much richer, as-
suming that speakers (along with their listeners)
are constantly collaboratively choosing variants to
construct a persona.

3 Adding audiences in the Third Wave

One way to think of the system in its current guise
is that it purely models information transfer in the
social meaning domain. To get a Third Wave the-
ory, one that can handle richer aspects of dog-
whistles in agent-based models, we need to en-
dow speakers and listeners with preferences for
personas.5 This will allow speakers, not just to
report their persona, but also to pick messages that
allow them to have a persona they like (and the
audience likes) in a particular situation.

Once again, we take the speaker’s perspective
and model the social utility of message and person
for a speaker given a listener.

5Note, there are aspects of Third Wave theory that we do
not model like bricolage—agents convey parts of multiple
personas at once, or the fact that the indexical field itself is
dynamic, i.e., “fluidity”.

(11) vL : : Group −> P e r s o n a −> F l o a t
vS : : P e r s o n a −> F l o a t

uSoc : : Message −> P e r s o n a −>
Group −> Lexicon −> F l o a t

uSoc m p g l =
pr + ( vL g p ∗ pr ) + ( vS p ∗ pr )

where Sum pr = sum $ [ x | Mass x (
Jus t y )

<− runMassT ( runMaybeT
( RSAsoc . l i s t e n e r 1 g m e v a l ) ) ,

y == p ]

Speakers now pick a message based on its efficacy
in informing a listener about a persona (i.e., pr in
uSoc) modified by how listeners and the speaker
themself will react to listeners assigning them that
persona (i.e., vS and vL in uSoc), weighted by the
probability the lister will assign that persona.

Treating an audience as a list of listener types,
the utility of a message for a speaker is just the
sum of the utility calculation for each listener.

(12) Type Audience = [ Group ]
uSSoc : : Audience −> Message −>

P e r s o n a −> Lexicon −> F l o a t
uSSoc a m p l = sum $

map (\ g −> uSoc m p g l ) a

We now have a ‘Third Wave’-style model of so-
cial meaning for dogwhistles, and make good on
the promise made in Section 1. That is, if Stein
looks out at her audience and thinks there are a
large number of Naive outgroup members, it will
increase her social utility to use an anti-vax dog-
whistles. The reason is the low probability of de-
tection by Naive outgroup members will meaning
high negative affective value for the AntiVax per-
sona will be weighted downward. In contrast, if
the audience is mostly Savvy outgroup members,
it will not be safe to do so.

4 Conclusions

This paper provides a computational implemen-
tation of Henderson and McCready 2018 using
probability monads as implemented in Bumford
and Charlow 2018. To make the implementation
we extend the RSA-style games in that work with
model-theoretic logic for social meaning, uncer-
tainty for messages based on persona type, dif-
ferent listener types, and a social utility function
implementing social costs for audiences with one
or more listeners. In this way, we get formal
verification of the work in Henderson and Mc-
Cready 2017, 2018, 2019, as well as firm founda-
tion for future work developing functional, agent-
based models of dogwhistle communication.
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