Dialogue policy optimization for low resource setting using Self-play and
Reward based Sampling

Tharindu Madusanka, Durashi Langappuli, Thisara Welmilla,
Uthayasanker Thayasivam and Sanath Jayasena
Department of Computer Science and Engineering,University of Moratuwa ,Sri Lanka
{stharindu.1l6, durashi.l6, welmilla.1l6, rtuthaya, sanath}@cse.mrt.ac.lk

Abstract

Reinforcement Learning is considered as the
state of the art approach for dialogue policy
optimization in task-oriented dialogue systems.
However, these models demand a large cor-
pus of dialogues to learn effectively. Train-
ing Reinforcement Learning agent with low
data amount tends to overfit the agent. Al-
though synthesizing dialogue agendas with di-
alogue Self-play using rule-based agents and
crowdsourcing has demonstrated promising re-
sults with the low amount of samples, these
methods hold limitations. For instance, rule-
based agents acquire specific domain and lan-
guage while crowdsourcing demands a high
price and domain experts, especially in local
languages. In this paper, we address these
limitations by proposing a novel approach for
synthetic agenda generation by acknowledg-
ing the underlying probability distribution of
the user agendas and a reward-based sampling
method that prioritizes failed dialogue acts.
Evaluations conducted shows leveraged per-
formance without overfitting, compared to the
baseline method. Also, the reward-based sam-
pling method improves the overall mean task
success rate by an average of 11.307%.

1 Introduction

A dialogue system, or conversational agent, denotes a
system that can conduct a conversation with another
agent, usually a human (Perez-Marin and Pascual-
Nieto, 2011). One type of conversational agent are
Task-oriented conversational agents, that can help
users accomplish tasks ranging from meeting schedul-
ing to vacation planning. The structure of a task-

User query

“I want to book tickets to g 5 b-] (

Avengers: Infinity war”

Dialog State
Tracker
Bot query "'
= DM
"How many tickets" n .o 2,

Figure 1: Components of a task-oriented conversational
agent

oriented conversational agent is outlined in Figure
1. It consists of (i) a natural language understand-
ing(NLU) module for identifying intents of user utter-
ances (ii) a dialogue state tracker(DST) for tracking
conversation state (iii) a dialogue policy learner(POL)
which selects the next action based on the current
state (iv) a natural language generator(NLG) for con-
verting the agent action to a natural language re-
sponse (Gao et al., 2018).

Dialogue Policy Network(learner) plays a critical
role in task-oriented conversational agents since they
require logical reasoning and planning over several
dialogue turns. Policy Network has been developed
under rule-based methods(i.e. ontology-based, finite
state machines) and model-based methods(i.e. Su-
pervised Learning(SL) based (Bordes et al., 2016;
Dinan et al., 2018), Reinforcement Learning(RL)
based (Lu et al., 2019; Liu and Lane, 2018; Su et al.,
2016a)). Due to enhanced data availability, dialogue
policy optimization has leveraged with RL based
methods. However, these state-of-the-art RL meth-
ods have barely experimented in the low resource

10

084
0.6 4
044 /_/_/\/—\/
024

=== Taining success rate
—— TBst success rate

Success rate

00 +—) i v ' ' i
10 20 30 40 50 60 70
No. of user goals

Figure 2: Training and test success rates of user goals with
low amount of samples

setting because these models tend to overfit when the
number of available training data is low(see Figure
2).

The accuracy of the dialogue policy network di-
rectly depends on the availability of quality dialogue
samples to train. As depicts in Figure 2, the agent
tends to overfit when the number of training samples
is low. The dialogue Self-play approach has proposed
to overcome this issue with (i) crowdsourcing(Shah
et al., 2018a) or manually synthesize agendas and
(i) rule-based agents to synthesize agendas (Shah et
al., 2018b). However, these methods have limitations
since crowdsourcing is expensive especially consid-
ering low resource local languages, and rule-based
agents are limited to a specific domain and language.
Thus an alternative approach to address this issue is
to synthesize agendas considering all the possibili-
ties. But this method conduces to create unrealistic
agendas besides awarding equal probability to every
possible state that affects the speed of convergence
of Reinforcement Learning agents.

To address these limitations, we propose a novel
approach for synthetic agenda generation by acknowl-
edging the underlying probability distribution of the
user agendas. Since this methodology applies to
a low amount of samples, this method can lead to
an insufficient exploration of agendas by the agent.
Therefore we further developed the methodology by
introducing a selective sampling method based on the
reward function that prioritizes the failed dialogue
acts, where the agent actively decides what agendas
to use. The intuition is that the agent can learn more

from failed dialogues over successful ones.

The rest of the paper is organized as follows: Sec-
tion 2 describes the Background on RL and data
synthesis. Section 3 presents the related work for
dialogue policy optimization using RL and low re-
source settings. Our methodology is fully described
in section 4. We conduct our experiments and show
the results in section 5. Finally, we conclude our
work in section 6.

2 Background

2.1 Reinforcement Learning

Reinforcement Learning (RL) is a learning paradigm
where an intelligent agent learns to make optimal
decisions by interacting with an initially unknown
environment(Sutton and Barto, 2018). The agent
interacts with the environment by observing the state
s¢ and taking an action a;. Depend on the action
the agent receives a reward 7,41 and observes the
state change s;y1. This continues until the episode
ends. The agent’s goal is to maximize the cumulative
reward at each step and the cumulative reward at step
t is denoted by G

Gy = i1 + T2 + VP regs +
o
= Z Y g
i—1

where the v is the discount factor. The action an
agent takes at state s defined by the policy the agent
follows. The policy is a function that maps states to
actions and denoted by 7. The agent’s goal is to find
the optimal policy denoted by 7*.

There are mainly three types of methods for find-
ing the optimal policy. They are the value-based
methods, the policy-based methods, and the actor-
critic methods. In value-based methods, a value
function is used to express the value of the state or
state-action pair. Note the value function define with
respect to the policy and the optimal value function
denoted by either by V* or Q*. So if the optimal
value function is known the optimal policy can be
found by,

7(s) = argmax,(Q*(s,a))

The Monte-Carlo method, Q-learning, and DQN
(Mnih et al., 2013) which use deep neural networks
are popular value-based methods.

The policy-based methods find the optimal pol-
icy directly without using any value function. The
well-known policy-based methods are Reinforce
(Williams, 1992) and Proximal policy optimization
(PPO) (Schulman et al., 2017). The actor-critic meth-
ods(Konda and Tsitsiklis, 2000) combine the two
methods. Here, there is an actor which acts according
to certain policy and a critic which tries to estimate
the value function for a given state.

The dialogue policy learning is a policy optimiza-
tion problem, and many researchers have used Rein-
forcement Learning to find the optimal policy (Pineau
and Thrun, 2004; Gasic and Young, 2014; Williams
and Young, 2007). Here, the policy network is the
agent, and the environment is the user or the user
simulator. The agent keeps track of the state of the di-
alogue, and the state is defined using intents, entities,
and slot values. The agent takes action depending on
the state. This action can be generating a dialogue
act or sending an API call etc. For the action taken
by the agent, a reward is given by the user simulator
or user at the end of dialogue or each step. Usually,
in task-oriented dialogue systems, the reward is as-
sociated with the task-success rate. The task-success
rate is the measure of how much of the user’s task is
achieved or not.

2.2 Data synthesization

Machine learning specifically in the context of Su-
pervised Learning can be defined as an approach that
tries to get ming >, L(0, D), where D is the data and
0 is the parameters of the model. Usually, when mod-
els are trained, in each episode of training a random
sample(batch), Dg is drawn from the data D used
for updating model parameters. However if enough
data is not available, we may need to generate data
or use a different type of learning method like Meta-
learning. If data is generated then this generated data,
S is used for training either with D or instead of D.
S can be created using a Generator function, G or
manually.

S=G(D)and G ~ P(D)

The usual method of sampling from synthetic data, S
is random sampling,

Dy ~ random(S)

3 Related work

The Reinforcement Learning approaches are more
suitable for modeling the policy network of the con-
versational agent and it has already shown very
promising results in dialogue policy optimization
research(Larsson and Traum, 2000; Li et al., 2009;
Lucie et al., 2019; Gasic and Young, 2014). It is
capable of exploring a large action state space and
approximating the optimal policy. However, the Re-
inforcement Learning methods are rarely used for
the low resource setting as these approaches require
more samples with respect to the rule-based and Su-
pervised Learning approaches.

Most of the research works in the area of using
Reinforcement Learning for dialogue policy learning
are mostly focused on optimizing the reward func-
tion(Su et al., 2016a; Liu and Lane, 2018), improving
task success rate(Li et al., 2009), achieving person-
alization(Mo et al., 2018; Hengst et al., 2019) and
making system end-to-end (Dhingra et al., 2016; Wen
et al., 2016) or interactive(Shah et al., 2016; Liu et
al., 2018).

Some research work has been done on making the
Reinforcement Learning approaches more sample
efficient. One such approach is using warm-start such
as the imitation learning where the agent mimics an
expert provided policy(Li et al., 2015), Replay Buffer
Spiking(RBS)(Lipton et al., 2018) which is used with
DQN and use expert generated dialogues(Henderson
et al., 2008; Chen et al., 2017). Another approach
for improving the RL-based approach is using an
efficient method for exploration(Lipton et al., 2018).
Even though this research work has made the novel
Reinforcement Learning approaches more sample
efficient, they still cannot be used in low resource
settings as they still require large amount of training
dialogues to reach a sufficient level of accuracy.

Several dialogue Self-play approaches have pro-
posed to synthesize agendas with (i) crowdsourc-
ing(Shah et al., 2018a) or manually synthesizing
(ii) rule-based agents for synthesizing (Shah et al.,
2018b) (iii) synthesize agendas considering all pos-
sibilities. However, these methods have limitations.
Crowdsourcing is an expensive process and may lead
to additional practical problems especially in the lo-
cal language setting and rule-based agents are limited
to a specific language or domain. Although these is-

sues are addressed by the last method, it generates
unrealistic agendas and can affect the rate of conver-
gence.

Our goal is to solve the overfitting problem that
occurs when the dialogue policy network is imple-
mented with the Reinforcement Learning technique
in a low resource setting. Thus, we propose a combi-
nation of two techniques. Addressing current issues
in the Self-play approaches for agenda synthesis in
the conversational domain, we proposed a Self-play
mechanism that uses underlying probability distri-
butions of dialogue acts to synthesize new agendas.
However, this proposed method may cause insuffi-
cient exploration of agendas by the agent, due low
amount of data. To address this issue, we introduce
a selective sampling method that prioritizes failed
dialogue acts based on the reward function.

4 Proposed Methodology

Proposed methodology has two main components.
The first one is the Self-play mechanism that cal-
culate underlying probability distributions from the
training data and feed dialogue acts sample from
these probability distributions to the user simula-
tor. The second component is responsible for reward
based sampling technique that prioritizes failed dia-
logues over successful ones.

4.1 Definitions

The objective of the methodology is to synthesize
data that reflect the true distribution of the data and
then sample and train the agent in an efficient man-
ner. Let training data(Agendas) is denoted by D
and P(D) denotes the data distribution. Let there
be N number of slots and s, denotes the q" slot
(1 < g < N). To capture the P(D) we consider 3
independent discrete probability distributions.

1. P(sq) - Probability of slot s, exists in an
Agenda

2. P(req|s,) - Probability that slot s, being re-
questable slot given that it exists(P(req|sq) =1 -
P(inform|s,) where P(inform|s,) denotes the
probability that slot s, being informable slot)

3. P(kblinform,s,) - Probability that the in-
formable slot value available in the knowledge base
given that slot exists in the agenda and it is in-
formable.

We use these probabilities to capture P (D). The
methodology we describe and the mathematical equa-
tions are applied to all 3 probability distributions
mention above. So for generalization we’ll denote
any of the above probability distributions with the
term P. Let there are m elements in the probability
distribution P. Let xj, denotes the k*" element in P
(1 < k < m). p(xy) denotes the probability of x

4.2 Self-play Mechanism

An overview of the proposed methodology is illus-
trated in Figure 3. Instead of directly using the train-
ing dataset for training which leads to overfitting the
model, we use the training dataset for calculating the
underlying probability distribution and use that prob-
ability distribution for sampling agendas to optimize
the policy network.

We add a small noise value ¢;, for each element
T

er ~ N(0, 6%))

where ¢ is chosen as a very small number. We
add the noise for two purposes. One is to promote
exploration by making Vxy, p(zx) > 0, and the other
is to avoid overfitting. We add that noise in a way
such that,

0<p(rg) <1 and Zp(xk) =1
k=1

Once the probability distributions are calculated
and noise is added, we use the mechanism that we
created to sample dialogue acts from the probability
distribution and feed it to the user simulator. This
way agents can be trained without overfitting to the
training dataset.

4.3 Prioritizing Failed Dialogues (Reward
Based Sampling Technique)

We use a selective sampling technique that prioritizes
failed dialogues over successful ones. The intuition
behind the concept is that we believe the agent can
learn more from the failed dialogues than success-
ful ones. We use the reward as the indicator of the
dialogues being successful or failed. We assume
that the reward is negative for failed dialogues while
it is positive when dialogues are successful. So the
method we proposed uses the reward function and the

Distribution calculation

probability
Training distribution

data

Rewards Reward

update

Agenda
Synthesis

User Dialogue
simulator acts bsT]
Belief
state s;
B
PQ

Rewards

Figure 3: Our proposed Self-play framework, Distribution calculation and Agenda synthesis components responsible
for synthesizing agendas, which then feed into the simulator. Reward update feed the reward signal for re-calculating

distributions.

prior probabilities to recalculate the probabilities for
sampling such that failed dialogues are prioritized.
So before any recalculation,

> plar) =1)
k=1

Let’s consider element ;.. Let there be n; agendas
with element x, in them and for each i < ny, r¥
denotes the reward. Since we want to prioritize the
failed dialogues over successful ones we consider
the negation. Also, we add the maximum possible
reward to it to make sure that the resultant value is
non-negative. Let max(r) denotes the maximum
possible reward while min(r) denotes the minimum
possible reward. Then we can calculate,

2F = —rf £ max(r) 3)

)

So that Vi, k, ZZ’-c > (0. We can calculate the mean
reward related to the element xj, by,

1 p_ 1 K
— zZ; = — r; +max(r
e 2 nk; ORI

So wy, denotes the mean negative reward related
to the element x;. Then we can recalculate the prob-
abilities from by considering the mean reward and
previous probabilities.

f(xr) = plaw)(

o)

maz(r)

The « is a hyperparameter which controls the in-
fluence of the reward when recalculating probability
distributions. We divide by max(r) for normaliza-
tion. Then the resultant term m;‘;’ﬁ(r) get normalized
to a value between 0 and (1 + ‘2;2,((:))

recalculate the probabilities by,

|). Then we can

(=)
Plow) = s h)P

e ey ©
S) (™ ey
o) = S e
el (P +1)7)7)
S eapl(p(eg) (ot 1))
(7

Equation 6 and 7 normalize the f(zy) so that the
i1 p(xx) = 1. Equation 6 uses a division by the
sum(naive normalization), while equation 7 uses the
Softmax equation for normalization. In both cases,
the /3 is a hyperparameter. So, we can use either equa-
tion 6 or 7 for recalculating probability distributions
such that failed dialogues are prioritized (we can use
equation 6 and 7 for reward-based sampling).

Algorithm 1 explain the flow of the process from
getting the dataset to the continuous recalculation of
probability distributions.

Algorithm 1: Self-play with reward based
Sampling

Require: training, D
Require: hyperparametrs; «,3, and maximum
reward; max(r)
1: calculate probability distributions from
the D
2: add noise e, ~ N (0, 62) for each x}, in
each of the probability distributions P
3: initialize reward buffer; R = {}
4: for each training episode t do
5. sample agenda, A; from probability
distribution
6: interact and train the agent
store agenda A; and reward vy in
reward buffer R U { A, r}

8: if recalculate probability then
9: recalculate probability distribution
using either equation 6 or 7
10: end if
11: end for

4.4 The Influence of « in Prioritizing Failed
Dialogues

Consider the mean negative reward related to the
element xy, wy and normalized mean negative re-

ward m;"x’“(r), where max(r) is the maximum possible
reward.
W min(r
< <14 M)l @)
maz(r) maz(r)

Note that if the more dialogues are successful then
wy, is less than max(r), while if more dialogues
failed then wy is greater than max(r). Let w; de-
notes a negative mean reward of a element where
most dialogues succeed(more than half of dialogues
succeed) while w; denotes the negative mean reward
of a element where most dialogues failed. Then,

0<—1 - <1 ©)
mazx(r)
L Wi g Imin()] (10)
maz(r) maz(r)

So if we consider aq,a9, where ap < ao and as,
where a3 > 1. Then,

Wy Wy

(m)al ~ (ma:z(r))a2 (b
w] (e%] w] (6]
(m) < (maz(r)) (12)
and, w -
(ma;v(r) " maz(r) (13)
wj as wj
(ma:c(r) maz(r) (14

This means not only « controls the affect of the
reward, but also it controls the separation between
elements with majority failed dialogues and elements
with majority successful dialogues.

S Experiments and Results

We performed a set of well-designed experiments
to evaluate our proposed methods. All the experi-
ments are done in the movie booking domain. As the
user simulator, we use the open-source simulator de-
scribed by Li et al. (2016). The agent train by the user
simulator for 200 episodes then evaluated against a
test set. Each episode consists of 20 simulated dia-
logues followed by one epoch of training. Totally 29
slots are used and all of them are available from the
beginning of the training process. To represent the
dialogues we constructed 268-dimensional a feature
vector.

From the dataset, we randomly sampled 30 user
goals at each experiment as the test dataset. The rest
of the dataset is used for training the agent. Purpose
of the experiment is to measure the performance of
the proposed methodology and evaluated against a
baseline when number of available training samples
are low. So we vary the number of training samples
available for the agent in each experiment to train(or
in case of self play, available for calculating prob-
abilities). Experiments are done for different sizes
of training datasets ranging from 10 to 70(we use a
interval of size 5 when varying size of training sam-
ples). Each experiment-setting is done (i) without
Self-play (ii) Self-play with naive normalization (iii)
Self-play with softmax normalization (iv) Self-play
without reward-based sampling. For each experiment
setting, we plot the results as the mean of the five

Training Without Selfplay with | Selfplay with Selfplay without
dataset size selfplay naive softmax reward based sampling
10 0.19 0.63 0.84 0.58
15 0.32 0.71 0.81 0.60
20 0.32 0.79 0.81 0.66
25 0.43 0.78 0.86 0.76
30 0.43 0.68 0.80 0.73
35 0.46 0.73 0.84 0.68
40 0.43 0.73 0.76 0.68
45 0.38 0.75 0.79 0.76
50 0.43 0.81 0.72 0.68
55 0.43 0.84 0.79 0.76
60 0.41 0.78 0.76 0.73
65 0.40 0.77 0.76 0.68
70 0.44 0.80 0.80 0.74

Table 1: Mean test success rate for (i) without Self-play (ii) Self-play with naive normalization (iii) Self-play with
softmax normalization (iv) Self-play without reward-based sampling. The mean is calculated for 5 different random

seeds.

experiments. In all cases we have used a Deep-Q-
Network(Mnih et al., 2013) as the agent. The results
of the experiment are shown in the Figure 4.

Training details: First, the rule-based agent inter-
acts with the simulator with 120 dialogues for the
replay buffer spike. Next, the RL agent interacts
with a simulator for 200 episodes each consist of 20
simulated dialogues. The resultant state-action re-
ward pairs store in the replay buffer. Each episode
followed by one epoch of training with a batch size
of 16. During the training for the epoch, the agent
freezes the target network parameters and then update
the local Q -function.

Self-play mechanism also contains hyperparam-
eters. We use the ¢; with 6 = 0.0005 for P(sq),
d = 0.01 for P(req|sy) and § = 0.01 for
P(kblinform,sq). Alsoweuse « =0.5and § = 1
for reward based sampling with naive normalization
and o = 0.5 and 8 = 10 for reward based sam-
pling with softmax normalization. « and [values
are determined by grid-search. We start reward based
sampling from 60" episode onward.

Architectural details: All models are imple-
mented as multilayer perceptrons(MLP’s) with ReLU
activations. Each model consists of 2 hidden layers
each having 64 hidden neurons. The Adam optimizer
(Kingma and Ba, 2014) used as the optimizer with

the learning rate of 0.0005. The training batch size is
16. The target network update by soft update instead
of hard update.

Results: As shown in Figure 4, our proposed
methodology did not overfit and perform better than
the baseline in every case. Directly training using
the training data tends to overfit the model, hence a
higher training accuracy is achieved, but the respec-
tive test accuracy is low. However, the test accuracy
is increasing for the baseline model as the number
of training samples increase. This is because as the
amount of training samples increase, the model can
generalize better. In most cases, reward-based sam-
pling(prioritizing failed dialogues) method outper-
form the random sampling method(without prioritiz-
ing failed dialogues), especially when the number of
training samples is extremely low. This is because the
reward base sampling provides a better exploration
of agenda space. Also, when the number of training
examples available is low, reward base sampling with
softmax function yields the best result. Since Soft-
max function takes the exponent of the probability
and the mean negative reward’s multiplication, the
final probability calculation for elements has a higher
standard deviation. This increase the degree of explo-
ration, which is helpful when the number of training
samples is low.

10

Success rate

=== TFaining without self-play
—— Test without self-play
-== Taining with naive
—— TBst with naive

= Taining with Softmax
= Test with Softmax
== Taining without prioratizing failed dialogs
—— st without prioratizing failed dialogs

n 5 20 s 2 E T 0 5 0 & 7
No. of user goals

Figure 4: The mean train and test success rate for (i)
without Self-play (ii) Self-play with naive normalization
(iii) Self-play with softmax normalization (iv) Self-play
without reward-based sampling. The mean is calculated
for 5 different random seeds and curve is smoothed using
interpolate spline technique.

Rate of convergence To verify that our proposed
method train the model in a way such that models
improve the testing success rate with their training
success rate, we conduct an experiment keeping the
training sample size constant and testing at different
stages when training. This way, we can track how
the test success rate improves with the number of
episodes. In all cases, we use the reward-based sam-
pling with naive normalization with an o = 0.5 and
8 =1

We use the same simulator with the same movie
booking dataset for this experiment as well. We ran-
domly separate the data into train and test set, and
in each run of the experiment, we use 40 samples
for training and 40 samples for testing. We use the
40 training samples for calculating probability distri-
butions, then use these probability distributions for
Self-play mechanism. The agents interact with the
user simulator for 200 episodes where each episode
consists of 20 simulation dialogues followed by an
epoch of training. After every 10 episodes, an eval-
uation is conducted using the test set. We start the
reward-based sampling at 60*” episode. We experi-
ment 5 times with each time with different train and
test set that is sampled from the data. The mean train
and test success rate of each of the RL method is
shown in Figure 5.

The results which are shown in Figure 5 shows

10

Success rate

=== Taining with dqn
= st with dgn
=== Taining with double
—— st with double

== Taining with duel
= Test with duel

10 20 30 40 S0 60 70 80 9% 100 110 120 130 140 150 160 170 180 190 200
No. of episodes

Figure 5: The mean train and test success rate for different
RL methods. Kept number of training samples constant at
40 and vary the number of training episodes. The mean
is calculated for 5 different random seeds and curve is
smoothed using interpolate spline technique

that our method improves the test success rate along
with its train success rate. In all algorithms, our
proposed method performs well without overfitting.
All RL algorithms improve their performance as the
number of episodes increase, and the test success rate
is improving along with train success rate without an
apparent lag.

6 Conclusion

We proposed a method to train RL agents for dialogue
policy learning without overfitting. The methodol-
ogy includes a Self-play technique that uses under-
lying probability distribution for agenda generation
and reward-based sampling technique that prioritizes
failed dialogues. We have shown that our method
performs well compared to baseline as well as that
the method can train a policy agent without overfit-
ting. We also have shown that reward-based sampling
method performs well in the exploration of agenda
space. It also performs better than the random sam-
pling method. We see several possible paths for fu-
ture work. One of the main is using a better reward
function. Also, we like to expand the work so that a
full task-oriented conversational agent can be made
by modeling the problem as an active learning prob-
lem with a better reward function. So an end-to-end
task-oriented conversational agent can be made for
low resource setting.

References

Antoine Bordes, Y-Lan Boureau, and Jason Weston.
2016. Learning end-to-end goal-oriented dialog. arXiv
preprint arXiv:1605.07683.

Lu Chen, Xiang Zhou, Cheng Chang, Runzhe Yang, and
Kai Yu. 2017. Agent-aware dropout dgn for safe and
efficient on-line dialogue policy learning. In Proceed-
ings of the 2017 Conference on Empirical Methods in
Natural Language Processing, pages 2454-2464.

Lucie Daubigney, Matthieu Geist, Senthilkumar Chan-
dramohan, and Olivier Pietquin. 2012. A comprehen-
sive reinforcement learning framework for dialogue
management optimisation. 1EEE Journal of Selected
Topcis in Signal Processing, 6.

Floris Den Hengst, Mark Hoogendoorn, Frank Van Harme-
len, and Joost Bosman. 2019. Wizard of wikipedia:
Knowledge-powered conversational agents. arXiv
preprint arXiv:1811.01241.

Bhuwan Dhingra, Lihong Li, Xiujun Li, Jianfeng Gao,
Yun-Nung Chen, Faisal Ahmed, and Li Deng. 2016.
Towards end-to-end reinforcement learning of dia-
logue agents for information access. arXiv preprint
arXiv:1609.00777.

Emily Dinan, Stephen Roller, Kurt Shuster, Angela Fan,
Michael Auli, and Jason Weston. 2018. Wizard of
wikipedia: Knowledge-powered conversational agents.
arXiv preprint arXiv:1811.01241.

Jianfeng Gao, Michel Galley, and Lihong Li. 2018. Neu-
ral approaches to conversational Al. The 41st Interna-
tional ACM SIGIR Conference on Research & Devel-
opment in Information Retrieval, pages 1371-1374.

Milica Gasic and Steve Young. 2014. Gaussian processes
for pomdp-based dialogue manager optimization. Au-
dio, Speech, and Language Processing,IEEE/ACM
Transactions on, 22:28—40.

James Henderson, Oliver Lemon, and Kallirroi Georgila.
2008. Hybrid Reinforcement/Supervised Learning of
Dialogue Policies from Fixed Data Sets. Computational
Linguistics, 34:487-511.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Vijay R Konda and John N Tsitsiklis. 2000. Actorcritic
algorithms. In Advances in neural information process-
ing systems, pages 1008-1014.

Staffan Larsson and David Traum. 2000. Information
state and dialogue management in the trindi dialogue
move engine toolkit. Natural Language Engineering,
6:323-340.

Lihong Li, He He, and Jason Williams. 2015. Temporal
supervised learning for inferring a dialog policy from
example conversations. 2014 IEEE Workshop on Spo-
ken Language Technology, SLT 2014 - Proceedings,
pages 312-317.

Lihong Li, Jason D. Williams, and Suhrid Balakrishnan.
2009. Reinforcement learning for dialog management
using least-squares policy iteration and fast feature se-
lection. Tenth Annual Conference of the International
Speech Communication Association.

Xiujun Li, Zachary C Lipton, Bhuwan Dhingra, Lihong
Li, Jianfeng Gao, and Yun-Nung Chen. 2016. A user
simulator for task-completion dialogues. arXiv preprint
arXiv:1612.05688.

Zachary Lipton, Xiujun Li, Jianfeng Gao, Lihong Li,
Faisal Ahmed, and Li Deng. 2018. Bbg-networks:
Efficient exploration in deep reinforcement learning for
task-oriented dialogue systems. In ThirtySecond AAAI
Conference on Atrtificial Intelligence.

Bing Liu and Ian Lane. 2018. Adversarial learning of
task-oriented neural dialog models. arXiv preprint
arXiv:1805.11762.

Bing Liu, Gokhan Tur, Dilek Hakkani-Tur, Pararth Shah,
and Larry Heck. 2018. Dialogue learning with
human teaching and feedback in end-to-end train-
able task-oriented dialogue systems. arXiv preprint
arXiv:1804.06512.

Keting Lu, Shiqi Zhang, and Xiaoping Chen. 2019. Goal-
oriented dialogue policy learning from failures. Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex
Graves, loannis Antonoglou, Daan Wierstra, and Mar-
tin Riedmiller. 2013. Playing atari with deep reinforce-
ment learning. arXiv preprint arXiv:1312.5602.

Kaixiang Mo, Yu Zhang, Shuangyin Li, Jiajun Li,
andQiang Yang. 2018. Personalizing a dialogue system
with transfer reinforcement learning. Thirty-Second
AAAI Conference on Artificial Intelligence.

Diana Perez-Marin and Ismael Pascual-Nieto. 2011. Con-
versational agents and natural language interaction:
Techniques and effective practices: Techniques and ef-
fective practices. 1GI Global.

Joelle Pineau and Sebastian Thrun. 2004. Spoken Di-
alogue Management Using Probabilistic Reasoning.
Proceedings of the 38th Annual Meeting of the Associ-
ation for Computational Linguistics (ACL).

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. 2017. Proximal policy opti-
mization algorithms. arXiv preprint arXiv:1707.06347.

Pararth Shah, Dilek Hakkani-Tur, and Larry Heck. 2016.
Interactive reinforcement learning for taskoriented dia-
logue management.

Pararth Shah, Dilek Hakkani-Tur, Bing Liu, and Gokhan
Tur. 2018a. Bootstrapping a neural conversational
agent with dialogue self-play, crowdsourcing and on-
line reinforcement learning. In Proceedings of the 2018

Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies, Volume 3 (Industry Papers), pages
41-51.

Pararth Shah, Dilek Hakkani-Tiir, Gokhan Tiir, Abhinav
Rastogi, Ankur Bapna, Neha Nayak, and Larry Heck.
2018b. Building a conversational agent overnight with
dialogue self-play. arXiv preprint arXiv:1801.04871.

Pei-Hao Su, Milica Gasic, Nikola Mrksic, Lina Rojas-
Barahona, Stefan Ultes, David Vandyke, TsungHsien
Wen, and Steve Young. 2016a. Continuously learn-
ing neural dialogue management. arXiv preprint
arXiv:1606.02689.

Pei-Hao Su, Milica Gasic, Nikola Mrksic, Lina RojasBara-
hona, Stefan Ultes, David Vandyke, TsungHsien Wen,
and Steve Young. 2016b. On-line active reward learn-
ing for policy optimisation in spoken dialogue systems.
arXiv preprint arXiv:1605.07669.

Richard S. Sutton and Andrew G Barto. 2018. Reinforce-
ment learning. Cambridge, Mass: MIT Press.

Tsung-Hsien Wen, David Vandyke, Nikola Mrksic, Milica
Gasic, Lina M Rojas-Barahona, Pei-Hao Su, Stefan
Ultes, and Steve Young. 2016. A networkbased end-
to-end trainable task-oriented dialogue system. arXiv
preprint arXiv:1604.04562.

Jason Williams and Steve Young. 2007. Partially ob-
servable Markov decision processes for spoken dialog
systems. Computer Speech & Language,21:393-422.

Ronald J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229-256.

