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Abstract
Research on providing machine translation
systems for unseen language pairs is gaining
increasing attention in recent years. However,
the quality of their systems is poor for most
language pairs, especially for less-common
pairs such as Khmer-Vietnamese. In this
paper, we show a simple iterative training-
generating-filtering-training process that uti-
lizes all available pivot parallel data to gen-
erate synthetic data for unseen directions.
In addition, we propose a filtering method
based on word alignments and the longest
parallel phrase to filter out noise sentence
pairs in the synthetic data. Experiment re-
sults on zero-shot Khmer→Vietnamese and
Indonesian→Vietnamese directions show that
our proposed model outperforms some strong
baselines and achieves a promising result
under the zero-resource condition on ALT
benchmarks. Besides, the results also indicate
that our model can easily improve their quality
with a small amount of real parallel data.

1 Introduction

Neural Machine Translation (NMT) has recently
achieved impressive performance on high-resource
language pairs which have large amounts of parallel
training data (Wu et al., 2016) (Vaswani et al., 2017).
However, these systems still work poorly when the
parallel data is low or unavailable. Research on
zero-resource language pairs is gaining much at-
tention in recent years, and it has been found to
use pivot language, zero-shot NMT, or zero-resource
NMT approaches to deal with the translation of un-
seen language pairs.

In pivot language approaches, sentences are first
translated from the source language into the pivot
language through a source-pivot system, and then
from the pivot language into the target language by
using a pivot-target system. Although this simple
process has shown strong translation performance
(Johnson et al., 2017), it has a few limitations. The
pivoting translation process at least doubles decod-
ing time during inference because more than one
pivot language may be required to translate from the
source to the target language. Additionally, transla-
tion errors compound in a pipeline.

Zero-shot NMT approaches are inspirited from
multilingual NMT (multi-NMT) systems that use
only one encoder and one decoder to represent mul-
tiple languages in the same vector space, hence it
should be possible to take advantage of data from
high-resource language pairs to improve the trans-
lation of low-resource language pairs. (Ha et al.,
2016; Johnson et al., 2017) showed that the zero-
shot systems are able to generate reasonable out-
put at the target language by adding the desired out-
put language’s language tag at the beginning of the
source sentence. Note that there is no direct parallel
data between the source and target languages dur-
ing training. However, the performance of these ap-
proaches is still poor when the source and target lan-
guages are unrelated or the observed language pairs
are not enough to capture the relation of unseen lan-
guage pairs.

Similar to the above approaches, zero-resource
NMT approaches do not use any direct source-target
parallel corpus, but the approaches focus on generat-
ing pseudo-parallel corpus by using back-translation



to translate sentences in the pivot language of the
pivot-target parallel corpus to the source language
(Lakew et al., 2017; Gu et al., 2019). One of
the main limitations of these approaches is that
the source between training and testing scenarios
are different since the source in training is syn-
thetic. However, the approaches still outperform
pivot language and zero-shot NMT approaches be-
cause they can potentially utilize all available par-
allel and monolingual corpus (Currey and Heafield,
2019).

In this work, our main contributions are (1)
improving the quality of zero-resource NMT by
introducing a simple iterative training-generating-
filtering-training process and (2) proposing a noise
filtering method. Especially, we evaluate our
approach on less-common and low-resource lan-
guage pairs such as Khmer-Vietnamese. In this
scenario, source-pivot (Khmer-English) and pivot-
target (English-Vietnamese) pairs are also low-
resource (pivot is often English). Our approach
starts from a multilingual NMT system that is
trained on source-pivot and pivot-language pairs, the
system then generates source-target synthetic corpus
by back-translating the pivot side of the pivot-target
corpus to the source language. Next, We filter out
poor translations in the generated translations by ap-
plying our proposed data filtering method based on
word alignments and the longest parallel phrase. Af-
ter that, the multilingual NMT system is continu-
ously trained on both the filtered synthesis data and
the original training data, we repeat this training-
generating-filtering-training cycle for a few itera-
tions. As a result, our experiments showed that by
adding the filtered synthetic corpus, our model out-
performed the pivot, zero-shot, and zero-resource
baselines over zero-shot Khmer→Vietnamese and
Indonesian→Vietnamese directions on the Asian
Language Treebank (ALT) Parallel Corpus (Riza et
al., 2016). Moreover, the experiment results indicate
that our model can easily improve their quality with
a small amount of real parallel data.

The rest of this paper is organized as follows. We
first review relevant works on translation for zero-
resource language pairs in Section 2, then introduce
some background and related formulas in Section 3.
Next, we show our approach in Section 4. After that,
we illustrate our experiments and results in Section

5. Finally, our conclusion is presented in Section 6.

2 Related Work

Training a machine translation system for translat-
ing unseen language pairs has received much in-
terest from researchers in recent years. This sec-
tion discusses relevant works on zero-shot and zero-
resource NMT, which are related to our approach.
Zero-shot NMT

(Ha et al., 2016; Johnson et al., 2017) showed
that using a single NMT can learn to translate be-
tween language pairs it has never seen during train-
ing (zero-shot translation). Their solution does not
require any changes to the traditional NMT model
architecture. Instead, they add an artificial token at
the beginning of the source sentence to specify the
required target language. Although this approach il-
lustrated promising results for some untrained lan-
guage pairs such as from Portuguese to Spanish, its
performance is often not good enough to be useful
and lags behind pivoting. In our work, we use this
system as an initial multi-NMT system.

(Arivazhagan et al., 2019) pointed out that the
success of zero-shot translation depends on the abil-
ity of the model to capture language invariant fea-
tures for cross-lingual transfer. Therefore, they pro-
posed two classes of auxiliary losses to align the
source and pivot vector spaces. The first minimizes
the discrepancy between the feature distributions by
minimizing a domain adversarial loss (Gani et al.,
2015) that trains a discriminator to distinguish be-
tween different encoder languages using represen-
tations from an adversarial encoder. The second
takes advantage of available parallel data to enforce
alignment between the source and the pivot lan-
guage at the instance level. However, this approach
does not work for less-common language pairs such
as Khmer-Vietnamese since the size of multilingual
training data including source-pivot and pivot-target
is low, so it is not enough to capture the language
invariant features.
Zero-resource NMT

(Lakew et al., 2017) used a multilingual NMT
system to generate zero-shot translations on some
portion of the training data, then re-start the train-
ing process on both the multilingual data and the
generated translations. By adding the synthetic cor-



pus, the model can alleviate the spurious correlation
problem. This work is similar to our work but they
did not filter out noise sentence pairs in the synthetic
corpus.

(Currey and Heafield, 2019) augmented zero-
resource NMT with monolingual data from the pivot
language. The authors pointed out that the pivot
language is often high-resource language and more
high-quality than the monolingual source or target
language (pivot language is often English), so lever-
aging the monolingual pivot language data is worth-
while to enhance the quality of zero-resource NMT
systems.

3 Background

3.1 Neural Machine Translation

The standard NMT architecture contains an encoder,
a decoder and an attention-mechanism, which are
trained with maximum likelihood in an end-to-end
system (Bahdanau et al., 2014). Assume the source
sentence and its translation are x = {x1, ..., xTx}
and y = {y1, ..., yTy} respectively.
Encoder is a bidirectional Recurrent Neural Net-
work (RNN) (Schuster and Paliwal, 1997) that en-
codes the source sentence into a sequence of hid-
den state vectors, the hidden state vector of word xi
is hi = [

−→
hi ;
←−
hi ], where

−→
hi and

←−
hi are forward and

backward hidden state respectively.

−→
hi = f(exi ,

−→
h i−1) (1)

←−
hi = f(exi ,

←−
h i+1) (2)

Note that exi is the vector of word xi, f is a non-
linear function such as Long Short-term Memory
(Hochreiter and Schmidhuber, 1997) or Gated Re-
current Unit (Cho et al., 2014).
Attention is a mechanism used to compute a con-
text vector by searching through the source sentence
at each decoding step (Bahdanau et al., 2014). At the
j-th step, the score between the target word yj and
the i-th source word is computed and normalized as
below:

ei,j = vTa tanh(Wasj−1 + Uahi) (3)

αij =
exp(eij)∑Tx

i′=1
exp(ei′j)

(4)

The context vector cj is computed as a weighted sum
of all source hidden states:

cj =

Tx∑
i=1

αijhi (5)

Decoder is a unidirectional RNN which uses the
representation of the encoder and the context vec-
tor to predict words in the target language. At the
j-th step, the target hidden state sj is computed by:

sj = f(eyj−1 , sj−1, cj) (6)

Given the previous predicted words y<j =
{y1, ..., yj−1}, the context vector cj and the target
hidden state sj , the decoder is trained to predict the
next word yj as follows:

p(yj |y<j , sj , cj) = softmax(Wotj) (7)

tj = g(eyj−1 , cj , sj) (8)

where g is a nonlinear function,Wo is used to output
a vocabulary-sized vector.

3.2 Multilingual NMT

(Ha et al., 2016; Johnson et al., 2017) indicated a
simple approach to use a standard NMT system to
translate between multiple languages. This system
leverages the knowledge from translation between
multiple languages and is referred to as a multilin-
gual NMT system. In order to make use of multilin-
gual data containing multiple language pairs into the
standard NMT system, authors proposed one simple
modification to the input data, which is to add an ar-
tificial token at the beginning of the input sentence
to indicate the desired target language. After adding
the token to the input data, over-sampling or under-
sampling techniques are applied to balance the ra-
tio of language pairs in the multilingual data, and
the model is trained with all the multilingual data
at once. Besides, a shared wordpiece model (Sen-
nrich et al., 2015) across all the source and target
data is used to address the problem of translation of
unknown words and limitation of the vocabulary for
computational efficiency, usually with 32,000 word
pieces.



4 Approach

This paper concentrates on improving the quality of
zero-resource NMT between two languages X and
Y given a pivot language Z. We assume that we
haveX ↔ Z and Z ↔ Y parallel data, but no direct
X ↔ Y data. Algorithm 1 represents our proposed
training process. Notably, our experiments focus on
less-common and low-resource language pairs such
as Khmer-Vietnamese, Indonesian-Vietnamese, so
the amount of X ↔ Z and Z ↔ Y parallel data
is quite small. Therefore, in order to build a good
initial multi-NMT model, the first step of our work
is to augment the multilingual training data that is
shown in Section 4.1. Take a look at the Algorithm
1, given an initial training data D including X ↔ Y
and Y ↔ Z parallel data, our training process con-
tains four main steps which are iterated for multiple
times.

Algorithm 1: Iterative Multi-NMT with Data
Filtering Procedure
1: D = (X↔ Z, Z↔ Y)
2: repeat
3: Multi-NMT← training using dataset D
4: for each Z in (Z↔ Y) do
5: X*←Multi-NMT(Z), generating
6: end for
7: S← (X*↔ Y), synthetic data
8: F← Filter(S), filtering synthetic data
9: D← D ∪ F
10: until Multi-NMT converges

Figure 1: Algorithm of the proposed approach using iter-
ative multi-NMT with data filtering.

• Step 1 (line 3): Train a multilingual NMT by
using the training dataset D.

• Step 2 (line 4, 5, 6): Generate (X∗ → Y ) syn-
thetic parallel data by using the trained multi-
NMT model to translate sentences from pivot
language Z in (Z ↔ Y ) to language X . We
can obtain more synthetic data (X ↔ Y ) by
translating sentences from pivot language Z in
(X ↔ Z) to language Y .

• Step 3 (line 8): Filter the synthetic data to elim-
inate bad parallel sentence pairs by using data
selection techniques (See Section 4.2).

• Step 4 (line 9): Expand the multilingual train-
ing data by adding the filtered synthetic data F
to the original training data D.

In our training-generating-filtering-training cycle,
new synthetic X ↔ Y data is generated at each iter-
ation. We expect that by adding this synthetic data,
the multi-NMT model not only improves the trans-
lation of zero-shot directions between X and Y but
also boosts other directions such as between X and
Z, Y and Z. Therefore, round after round, we can
build a better multi-NMT system with the synthetic
data. Use this better system in order to generate new
synthetic data, then use this data with the original
training data to build an even better system. Finally,
this cycle continues until the model converges.

4.1 Data Augmentation
As mentioned above, if the amount of multilingual
training data is too small, the multi-NMT system is
unable to learn to translate between zero-shot direc-
tions. Hence, in our work, to augment the paral-
lel data for (X ↔ Z) and (Z ↔ Y ), we lever-
age monolingual data in both target and source side
by using back-translation (Sennrich et al., 2016) and
self-training (Zhang and Zong, 2016). Given a paral-
lel data (X ↔ Z) and monolingual dataMX ,MZ in
languageX , Z respectively, we denote by

−→
f and←−g

the forward (from X to Z) and the backward (from
Z to X) NMT systems.
Back-translation is a popular data augmentation
method utilizing target side monolingual data. To
perform back-translation, given the parallel data
(X ↔ Z), a base backward NMT system ←−g is
trained and use it to translateMZ to languageX , de-
noted by←−g (MZ). The original parallel data (X ↔
Z) is then concatenated with the back-translated
data (←−g (MZ)↔MZ) to obtain a new training data.
Self-Training augments the original training data
by first training a base forward NMT system

−→
f on

(X ↔ Z) data, then use this trained model to trans-
late MX to language Z, denoted by

−→
f (MX). The

new synthetic data (MX ↔
−→
f (MX)) is also com-

bined with the original training data to obtain a new
training dataset.
In our work, we augment parallel data by using
both these two methods because they are comple-
mentary to each other. The original training data



is combined with back-translated and self-trained
data to obtained the augmented parallel data, (X ↔
Z) ∪ (←−g (MZ)↔MZ) ∪ (MX ↔

−→
f (MX).

4.2 Data Filtering
Combining synthetic data with the multilingual
training data is a simple and effective way to
boost the quality of zero-shot directions in zero-
shot NMT and zero-resource NMT systems (Lakew
et al., 2017; Currey and Heafield, 2019). How-
ever, the synthetic data potentially contains a lot of
noise—translation errors, since it is often generated
by using back-translation or self-training. There-
fore, in this section, we show our proposed method
to filter noise sentence pairs from synthetic data
based on sentence semantic similarity. As described
in Section 4, a synthetic sentence pair (xi, yi) is gen-
erated by translating zi in (Z ↔ Y ) data to xi. We
consider that (xi, yi) is good synthetic sentence pair
if xi is both semantically similar to yi and zi. A se-
mantic score for each synthetic sentence xi is com-
puted as below:

score(xi) =
sim(xi, yi) + sim(xi, zi)

2
(9)

where sim(xi, yi) and sim(xi, zi) are the semantic
similarity of (xi, yi) and (xi, zi) sentence pair re-
spectively.
To compute the semantic similarity of two sentences
in different languages, (Xu et al., 2019) relies on co-
sine similarities of sentence embedding vectors in
a common vector space such as bilingual word em-
bedding (Luong et al., 2015b). Our method first also
embeds words in different languages into a com-
mon vector space as work in (Conneau et al., 2017),
then calculate the sentence similarity based on word
alignment scores and the longest parallel phrase of
the candidate sentence pairs. In order to acquire
word alignments of a sentence pair (x, y), we iter-
ate sentence x from left to right and greedily align
each word in x to the most similar word in y which
was not already aligned. For measuring the simi-
larity of words we use cosine similarity of word em-
beddings. Afterward, given a set of word alignments
A, we can easily extract parallel phrases of (x, y)
by using the phrase extraction algorithm in the Sta-
tistical Machine Translation System (Koehn et al.,
2003). Finally, the semantic similarity score of the

sentence pair (x, y) is computed by averaging word
alignment scores and weighting it with the ratio of
the length of the longest parallel phrase p and the
length of the sentence x as follows:

sim(x, y) =
|p|
|x|
×

∑
a⊂A score(a)
|A|

(10)

where |p| and |x| are the length of longest parallel
phrase and sentence x respectively, |A| is the num-
ber of word alignments, a is a word alignment can-
didate and score(a) is word alignment score that is
computed by using cosine similarity of two words in
the alignment a.

5 Experiments

5.1 Dataset
In this work, we evaluate our approach on
zero-resource Khmer-Vietnamese (km-vi) and
Indonesian-Vietnamese (id-vi) language pairs with
English is the pivot language. The parallel datasets
for Khmer-English (km-en) and Indonesian-English
(id-en) are from the Asian Language Treebank
(ALT) Parallel Corpus (Riza et al., 2016) and
for English-Vietnamese is from the UET dataset
(Vu Huy et al., 2013) (see Table 1 for details). All
testing datasets are from the ALT corpus with size
of 1,018 sentences. In addition, we used monolin-
gual data released in Wikipedia1 for Vietnamese,
English and Indonesia and data from WMT20202

for Khmer. After de-duplication and removing
too short (<5 tokens) or too long (>100 tokens)
sentences, we obtained approximately 11 million,
5 million, 2 million and 3 million unique sentences
for English, Vietnamese, Khmer, and Indonesian
respectively. Moreover, as mentioned in Section
4.1, before training models, we augmented the
multilingual training data by using back-translation
and self-training. In order to choose the right ratio
between real and synthetic parallel data, we exper-
imented on different real-to-synthetic ratios. We
found that 1:4 real-to-synthetic ratio is the best ratio
for both Khmer-English and Indonesian-English
pairs as shown in Table 2. Finally, we acquired the

1https://linguatools.org/tools/corpora/wikipedia-
monolingual-corpora/

2http://www.statmt.org/wmt20/parallel-corpus-
filtering.html



Direction Training
real real+BT+ST

Khmer-English 18,088 162,792
English-Vietnamese 233,000 -
Indonesian-English 18,088 162,792

Table 1: Number of sentences used for training. real
column show the size of original data and real+BT+ST
column illustrates the size of the augmented data.

real:syntheic
ratio

km→ en id→ en
BT ST BT ST

1:0 14.19 13.7 21.57 20.52
1:1 15.32 15.72 22.26 21.18
1:2 16.87 17.58 24.06 22.10
1:3 17.25 18.21 24.37 21.99
1:4 18.3 18.62 24.79 22.64
1:5 18.1 17.93 24.02 21.60
1:6 17.54 17.01 23.70 21.42

Table 2: Experiment results on BLEU score to choose the
right real:synthetic ratios for Khmer→English (km→en)
and Indonesian→English (id→en) using back-translation
(BT) and self-training (ST).

final augmented data by combining the original data
with back-translated and self-trained data as shown
in Table 1. Note that, to prevent imbalances between
language pairs in the multilingual training data, we
did not augment for the English-Vietnamese pair
since the size of this pair is much larger other pairs.

5.2 Preprocessing

To learn a shared vocabulary for training multi-
NMT, we used SentencePiece (Kudo and Richard-
son, 2018) with size 32,000 over the combined En-
glish, Vietnamese, Khmer, and Indonesian monolin-
gual data. Besides, we added target language tags at
both the beginning and end of the source sentences
in the multilingual training data.
The multilingual word embedding model used in our
filtering method was acquired by using the unsuper-
vised method in MUSE library3. The word embed-
dings for English, Vietnamese, Khmer, and Indone-
sian are trained with fastText toolkit4 on correspond-
ing monolingual data.

3https://github.com/facebookresearch/MUSE
4https://fasttext.cc/

All translation results shown in our work were com-
puted in terms of BLEU score (Papineni et al., 2002)
measured with multi-bleu.perl script5

5.3 Models

All models in our experiments are based on the
encoder-decoder with attention architecture (Luong
et al., 2015a). We used OpenNMT-py6 to run all
experiments with the configuration as follows. We
used the Gradient Descent optimizer with a learn-
ing rate of 1.0 that decayed exponentially in the last
80% of the training duration, training batch is 64,
maximum sentence length is 100, beam width is 10,
label smoothing is 0.2, dropout is 0.3 and is applied
on top of various process, all models variables are
initialized uniformly in range (-0.1, 0.1).
In this paper, we evaluate our proposed method on
two direct (zero-shot) translations, Khmer → Viet-
namese (km → vi) and Indonesian → Vietnamese
(id → vi). Notably, the setting of experiments for
these 2 directions is the same, so in the following, we
only describe experiments for evaluating the Khmer-
Vietnamese language pair.
Firstly, We compare our models to three baselines as
follows:

• zero-shot NMT: This model is trained on the
Khmer↔ English and English↔ Vietnamese
parallel data.

• zero-resource NMT: This model is trained on
the synthetic data Khmer ↔ Vietnamese cre-
ated by using the above zero-shot NMT model
to translate English sentences in (English ↔
Vietnamese) to Khmer sentences.

• pivot language: use the above zero-shot NMT
to translate Khmer sentences into English then
from English to Vietnamese.

Our proposed models are designated as below:

• Iterative multi-NMT: This model is trained by
iterating training-generating-training schema
for several rounds. We use the above zero-shot
NMT as an initial multi-NMT model for this
training process.

5https://github.com/moses-smt/mosesdecoder
6https://github.com/OpenNMT/OpenNMT-py



• Iterative multi-NMT + Xu’s data filtering:
This model is trained by iterating training-
generating-filtering-training schema for sev-
eral rounds as shown in Section 4. We also use
the above zero-shot NMT as an initial multi-
NMT model and use the method of (Xu et al.,
2019) in the data filtering step.

• Iterative multi-NMT + our data filtering:
This model is trained by using the training-
generating-filtering-training process and our
proposed method for data filtering.

Note that, in the last two models, we use a similarity
threshold of 0.4 achieved the best result (see Table
4 for details), to filter out poor synthetic sentence
pairs.

5.4 Results and Analysis
Table 3 shows our results for the km → vi and
id → vi zero-resource translation experiments.
Experiments (1), (2), and (3) indicate the perfor-
mance of the three baseline models. It can be seen
that zero-shot NMT performed the worst result
while the two other models illustrate promising
results. The explanation for this results is that
the amount of multilingual training data is not
enough for enabling zero-shot translation on the
multi-NMT system. Experiment (4) outperforms
all three baseline models since it is benefit from
both zero-shot and zero-resource NMT system. In
addition, Experiments (5) and (6) show the effect of
our training-generating-filtering-training process.
By eliminating poor synthetic sentence pairs before
re-training, the systems perform better results.
Especially, the results on experiment (5) and (6)
indicate that our proposed filtering method is more
effective than the method of (Xu et al., 2019) for
filtering noises in synthetic data.

Table 4 shows the effect of different filtering
threshold on translation performance. All models
are trained similar to the model Iterative multi-NMT
+ our data filtering, the only different is the filtering
threshold to eliminate poor sentence pairs. Notably,
a threshold of 0.0 means that all synthetic data is
kept to re-train in the next iteration. The results il-
lustrate that the threshold of 0.4 achieved the best re-
sult, outperforming the baseline (threshold is 0.0) by

model km→vi id→vi
(1) zero-shot NMT 3.43 6.75
(2) zero-resource NMT 13.82 14.26
(3) pivot language 12.59 12.99
(4) Iterative multi-NMT 15.23 17.24

(5)
Iterative multi-NMT
+ Xu’s data filtering

16.02 18.51

(6)
Iterative multi-NMT
+ our data filtering

16.87 18.93

Table 3: BLEU scores for our proposed models compared
with strong baselines.

Threshold km→ vi id→ vi
0.0 15.23 17.24
0.1 15.81 17.75
0.2 16.02 17.96
0.3 16.25 18.29
0.4 16.87 (+1.64) 18.93 (+1.69)
0.5 16.62 18.58
0.6 16.37 18.34

Table 4: The effect of the quality of filtered synthethic
data with different filtering thresholds in terms of BLEU
sore.

+1.64 and +1.69 BLEU for km → vi and id → vi
directions respectively.

On the other hand, Table 5 shows that if we fine-
tune our proposed model Iterative multi-NMT + our
data filtering on a small amount of real parallel data,
the model performs a significant improvement by
+9.26 and +4.76 over the baselines (models are only
trained on real parallel data). The real datasets for
km → vi and id → vi are from the ALT cor-
pus with size of 18,088 sentence pairs. This results
prove that our proposed model work well on both
zero-resource and low-resource language pairs.

model km→ vi id→ vi
direct 13.39 16.81

Iterative multi-NMT
+ our data filtering
+ incremental training

22.65
(+9.26)

21.57
(+4.76)

Table 5: Translation performance (BLEU) when fine-
tuning our proposed model on a small amount of real par-
allel data.



6 Conclusion

In this paper, we have shown a training-generating-
filtering-training cycle to build a model for trans-
lating zero-resource language pairs. In addition,
we proposed a simple filtering method based on
word alignments and the longest parallel phrase
to filter out poor quality sentence pairs from the
synthetic data. Experiment results show that our
proposed methods outperformed some strong base-
lines and achieve a promising result under zero-
resource conditions for the Khmer→Vietnamese and
Indonesian→Vietnamese directions. Specially, our
proposed model can easily improve their quality
with a small amount of real parallel data.
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