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Abstract 
The abusive content on Arabic social media such as hate speech, sexism, racism has become pervasive, and it has a lot of negative 

psychological effects on users. In this paper, we introduce our work aiming to detect Arabic offensive language and hate speech. We 

present our two deep neural networks Convolutional Neural Network (CNN) and Bidirectional Gated Recurrent Unit (Bi-GRU) used to 

tackle this problem. These models have been further augmented with attention layers. In addition, we have tested various pre-processing 

and oversampling techniques to increase the performance of our models. Several machine learning algorithms with different features 

have been also tested. Our bidirectional GRU model augmented with attention layer has achieved the highest results among our proposed 

models on a labeled dataset of Arabic tweets, where we achieved 0.859 F1 score for the task of offensive language detection, and 0.75 

F1 score for the task of hate speech detection. 
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1. Introduction 

The internet and social media provide people with a range 

of benefits and opportunities to empower themselves in a 

variety of ways. There are millions of people using social 

media platforms to maintain social connections and support 

networks that otherwise would not be possible. All of these 

benefits led to a huge growth of social media interactions 

in the last few years. Arabic language has a very high rate 

of growth in social networking usage. Based on the Arab 

social media report (Salem, 2017), the average rate of using 

Arabic language in social media reaches 55% in 2017. 

 

With the massive increase of the social connections, there 

has also been an increase of abusive language that should 

be detected and eliminated from these networks, due to its 

negative impacts on users. This paper has been prepared for 

the competition of OSACT4 shared task on offensive 

language detection (Mubarak et al., 2020). The competition 

was divided into two sub-tasks; sub-task A (offensive 

language detection) and sub-task B (hate speech detection). 

Offensive language is defined as any implicit or explicit 

insult or attack against other people, or any inappropriate 

language, while hate speech1 is defined as any abusive 

speech targeting individuals (a politician, a celebrity, etc.) 

or particular groups (a gender, a religion, a country, etc.).  

Hate speech is known to be complex and ambiguous 

because it was not just a words identification. (Zhang and 

Luo, 2019) showed that detecting a hateful content is a 

challenging task compared to non-hateful content due to 

their lack of unique, discriminative linguistic features. On 

the other hand, Arabic language is known to be difficult and 

ambiguous, the Arabic content on social media is noisy 

                                                           

 
1 https://www.dictionary.com/browse/hate-speech 

with different dialects, and most Arabic users do not care 

about using correct grammar, or spelling. All of these 

factors made these tasks nearly impossible in the past to 

detect and identify using conventional features widely 

adopted in many language-based tasks. 

Based on (Al-Hassan and Al-Dossari, 2019), offensive 

language detection task depends mainly on text mining 

approaches such as NLP and machine learning algorithms.  

In the rest of this paper, a brief of related works are 

summarized in section 2. In section 3, we represent our data 

preparation process, then our proposed models are 

presented in section 4. In section 5, a brief discussion on 

the results is addressed. At the end, a short summary and 

insights for the future are presented. 

2. Related Works 

Different researches have addressed both offensive 

language detection, and hate detection subjects. (Cambray 

and Podsadowski, 2019) evaluated their model on 

OffensEval 2019 English dataset and presented their best 

model as a bidirectional LSTM; followed by a two-branch 

bidirectional LSTM and GRU architecture (macro F1 of 

73% for offensive language detection task and 61% for 

targeted hate speech detection). 

(Mubarak, Darwish, and Magdy, 2017) have created a list 

of 288 of Arabic obscene words and other list of 127 of 

hashtags. They used this list in addition to patterns to 

collect Arabic abusive tweets from Twitter API during 

2014. They classified tweet users into two groups, namely: 

those who authored tweets that did not include a single 

obscene word from list words (clean group) and those who 

used at least one of the words in list at least once (obscene 
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group). They computed unigram and bigram counts in both 

of them and computed the Log Odds Ratio (LOR) for each 

word unigram and bigram that appeared at least 10 times. 

(Alakrot, Murray, and Nikolov, 2018) have collected a 

dataset of 15,050 comments from YouTube and labelled 

them manually by three annotators. This dataset was 

collected in July 2017. They applied some preprocessing 

operations on the dataset, and then applied SVM classifier 

on tf-idf features with different methods for text 

normalizing (macro F1 of 82%). (Mohaouchane, Mourhir, 

and Nikolov, 2019) have used the same YouTube dataset. 

They used Word2Vec embeddings and trained different 

neural networks models namely: convolutional neural 

network (CNN), bidirectional long short-term memory (Bi-

LSTM), Bi-LSTM with attention mechanism, and 

combined CNN and LSTM. The CNN model achieved the 

highest accuracy (87.84%), precision (86.10%), and F1 

score (84.05%) among other models. 

Several works have investigated the problem of hate speech 

detection in English language. (Zhang and Luo, 2019) 

Firstly: they demonstrated that hateful content exhibits a 

‘long tail’ pattern compared to non-hate, and secondly: they 

proposed two deep neural networks, CNN and GRU, to 

identify specific types of hate speech. They outperformed 

the previous state of the art methods by 5 percentage points 

in macro-average F1. (Gambäck and Sikdar, 2017) 

evaluated CNN model on various word embeddings, and 

achieved their best score (F1 score of 78%) with CNN 

model trained on Word2Vec word embeddings. (Badjatya 

et al, 2017) evaluated several neural architectures on a  

16 K annotated tweets benchmark dataset. Their best setup 

involved a two-step approach using a short-term word-level 

memory (LSTM) model, tuning GLoVe or randomly 

initializing word embedding, and then training a gradient 

boosted decision tree (GBDT) classifier on the average of 

the tuned embedding in each tweet. They achieved the best 

results using randomly initialized embeddings (macro F1 

of 93%). 

In Arabic language there was a limited number of works in 

this area. (Mulki et al., 2019) constructed a Levantine hate 

speech and abusive dataset from Twitter. (Haddad, Mulki, 

and Oueslati, 2019) constructed a Tunisian hate and 

abusive speech dataset. (Albadi, Kurdi, and Mishra, 2018) 

built a lexicon of Arabic terms related to religion abuse 

along with hate score, the labeled dataset is then used to 

train several classification models using lexicon-based, n-

grams-based, and deep-learning based approaches. Their 

best model achieved 0.84 area under receiver operating 

characteristic curve (AUROC).  

3. Data Preparation 

The main dataset used in this work, is the one that was 

firstly presented at OffensEval 2020. This dataset contains 

10000 tweets, only 5% of tweets are labeled as hate speech 

while 19 % of the tweets are labeled as offensive and the 

other 81% as inoffensive tweets. The data has been given 

by the following format: a tweet followed by a label 

indicating its class {OFF/HS, NOT_OFF/NOT_HS}, all 

hate speech tweets considered to be offensive language, but 

not vice versa. The dataset was divided into 70% train data, 

10% validation data, and the rest 20% test data.  

3.1 Data Preprocessing 

This dataset run through a series of pre-processing steps in 

order to get the most normalized language form. Twitter 

data is known for its unstructured and unformed language. 

So, making a good preprocessing steps will results in a 

much better text representation. As a first step, we removed 

non-Arabic words, diacritization, punctuations, emoticons 

and some other stopwords, while we replaced some words 

with their simplified Arabic equivalent, (example: “URL” 

will be substituted with “يورل”). We intend to study the 

effect of the emoticons in a future work. Normalization step 

was also applied (example, replacing “ة” with “ى“ ,”ه” with 

 In addition, elongated and some .(”ا“ with ”[أاإ]“ ,”ي“

consecutive repetitive characters that people usually write 

on their dialect speech are converted back to their original 

form (example: “هههههه” was be converted to “هه”, and 

 This step is very important as some .(”غول“ to ”غووول“

Arabic speakers tend to repeat and elongate some 

characters on their dialect speech. 

3.2 Data Balancing 

After preprocessing, and as the provided dataset is 

imbalanced, we applied different methods to balance out 

the classes for better model performance. Researches 

shows that classifiers trained on imbalanced dataset may 

tend to have a high number of false negatives (offensive 

tweets which are misclassified as inoffensive tweets) and 

thus a lower recall (Mohaouchane, Mourhir, and Nikolov, 

2019). Such detection systems are preferable to identify 

offensive language even if it sometimes mistakes 

inoffensive language as offensive. Because the number of 

inoffensive language exceeds the number of offensive 

language, so it is preferable to have a higher recall 

comparing to a higher precession. A lot of ways have been 

used previously trying to balance out the data like loss 

function weighting (Cui et al., 2019), down sampling and 

oversampling. For our case and for subtask A we used an 

external augmenting technique by adding some offensive 

and inoffensive comments from an already constructed 

Arabic dataset collected from YouTube comments 

(Alakrot, Murray, and Nikolov, 2018) (as YouTube have a 

similar type of language to Twitter). Thus, augmenting our 

data from this YouTube comments data guarantee the 

compatibility of the language added with our given data. 

We have achieved a balanced dataset that contains 

approximately the same number of offensive and 

inoffensive samples.  

For subtask B, we did not use the same technique used for 

sub-task A. Different reasons were behind this decision: 

insufficient hate speech examples in these datasets (only 

468 tweets) (Mulki et al., 2019), some datasets are specific 

for one kind of hate speech, like religious hate speech 

(Albadi, Kurdi, and Mishra, 2018), and some datasets are 

specific for one or more Arabic dialectical form (example: 

Tunisian (Haddad, Mulki, and Oueslati, 2019) or Levantine 

(Mulki et al., 2019)). However, for future works, we intend 

to test augmenting our given data with the combination of 

all the existing hate speech datasets. Instead, we used the 

random oversampling technique by shuffling the words 

into hate speech tweets to create new samples. This method 

repeated many times over the undersampling class (hate 
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speech) until each class in the dataset is represented 

apporoximately equally. Table 1 presents the number of 

tweets  in each category before and after balancing. 
 

 Before After 

Offensive 1330 7184 

Inoffensive 5670 8705 

Subtask A total 7000 15889 

Hate Speech 361 7486 

Not Hate Speech 6639 6639 

Subtask B total 7000 14125 

Table 1: Number of samples before and after balancing 

 

3.3 Data Representation 

The main idea of data representation is to represent words 

as feature vectors. Each entry in a word vector stands for 

one hidden feature inside the word meaning. Word 

embedding is one of the best data representation neural 

network depends on. Word embedding can reveal semantic 

or syntactic dependencies. We used the publically available 

Word2Vec Arabic model (AraVec) (Mohammad et al., 

2017) that supports two types of words embeddings 

skipGram and CBOW, each of which has been trained on 

one of three datasets: tweets, Wikipedia articles, or web 

pages. AraVec also provides multiple dimensions for its 

word vectors. The choice of words embeddings used in this 

work is the vectors that was trained on the twitter dataset 

with the skipGram architecture. The choice of twitter 

model is to be compatible with the language used in the 

given dataset and also to ensure a huge cover of the 

dialectical words found on the tweets. We have further 

checked the overlap between our balanced dataset and the 

AraVec Twitter model. Table 2 shows the number of 

tokens that has been found on the final balanced datasets, 

number of dataset tokens found on the AraVec Twitter 

model and the percentage of overlapping between them.  

N. of tokens 
Balanced 

 Dataset 

AraVec  

Twitter  
Overlapping 

Sub-task A 40562 33777 83% 

Sub-task B 24504 21592 88% 

Table 2: Number of tokens found on the balanced 

datasets, dataset tokens found on the AraVec Twitter 

model, and the percentage of overlapping. 

4. Proposed Approaches 

Before introducing our attention based models. We will 

introduce two deep neural models; convolutional neural 

network and Gated Recurrent unit, and then augment these 

models with an attention layer, and finally compare the 

attention models with the original versions. 

4.1 Convolutional Neural Network (CNN) 

Although the main purpose of creating CNN was to 

convolve over image data, CNN have recently been used a 

lot in document classification, and experiment on textual 

data has shown improvements in multiple tasks (Kim, 

2014). In this work, we use relatively the same model 

presented in (Kim, 2014), (Mohaouchane, Mourhir, and 

Nikolov, 2019), and (Gong et al., 2016), with some 

parameters’ changes (number of filters and filter sizes). The 

first layer of this model is an embedding layer (represents 

a lookup table for words already in the table, and others are 

initialized with random weights, and tuned jointly while 

learning). The second layer contains a number of filters 

with different filter sizes to capture different contextual 

features. Then, a Max-pooling layer was used to capture the 

most important features. After that, all feature vectors is 

concatenated together in order to be passed for a fully 

connected layer of one neuron. The output layer is 

responsible of classifying the tweet into a positive class 

(offensive/ hate speech) or a negative class (inoffensive/ 

not hate speech). We refer to this model as CNN. This 

model is shown at figure 1. 

 

Figure 1: CNN Model 

4.2 Bidirectional Gated Recurrent Unit (Bi-

GRU) 

Bidirectional GRUs are a type of bidirectional recurrent 

neural networks with only the input and forget gates. It 

allows for the use of information from both previous time 

steps and later time steps to make predictions about the 

current state. We stack two layers of bidirectional GRU on 

top of each other, followed by a fully connected layer of 

one neuron to predict the output. We refer to this model as 

Bi-GRU, figure 2 shows the model. 

Figure 2: Bi-GRU Model 

4.3 Convolution Neural Network with 

Attention (CNN_ATT) 
Certainly, some words on the sentence plays more 

important role than others and some words are more 

important than others to the class of the tweet. (Bahdanau, 

Cho, and Bengio, 2014) was the first to present this type of 

attention in seq2seq model to improve machine translation 

model. After that, attention-based neural networks have 
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been used in various tasks and achieved promising 

performance, such as (Gong et al., 2016) retweet 

prediction, (Xu et al., 2015) image captioning, (He and 

Golub, 2016) question answering, and so on. 

In this section, we present a CNN neural network model 

augmented with an attention layer. Using an attention layer 

after the max pooling layer can learn which max pooled 

feature vectors are most important and thus learn which n-

grams are most important for classification. So, after max 

pooling the feature vectors, they are stacked above each 

other and fed into an attention layer to learn the most 

important feature vectors. We refer to this model as 

CNN_ATT, Figure 3 shows the model.   

 
Figure 3: CNN_ATT Model 

4.4 Bidirectional Gated Recurrent Unit with 

Attention (Bi-GRU_ATT) 

Although Bidirectional Recurrent model has achieved a 

very good results in many tasks, they still treat all steps as 

equal. In this model, we stack the vectors of all computed 

steps, and then we calculate the score function of each step 

and then implement a folding layer to generate a context 

vector indicating the importance of each step vector. This 

is followed by one dense layer of 64 neurons with Relu 

activation function (to increase the nonlinear property of 

this model). After that, we add a fully connected layer with 

one neuron of a sigmoid activation function as the output 

layer. This model is referred as Bi-GRU_ATT and shown 

in figure 4. 

 

Figure 4: Bi-GRU_ATT Model 

4.5 Basic machine Learning Models 

We compared our proposed model with three basic 

machine learning classifiers (Ridge, SVM, and Logistic 

Regression). The Ridge classifier used RMSE and l2 

penalty on both bag of word features (Bow_Ridge) or Tf-

idf features (Tf-idf_Ridge). The SVM classifier was trained 

on bag of word (Bow_SVM) or tf-idf features (Tf-

idf_SVM). In this method, we conducted a grid search to 

obtain the best parameters of SVM kernel. The Logistic 

Regression classifier was trained on bag of word features 

(Bow_LR) or tf-idf features (Tf-idf_LR). 

5. Experimental Results 

For Subtask A and B, we used the Adam optimizer, to adapt 

the learning rate and optimize the training of the neural 

networks. For both subtasks, we used the binary cross-

entropy loss function. We also used an early stopping 

strategy based on a long-term moving-average of the F1 

score evaluated at the end of every epoch. 

Number of filters, recurrent units and neurons in dense 

layers have been optimized using a grid search. We used 

filter sizes of 1, 2, 3, and 4 to capture unigram, bigram, 

trigram, and quad-gram features. These filters are not 

organized in a sequential order, but rather in parallel to each 

other as shown in Fig. 1 and Fig. 3. 

We used an early stopping strategy to determine the 

number of epochs that should be used. For other hyper-

parameter optimization, we performed a manual twerking 

over successive runs on the validation set. 

As a result, we found that the following parameters yielded 

the best validation performance based on our experiment.  

- Maximum Tweet length= 100 

- Filter sizes = [1,2,3,4] 

- Number of Filters = 64 

- Recurrent unit in Bidirectional GRUs’ = 128, 64 

- Neurons number in dense layers = 64  

- Dropout rate =  0.2 and 0.3 

- Batch size = 512 

- Number of epochs = 5 

To initialize the word vectors, the publicly available 

AraVec word vectors were used (Mohammad et al., 2017) 

(skipGram model from Twitter, with 1,476,715 tokens). 

The dimension of the vectors used is 100. Table 2 shows a 

good overlapping with our data, and for words that are not 

found in the vocabulary of pre-trained words, we initialized 

them with random vectors and tuned them while training. 

Hereafter, we present our validation results. Table 3 and 4 

lists the results of using various baseline machine learning 

classifiers (Bow_LR, Tf-idf_LR, Bow_Ridge, Bow_SVM, 

Tf-idf_Ridge, and Tf-idf_SVM).  

Subtask A Avg. Acc Avg. P Avg. R Avg. F1 

Bow_LR 0.86 0.77 0.79 0.78 

Tf-idf_LR 0.85 0.75 0.79 0.77 

Bow_Ridge 0.880 0.8 0.78 0.79 

Tf-idf_Ridge 0.905 0.85 0.8 0.83 

Bow_SVM 0.872 0.78 0.77 0.78 

Tf-idf_SVM 0.906 0.85 0.81 0.83 

Table 3: Performance of baseline models on subtask A 

Subtask B Avg. Acc Avg. P Avg. R Avg. F1 

Bow_LR 0.491 0.49 0.45 0.36 

Tf-idf_LR 0.492 0.51 0.55 0.37 

Bow_Ridge 0.463 0.5 0.49 0.35 
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Tf-idf_Ridge 0.462 0.51 0.57 0.36 

Bow_SVM 0.391 0.49 0.46 0.31 

Tf-idf_SVM 0.386 0.5 0.52 0.31 

Table 4: Performance of baseline models on subtask B 

Comparing the models of Tf-idf and Bow features, we can 

see that tf-idf features is relatively better than Bow features, 

which may be due to the tf-idf’s ability to determine how 

relevant a given word is in a particular document. We can 

also observe that Tf-idf_SVM achieved a high performance 

on subtask A, this may be because SVM generalized better 

with nonlinear kernel that has been found by a grid search 

over its parameters. 

Table 5 and 6 shows the comparison of the proposed 

models (CNN, Bi-GRU, CNN_ATT, and Bi-GRU_ATT) 

when evaluated on subtask task A and B respectively.  

Subtask A Avg. Acc Avg. P Avg. R Avg. F1 

CNN 0.92 0.63 0.84 0.85 

CNN_ATT 0.92 0.86 0.85 0.86 

Bi-GRU 0.91 0.85 0.86 0.85 

Bi-GRU_ATT 0.93 0.91 0.83 0.86 

Table 5: Performance of proposed models on subtask A 

Subtask B Avg. Acc Avg. P Avg. R Avg. F1 

CNN 0.91 0.63 0.78 0.67 

CNN_ATT 0.9 0.63 0.84 0.67 

Bi-GRU 0.92 0.65 0.78 0.69 

Bi-GRU_ATT 0.93 0.66 0.79 0.7 

Table 6: Performance of proposed models on subtask B 

We can observe that baseline models was less efficient 

compared to our proposed models in both subtasks. The 

proposed models have increased the F1 measure of the 

baseline models on subtask B (from 37% to 70%). We also 

can observe that models augmented with attention layer can 

achieve a better performance than the models without the 

attention layer. The improvement is in the order of 1 to 2% 

in Recall and F1 score. However, attention layer has 

achieved a significant improvement in Precision, which 

means that attention layer helps in detecting the right 

offensive and hate speech words and thus raising precision. 

Bi-GRU_ATT achieved the highest accuracy, Precision 

and F1 score for both subtasks A and B, and outperformed 

the CNN models. This may be due to the fact that GRU 

models have more information of text sequence 

dependencies and order that CNN models does not have. 

These features seems to be very important for such tasks as 

shown in (Zhang and Luo, 2019). 

Table 7 shows the results of our best model (Bi-

GRU_ATT) evaluated on the test data. 

Bi-GRU_ATT Avg. Acc Avg. P Avg. R Avg. F1 

Subtask A 0.91 0.88 0.83 0.85 

Subtask B 0.95 0.75 0.74 0.75 

Table 7: Test performance of Bi-GRU_ATT on subtasks  

A and B 

We observe that Bi-GRU_ATT performance on test data -

for both subtasks is close to performance on the validation 

data, which is a good indication of a good generalization of 

the model.  We can also notice that general performance on 

sub-task B is less efficient than performance on sub-task A, 

due to the hard separation of hate speech from other 

instances of offensive language.  

6. Conclusion 

In this paper, we tackle the problem of offensive language 

and hate speech detection. We proposed our methods for 

data preprocessing and balancing, and then we presented 

our Convolutional Neural Network (CNN) and 

bidirectional Gated Recurrent Unit (GRU) models used. 

After that, we augmented these models with attention layer. 

The best results achieved was using the Bidirectional Gated 

Recurrent Unit augmented with attention layer (Bi-

GRU_ATT). Comparing the Precision results of models 

without attention layers and models with attention layer 

reveals that attention layer enabled our model to effectively 

select the relevant input series to the output class, and thus 

raising Precision score. Future work will consider the same 

problem working with both character-level and word-level 

features. Another improvement of models could be using 

LSTM instead of GRU to capture long range dependencies 

in tweets, which plays a big role in offensive language and 

hate speech detection tasks. 
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