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Abstract

Each year, thousands of roughly 150-page pa-
role hearing transcripts in California go unread
because legal experts lack the time to review
them. Yet, reviewing transcripts is the only
means of public oversight in the parole process.
To assist reviewers, we present a simple un-
supervised technique for using language mod-
els (LMs) to identify procedural anomalies in
long-form legal text. Our technique highlights
unusual passages that suggest further review
could be necessary. We utilize a contrastive
perplexity score to identify passages, defined
as the scaled difference between its perplexi-
ties from two LMs, one fine-tuned on the target
(parole) domain, and another pre-trained on
out-of-domain text to normalize for grammati-
cal or syntactic anomalies. We present quanti-
tative analysis of the results and note that our
method has identified some important cases
for review. We are also excited about poten-
tial applications in unsupervised anomaly de-
tection, and present a brief analysis of results
for detecting fake TripAdvisor reviews.

1 Introduction

California houses America’s largest “lifer” popu-
lation, with 25% of its 115,000 prisoners serving
life sentences. Each year, the Board of Parole Hear-
ings (BPH) conducts thousands of parole hearings
to decide whether to grant prisoners early release.
As California has enacted legislation to reduce its
prison population, the number of hearings is sched-
uled to double this year and continue to rise for
the foreseeable future. While each hearing is tran-
scribed into about 150 pages of dialogue and sent
to the BPH and governor’s office for review, capac-
ity constraints mean that, in practice, only grants of
parole are reviewed. Legal scholars who painstak-
ingly analyzed small subsets of transcripts have
found that parole decisions are sometimes made

PRESIDING COMMISSIONER: Let me ask you a
question, Mr. [REDACT]. Are you angry?
INMATE [REDACT]: No.
PRESIDING COMMISSIONER: You seem kind of
like you’re a smart ass. I don’t mean
to say that rudely, but are you a smart
ass?

Figure 1: Example of a semantic anomaly

in an arbitrary and capricious manner (Bell, 2019),
but they lack the resources for ongoing review.

To help alleviate these capacity constraints and
allow for greater review of parole denials, we pro-
pose an automatic anomaly detection system that al-
lows reviewers to focus their attention on the most
anomalous portions of text in each hearing.1 The
lack of gold anomaly labels precludes the use of
many supervised anomaly detection techniques, so
instead we propose using language models trained
on the parole transcripts to perform unsupervised
anomaly detection.

Defining an “anomaly” in this context is chal-
lenging. There are many ways in which a piece of
text might be unusual without constituting grounds
for additional review. We distinguish primarily
between non-semantic, semantic, and procedural
anomalies. We define a non-semantic anomaly as
an irregularity in the linguistic structure of a piece
of text (for instance, a sentence fragment). A se-
mantic anomaly, by contrast, is one caused by the
meaning of the text. In the context of a parole hear-
ing, a conversation that deviates substantially from
the typical topics of discussion would constitute a
semantic anomaly. Finally, a procedural anomaly
is an irregularity that indicates the hearing differed
substantively from the prescribed guidelines. Of-
ten, a procedural anomaly will also be a semantic

1Our project raises ethical questions about the use of tech-
nology in criminal justice review procedures. We provide a
statement about the ethical implications of our work in Ap-
pendix A.
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anomaly. Figure 1 represents such a case, as it both
includes language atypical for a parole hearing and,
more generally, indicates a breakdown in commu-
nication between the commissioner and the parole
candidate. We note that there are also, of course,
legal anomalies that do not manifest as atypical
language.

A language model (LM) provides an organic way
to identify unusual text through its perplexity score.
We hypothesize that many procedural anomalies
can be identified by examining statistical anomalies
in the texts of transcripts, which would seemingly
allow for their detection by an LM. However, most
instances of unusual text found by a naive LM
are non-semantic, consisting of typos, ungrammat-
ical sentences, etc. To solve this problem, we in-
stead use a pair of language models. We define our
anomaly metric, the contrastive perplexity score,
as the scaled difference between the perplexity of
one LM, which has been fine-tuned on the target
domain, and the perplexity of another LM, which
has only been pre-trained on out-of-domain text.
Non-semantic anomalies will have high perplexity
under both LMs (and thus low contrastive perplex-
ity), so the second LM acts as a “normalizer” for
non-semantic content. We present our results on
a human-annotated subset of the parole data. Our
method recalls 71% of human-labeled procedural
anomalies while only asking experts to review 50%
of the text of each transcript. We also show that our
method can be extended to other domains where a
large labeled corpus of anomalous text is unavail-
able, namely the task of opinion spam detection in
TripAdvisor reviews.

2 Related Work

Anomaly detection (AD) techniques cover a range
of problem settings. Schölkopf et al. (1999); Hodge
and Austin (2004); Chandola et al. (2009); Saku-
rada and Yairi (2014); Ruff et al. (2018); Schlegl
et al. (2017) present general techniques for out-
of-sample anomaly detection, with an increasing
interest in deep unsupervised AD.

Text is a challenging regime for AD because
of the importance of domain-dependence: what is
shocking in one case might be mundane in another.
Few, if any, universal features for AD exist. Gen-
eral approaches for text AD include non-negative
matrix factorization (Kannan et al., 2017) and the
use of “selectional preferences” (Dasigi and Hovy,
2014). One notable approach, studied in the dis-

course coherence literature, is to focus on local
abnormalities in topics. Li and Jurafsky (2017)
and Lin et al. (2011) present deep models for iden-
tifying incoherent passages of text, but discourse
coherence studies much shorter text than parole
hearings. To address longer text, our approach, like
that of Guthrie et al. (2008), splits each document
into segments ranked by anomaly score.

Our strategy of using LMs for AD has prece-
dents, but primarily much simpler LMs, and for
AD contexts that require more supervision than is
available in the parole hearing setting. Rieck and
Laskov (2006, 2007) and Aktolga et al. (2011) use
n-gram LMs to identify anomalous sections and
documents in a corpus of American bills presented
before Congress. Axelrod et al. (2011) and Xu
et al. (2019) also explore using a “baseline” LM for
translation and discourse coherence, respectively.

3 Approach

Our model uses GPT-2, a transformer-based LM
pre-trained on WebText, a corpus scraped from the
internet (Radford et al., 2019; Vaswani et al., 2017).
The following three observations motivate our ap-
proach to identifying anomalous text: (1) The per-
plexity of a fine-tuned LM on a target domain yields
a score that measures both genre-specific seman-
tic anomalies and general language anomalies (e.g.
ungrammatical inputs, misspellings, incoherence).
(2) The perplexity of an LM only pre-trained on
many domains represents solely general language
anomalies. (3) Putting the two together, the differ-
ence in perplexity between a fine-tuned language
model and a pre-trained language model gives a
“semantic anomaly score” of a piece of text.

We define the contrastive perplexity LM
anomaly score to be the scaled difference in per-
plexities observed from two models. One model,
the fine-tuned LM, is fit to a target corpus of text,
without any supervision on which passages are
anomalies. The other model, the normalizer LM,
is the out-of-the-box GPT-2 model (Radford et al.,
2019; Vaswani et al., 2017).

LM anom. = pplxfine-tuned−β ·pplxnormalizer.

For a mundane piece of text, both pplxfine-tuned
and pplxnorm. are low. For a non-semantic
anomaly, both are high. In both cases, contrastive
perplexity is low. However, for a semantic anomaly,
we expect pplxfine-tuned to be high, because of
its sensitivity to the text’s context domain, and
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pplxnorm. to be low, because the text may not oth-
erwise be unusual in general English, leading to
high contrastive perplexity.

Because the fine-tuned LM achieves a lower per-
plexity, we use β to re-scale the perplexity output
of the normalizer and ensure the models operate
at the same scale. While β can be tuned as a hy-
perparameter, a reasonable and balanced choice is
the ratio between the mean perplexities achieved
by the fine-tuned model and the normalizer model
on a validation dataset.

β =

∑
x∈val pplxfine-tuned(x)∑
x∈val pplxnormalizer(x)

3.1 Anomaly Aggregation

We can use our LM anomaly score to identify the
top k chunks of anomalous text for a given set of
documents directly. In a completely unsupervised
setting, with no labels as to which documents (or
chunks) are anomalies, there is no way to associate
the absolute contrastive perplexity scores with the
predictive target. However, if given a clean dataset
(i.e. a validation set that is labeled and known not
to contain anomalies) we can instead anchor the
scores to the clean dataset and detect anomalies by
performing an out-of-distribution test.

4 Experimental Setup

4.1 Baselines

We compare our model to a number of unsuper-
vised baseline models.

Within AD, most existing algorithms are un-
suitable for our task (e.g. due to the need for
supervision, incompatibility with long-form text).
The most straightforward baseline is simply the
fine-tuned GPT-2 model alone. We also compare
our work to an unsupervised topic-modeling base-
line that should also be agnostic to non-semantic
anomalies, like Misra et al. (2008). We fit a la-
tent Dirichlet allocation (LDA) model (Blei et al.,
2003) to our train-corpus, then compute the mean
representation and covariance matrix over topics,
over a held-out portion of data. At prediction
time, we compute the LDA representation for some
text f(x) and use its Mahalanobis distance from
the mean representation as our anomaly score:√

(f(x) − µT )TΣ−1T (f(x) − µT ), where µT and
ΣT are the sample mean and covariance over the
topic mixture embeddings, respectively.

4.2 Parole Hearings

Our analysis is performed over the complete2 set
of parole hearing transcripts in California between
January 2007 and July 2018, which totals 30,734
transcripts. Each document is a transcript of an
hours-long conversation between the parole board
and a candidate (other parties are occasionally also
present), which ends in a decision from the parole
board. Transcribed, each hearing is roughly 27,000
tokens long.

We train our model on a train corpus of 27,577
transcripts, each split into non-overlapping chunks
of 1024 tokens. We fit β on a validation corpus of
1,963 transcripts, with chunksize 256. The training
chunksize was selected to maximize efficiency of
the underlying GPT-2 model, while the smaller val-
idation chunksize better matches the scale at which
we expect to observe linguistic anomalies. We
collected a held-out test corpus of anomalies over
315 transcripts by asking undergraduate and law
students to label instances of anomalous language.
Out of 82,959 chunks, students found 179 anoma-
lies. An experienced parole attorney checked the
anomalies and confirmed 68. Student reviewers
were asked to identify semantic anomalies and the
expert was asked to determine which of those were
also procedural anomalies. While we believe that
this offers a viable estimate of the true set of pro-
cedural anomalies, this leaves out anomalies that
are not manifested by irregular language. To evalu-
ate our model’s recall, we investigate the tradeoff
between the share of the expert’s “true anomalies”
we recover, and the number of chunks human re-
viewers must read. We asked the parole attorney
to review our model’s predictions at a fixed thresh-
old. We compute the mean reciprocal rank (MRR)
(?), rather than precision, because a single anomaly
suffices to flag a whole transcript for review: only
the rank of the highest scoring anomaly affects
reviewer time. Details are given in Appendix B.

4.3 Hotel Reviews

Our second experiment is performed over the De-
ceptive Opinion Spam dataset (Ott et al., 2011,
2013). The dataset consists of 1,600 short human-
generated reviews of 20 hotels in the Chicago area.
800 of these reviews were scraped from TripAdvi-
sor and are marked “authentic”; the remaining 800
reviews are marked “anomalous” and were gen-

2The Dept. of Corrections withheld a a few hundred tran-
scripts from that period, citing “confidential information.”
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Model k=20 k=50
LDA Baseline 0.103 0.426
Fine-tuned LM 0.235 0.573
Contrastive Perplex. 0.279 0.676

Table 1: True anomaly recall achieved by reviewing
the top-k chunks for each document. The average doc-
ument has 105 chunks in this sample.

erated by Mechanical Turk workers. In order to
fine-tune GPT-2, we use a collection of TripAdvi-
sor reviews collected by (Wang et al., 2010).3 We
only include the 171,016 reviews that were shorter
than 1024 tokens and longer than 30 tokens. Addi-
tionally, we hold out 10,000 reviews to fit µ and Σ
for the LDA baseline.

4.4 Model & Training

We use the GPT-2 base model for all of our ex-
periments, trained for 48 hours using the Adam
optimizer with an initial learning rate of 10−5 and
linear decay.

5 Results & Analysis

5.1 Parole Hearings

Our fine-tuned and normalizer model achieve mean
perplexities of 9.22 and 22.99 (β = 0.40), respec-
tively, on the validation set with fixed chunksize
256. Figure 2 describes the tradeoff between recall
and the percentage the transcript human reviewers
must read for our model and baselines as we vary
the model. Contrastive perplexity outperforms all
baselines, but overall recall is low. We also observe
that the LM anomaly score produced by our model
is not well-conserved across documents. Rather
than using a global threshold for our model, we can
instead ask reviewers to always use top k predic-
tions for each document. Table 1 shows recall for
different values of k.

We evaluate our model’s precision at the thresh-
old that yields an average of 55 chunks per docu-
ment (corresponding to about 52% of average tran-
script length) and recall of 0.68, marked on the plot.
At this threshold, our model achieves an MRR of
0.227. Student annotators achieve 0.264 precision
(note that, because the ratings from the students
were not ranked, it is not possible to compute their
MRR). The low human precision underscores the

3We ensured that there is no overlap in between the reviews
used for fine-tuning and the Deceptive Opinion Spam dataset.

Figure 2: Recall on true anomalies vs. the amount of
reading required of the reviewer; (a) by varying the
threshold, (b) by fixing k chunks per document.

Figure 3: ROC curve for unsupervised fake review pre-
diction on TripAdvisor dataset. The un-tuned β = 0.42
is outperformed by β = 1.

intrinsic difficulty of the task and the level of dis-
agreement between human annotators over what
constitutes an anomaly.

5.2 Hotel Reviews

Our fine-tuned and normalizer model achieve mean
perplexities of 22.62 and 53.60 (β = 0.42) on the
validation set of “real” TripAdvisor reviews. Fig-
ure 3 shows the ROC curve of our model compared
to baselines, using our unsupervised LM anomaly
measure as a “fake review classifier” on the Decep-
tive Opinion Spam dataset. Our model achieves an
F1 of 0.537 at the optimal threshold. With manu-
ally tuned β = 1.0, we achieve 0.679. While below
the 0.898 F1 achieved by the best fully supervised
models (Ott et al., 2011), this indicates that our
model is a promising unsupervised predictor.

6 Discussion & Conclusion

We present a novel contrastive perplexity-based ap-
proach for unsupervised anomaly detection. We
define semantic and non-semantic anomalies, and
present evidence that our model can distinguish
between them better than other unsupervised base-
lines. Detecting procedural anomalies in legal
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cases is easier with structured data, but that data is
often not readily available. Our approach seeks to
support legal decision makers in identifying anoma-
lous cases for review when structured records are
unavailable.

Our experiments on an unexplored dataset of
30,734 parole hearing transcripts have identified
troubling cases for review. However, our quantita-
tive evaluations also show the difficulty of defin-
ing a semantic anomaly consistently. Our results
on detecting fake hotel reviews indicate that our
approach becomes more powerful when anomaly-
free documents are available to perform an out-of-
distribution test.

In future work, we seek to use conditional LMs
to bridge the gap between our unsupervised method
and settings in which some structured data is avail-
able.
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Stockholm Sweden. PMLR.

Mayu Sakurada and Takehisa Yairi. 2014. Anomaly
detection using autoencoders with nonlinear dimen-
sionality reduction. In Proceedings of the MLSDA
2014 2Nd Workshop on Machine Learning for Sen-
sory Data Analysis, MLSDA’14, pages 4:4–4:11,
New York, NY, USA. ACM.

Thomas Schlegl, Philipp Seeböck, Sebastian M. Wald-
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