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Abstract

The Covid-19 pandemic urged the scientific
community to join efforts at an unprecedented
scale, leading to faster than ever dissemination
of data and results, which in turn motivated
more research works. This paper presents and
discusses information retrieval models aimed
at addressing the challenge of searching the
large number of publications that stem from
these studies.

The model presented, based on classical base-
lines followed by an interaction based neu-
ral ranking model, was evaluated and evolved
within the TREC Covid challenge setting. Re-
sults on this dataset show that, when starting
with a strong baseline, our light neural ranking
model can achieve results that are comparable
to other model architectures that use very large
number of parameters.

1 Introduction

The emerging pandemic of Covid-19 caused a
surge of worldwide scientific studies to be pub-
lished as a form of open or peer-reviewed arti-
cles, as observable in Figure 1. Unfortunately, this
growing collection of scientific studies tends to be
extremely broad, comprehending diverse presen-
tations of the subject, with different perspectives
coming from different scientific areas.

As a consequence, it is continually more
challenging to successfully navigate through the
amount of information already published about
Covid-19, which deprecates precious researching
time. So, it is imperative to study and provide ways
of successfully navigating (searching) this unstruc-
tured type of information (articles), helping the
researchers to rapidly find consistent information
about their research topic.

This work presents our approach to rapidly ad-
dress the enunciated search problem over the Covid-
19 literature. We made an adaptation of a system
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developed for document and snippet retrieval that
had been evaluated through the BioASQ 8b com-
petition. As a quick reference, BioASQ (Tsatsa-
ronis et al., 2015) provides annual competitions
on biomedical semantic indexing and question-
answering. So, our hypothesis was to adapt our
working BioASQ system (Almeida and Matos,
2020a) to the Covid-19 literature, supported by
the assumption that the underlying searching data
may be from a close information source, and thus,
sharing some similarity.

Our system follows a traditional retrieval
pipeline, where an initial search is performed with
an efficient retrieval solution to reduce the search
space, and then a neural model is leveraged to
rerank the articles in this reduced space. However,
contrary to what is currently the state-of-the-art in
NLP related tasks, we did not follow the trend of
using a transform-based architecture for our rerank-
ing model. Instead, we built upon an interaction-
based model, which yields a final model with only
620 trainable parameters, easing the deployment of
a system powered by this pipeline to the public use.
Furthermore, although the gains in performance
obtained from transform-based models are undeni-
able when correctly finetuned, it may not be trivial
how these can be adapted and applied on unseen
data, which corresponds to this special case.

Finally, we built a search engine that was made
available! on 31st of March?, and was, to the best
of our knowledge, one of the first tools available
for public use. Subsequently, other tools have
appeared, namely Neural Covidex 3, CORD-19
Search 4, CovidAsk >, and notably a contribution

"http://covidsearch.web.ua.pt/

“https://twitter.com/IEETA Research/status/1245009877656879104

3http://covidex.ai/
“https://cord19.vespa.ai/
Shttps://covidask korea.ac kr/
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Figure 1: On the left side, it is presented a histogram of the number of articles published per year that are related
to the novel coronavirus. On the right side, it is shown the same information over the period 2019/01 to 2020/06
in intervals of three months. The presented information was extracted from the CORD-19 collection

from Google, Covid-19 Research Explorer ©.

Following this section, we show a more detailed
description of the retrieval pipeline and present an
evaluation of the system on the ongoing competi-
tion TREC Covid followed by a thorough analy-
sis/discussion.

2 Retrieval Pipeline

To keep this paper self-contained, we will now
briefly address our BioASQ 8b system. As previ-
ously mentioned, and as shown in Figure 2, we split
our pipeline into two phases. First, a traditional IR
approach is adopted to search a given collection
of documents and retrieve the top N documents
that share some relevance signal with a specific
question. Then, these top documents are reranked
using a neural model that explores in more detail
the context where the original relevance matches
occurred. The following subsections addresses, in
more detail, the document collection used and both
retrieval phases.
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ElasticSearch
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Figure 2: An overview of the pipeline

Shttps://covid19-research-explorer.appspot.com/

2.1 Novel coronavirus document collection

An important part of any search engine is the def-
inition of the document collection to be searched.
In this case, the document collection is provided
by the Allen Institute for Artificial Intelligence
(AI2), that released, on March 16, the Cord-19
open collection of scientific articles about the novel
coronavirus. Currently, this collection is updated
on a daily basis and has more than 130k articles
gathered from peer-reviewed publications and open
archives such as bioRxiv and medRxiv. Since the
articles are collected from different sources and
then converted to a uniform representation, this cre-
ates a heterogeneous collection with missing fields
for some articles. To overcome this representation
problem, we decided to only consider the title and
abstract fields, neglecting other fields such as the
rest of the document (full-text). There were two
main reasons behind this decision. In the first place,
scientific abstracts are generally well written and
structured, making them well suited as a unit of
information to be searched. The second reason
concerns our hypothesis of adapting our BioASQ
system to this literature. Since only the title and
abstract are available in the BioASQ competition,
this makes it a closer and more similar task.

2.2 Phase-I: Document filter

The first phase of our pipeline has the objective
of filtering the continuously growing collection of
articles by selecting only the top-N potential rele-
vant documents for a given question. Since in this
stage the entire collection is searched, it is more
important to consider an efficient and scalable so-
lution. With this in mind, we decided to rely on



Elasticsearch (ES), an industry level solution, to
index the collection, and used the BM25 (Robert-
son and Zaragoza, 2009) weighting scheme for the
retrieval.

Alternatively, the Anserini toolkit (Yang et al.,
2017) has gained increasing interest from the IR
community, given the strong baselines that have
been achieved, especially on TREC Covid as no-
ticeable in the Results section. Despite this trend,
we decided to continue with ES, since it was the
same used for the BioASQ task, where it handles a
collection of approximately 20 million documents,
giving us the confidence that it should be able to
easily handle this new collection. Furthermore, we
also adopted the same values for the k1 and b pa-
rameters, which were finetuned for the BioASQ
challenge.

2.3 Phase-II: Neural ranking model

In the second phase, the previously retrieved top-N
documents are reranked by a neural model. The ra-
tionale here is to consider more and different match-
ing signals comparatively to the previous step, in
order to produce the final ranking order. In a more
detailed way, the previous step only considers the
exact matching signals, i.e., only the words that ap-
pear both on the query and the document are taken
into account and weighted to produce the phase-I
ranking.

The adopted neural ranking model is inspired
by the DeepRank (Pang et al., 2017) architecture
and represents an enhancement of our previous
work (Almeida and Matos, 2020b), with the fol-
lowing major differences: the passage position in-
put, proposed on the original work, was dropped;
the detection network and the measure network
were simplified and now form the interaction net-
work; the contributions of each passage to the final
document score are now assumed to be indepen-
dent, and hence the self-attention layer proposed
in (Almeida and Matos, 2020b) was replaced. The
updated architecture can be visualized in Figure 3.
Furthermore, the intuition behind this model is to
make a thorough evaluation of the article passages
where the exact matches occur, by taking into con-
sideration their context. In other words, this model
explores the interactions presented in the entire pas-
sage of each exact match and makes a more refined
judgment of the passage relevance based on that.

Before addressing, in more detail, the proposed
model, we first define a query as a sequence of
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Figure 3: Overview of the neural ranking model with a
tensor representation of the data flow.

terms ¢ = {uo, u1, ..., ug}, where u; is the i-th
term of the query and @ the size of the query; a
document passage as p = {vg, v1, ..., v}, where
vk 1s the k-th term of the passage and T the size
of the passage; and a set of document passages as
sequence of passages D = {po, p1, ..., PN }. A pre-
trained word2vec model is used for representing
query and document terms.

Examining, from left to right, the architecture in
Figure 3, the document is first split into a sequence
of passages using the nltk.PunktSentenceTokenizer.
Then, in the grouping by q-term block, each pas-
sage is associated to each query term, by veri-
fying if that query term appears in the passage.
In other words, this stage created a set of docu-
ment passages aggregated by each query term as
D(uz) = {pi0> Di1, ...,pip}, where Dij COHCSpOHdS
to the j-th passage with respect to the query term
;.

The interaction network was designed to inde-
pendently evaluate each query-passage interaction,
producing a final relevance score per sentence. In
more detail, it receives as input the query, ¢, and
the aggregated set of passages, D(u;), and cre-
ates for each query-passage pair a similarity tensor
(interaction matrix) S € [—1, I]QXT, where each
entry S;; corresponds to the cosine similarity be-
tween the embeddings of the i-th query term and
Jj-th passage term, S;; = % Next, a 3 by 3
convolution followed by a concatenation of a the
global max, average and average k-max polling
operation are applied to each similarity tensor, to
capture multiple local relevance signals from each
features map, as described in Equation 1,
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Here, w and b are trainable parameters, the sym-
bol ’;’ represents the concatenation operator, M
corresponds to the total number of filters and the

vector A? encodes the local relevance between
x1

each query-passage, extracted by these pooling op-
erations. At this point, the aggregated set of pas-
sages, D(u;), is now represented by their respec-
tive vectors f, i.e., D(u;) = {h;o, h;l, oy h;P}.

The final step of the interaction network is to
convert these passage representations h to a final
relevance score, for which we employed a fully
connected layer with sigmoid activation. Here the
intuition is to derive a relevance score, relevant (1)
or irrelevant (0), directly from the information that
was extracted by the pooling operators. So, after
this stage, the aggregated set of passages, D(u;), it
is represented by this relevance score, i.e., D(u;) =
{Spos Sprs s Spp } OF D(U;) = Sy,

Next, the aggregation network takes into con-
sideration the importance of each query term by
using a gating mechanism, similar to the DRMM
(Guo et al., 2016), over the aggregated set of pas-
sages as described in Equation 2, i.e., each passage
score is weighted according to the importance of
its associated query term.

Cus = W - Ty,
i 1xFE Ezzl ’
ecui
aui = 72 ecﬂk s (2)
uEeq
Sy; = Qq; X Sy, -
Px1 1x1 Px1

Here, w is a trainable parameter and z,, corre-
sponds to the embedding vector of the u; query
term. Then the distribution of each query term im-
portance, a, is computed as a softmax and applied
to the respective passages scores.

To produce the final document score a scorable
vector, §, is created by performing a summation
alongside the query-terms dimension of s,;,. Note
that in this step we could have explored other
ways to produce this final vector, however, this
approach seems to empirically work. Finally, this
final scorable vector, §, is fed to a Multi-Layer Per-
cepreton (MLP) to produce the final ranking score.

Another interesting feature of this model relies
on the architecture that is capable of providing
relevance scores for each passage, s, which can
be explored to easily extract the passages that the
model considered as more relevant, i.e., that most
contributed to the final document score.

At last, it is noteworthy that this light architec-
ture results in a model with a very low number of
parameters. In the case of the Covid-19 dataset,
the final model has only 620 trainable parameters.
For training, adopted a cross-entropy pairwise loss,
similarly to (Hui et al., 2018), with adam optimizer.

2.4 Adaptation to the Covid novel
coronavirus literature and training
details

As already mentioned, this system is an adaptation
of our current working system for the BioASQ chal-
lenge. Furthermore, our motivation was that the
knowledge learned from the BioASQ data could be
transferred to this specific domain since a great sim-
ilarity exists, in terms of documents, between both
collections. For example, the BioASQ searches
over the annual Pubmed Baseline, while a majority
of the Cord-19 documents are from PubMed Cen-
tral (PMC) full-text collection, according to (Wang
et al., 2020), sharing the same Pubmed abstracts.
More concretely, in the beginning we only trained
the word2vec embeddings on the Pubmed baseline
plus the Cord-19 collection (Pubmed+Cord-19) to
accommodate new terms that didn’t appear on the
BioASQ collection, e.g., "Covid”.

The k1 and b parameters of BM25 were fine-
tuned on the bioASQ data and the neural ranking
model was also trained on the BioASQ data using
the Pubmed+Cord-19 embeddings.

3 Evaluation

TREC-Covid is a challenge launched by AI2 and
the National Institute of Standards and Technology
(NIST) to the information retrieval and text pro-
cessing communities, to create systems capable of
searching the growing literature related to the novel
coronavirus. The challenge follows the TREC con-
ventions and is divided into five individual rounds,
where each team should submit a ranking order of
relevant documents, retrieved from the CORD-19
collection, for each topic. A topic is a description
of the information need, in this case, it is composed
of three fields: a query, i.e., most relevant terms;
a question, i.e., natural language question; and a
narrative, i.e., a more detailed description of the
information need with respects to the documents.
At least one submission per team is then manually
evaluated by domain experts and the union of every
evaluation contributes to the TREC-Covid relevant
feedback dataset.



Given this opportunity, we decided to put our
system to the test in this challenge, both as a way
to produce empirical measures of performance and
also to continually improve the current solution. At
the time of writing, this challenge is currently on
the fourth round, which means that only the results
of the first, second and third rounds are available.

An important note is that, since CORD-19 is a
continually growing collection, each round uses a
different snapshot. The task for the first round was
to retrieve documents for a total of 30 topics with
no feedback data available to use. Each subsequent
round then re-used the topics from previous rounds,
for which feedback data was also made available,
plus five new topics. Additionally, evaluation was
performed in residual manner, which means that
the documents evaluated in previous rounds were
discarded from the evaluation of subsequent rounds.
Systems were measured in terms of nDCG@10,
P@5, bpred and Map, with nDCG@ 10 being the
adopted ranking metric.

Each team participating in the challenge could
submit a maximum of three runs, which could be
either a manual run, if some manual action was
performed after looking at the topics, a feedback
run, if the available feedback data was used, or
automatic.

4 Results and Discussion

In this section we show and discuss our results for
each round separately, since we utilize the feedback
from the previous round to continuously improve
our solution. For each round, we present the Top 3
performing systems and our best submission com-
paratively. Additionally we also compare it with
the ranking order before reranking, i.e. the output
from phase-I, represented by the name baseline.

41 Roundl1

The first round received a total of 143 runs from
56 teams, of which 100 runs were automatic,
according to (Voorhees et al., 2020). Our top
run (BioinformaticsUA) consists of the previously
described pipeline finetuned and trained on the
BioASQ with the PubMed+Cord-19 embeddings
and using the question field of the topics as the
information need. Table 1 presents a compari-
son with the three top performing systems and
a more complete leaderboard is available here
https://tinyurl.com/trec-covid-rndl.
Given the highly competitive submissions, our

System nDCG@10 P@5

sab20.1.meta.docs 0.6080 0.7800
SLEDGE (MacAvaney et al., 2020) 0.6032 0.6867
IRIT _marked_base 0.5880 0.7200
Ours 0.5298 0.6333
Phase-I baseline 0.4633 0.5933

Table 1: Comparison to the top 3 automatic runs in
terms of nDCG@ 10 and P@5 against our best submis-
sion and our reranking baseline for the first round.

simple pipeline was able to achieve competitive
results, being ranked at position 12 of 100 runs.
These were compelling results, especially when
compared with the second and third top runs that,
respectively, explored SciBERT (Beltagy et al.,
2019) and BERT (Devlin et al., 2018) as reranking
alternatives, which are much more expensive mod-
els and ultimately more expensive to serve for pub-
lic use. Additionally, our system was able to out-
perform other runs that were also based on BERT
and T5 (Raffel et al., 2019), which reinforces our
original point on the challenge of finetuning these
very large models.

On the other side of the spectrum, the best run
used a more traditional technique based on the Vec-
tor Space Model with Inu.ltu weighting. Notably,
other simplistic approaches that explored BM25,
query rearranging and expansion, and/or pseudo-
relevance feedback, also achieved remarkable per-
formance. This may be explained by the lack of
training data, which may injure most of the neural
ranking approaches in terms of generalization to
the new domain.

The last line on Table 1 presents the evaluation
of the ranking order before reranking, which shows
that our reranking model was capable of success-
fully using the context to refine the exact signal
matches captured by BM25. Furthermore, we also
considered that our solution in phase-I is under-
performing compared to similar alternatives pre-
sented by other teams.

4.1.1 Lessons learned

As a quick overview, we now address the notable
points learned that have been used to prepare the
second round. Firstly, BM25 should be able to
produce a better ranking order by enhancing the
query with more relevant terms as suggested in
the “udel_fang_run3” run. Also, the ensemble of
multiple runs proved to be beneficial, particularly
the reciprocal rank fusion (Cormack et al., 2009),
which was widely adopted during the competition.


https://tinyurl.com/trec-covid-rnd1

4.2 Round 2

For the second round, based on the insights gath-
ered from the previous round, we decided to use the
“udel_fang_run3” queries for phase-1, BM25 search.
Then for phase-II we employed an ensemble of
five runs of our neural ranking model pretrained on
the BioASQ data and finetuned following a 5-fold
setup over the feedback data from the first round.
The TREC organizers, for this round, received a
total of 136 runs from 51 teams. Table 2, simi-
larity to the previous, shows a comparison against
the top three performing runs, with a more com-
plete view available here https://tinyurl.com/
trec-covid-rnd2. Additionally, the last two lines
represent the TREC baselines that correspond to
the ensemble of multiple runs obtained using the
Anserini system’.

System nDCG@10 P@5

SparseDenseSciBert 0.6772 0.7600
mpiid5 runl 0.6677 0.7771
UlowaS_Run3 0.6382 0.7657
Ours 0.5016 0.5943
Phase-I baseline 0.2623 0.3029
TREC Baseline (r2.fusion2) 0.5553 0.6800
TREC Baseline (r2.fusionl) 0.4827 0.6114

Table 2: Comparison to the top 3 feedback runs in
terms of nDCG@10 and P@35 against our best submis-
sion and our reranking baseline.

From the table of results, it is observable that
our system had poor performance when compared
with other runs. In more detail, the major drawback
occurs in the baseline before the reranking, where
it unperformed in both metrics by a factor of two
when comparing with the TREC baseline. These
inconsistent results seem to have been caused by
an undetected error, since the methodology used
to create the TREC Baseline is quite similar to
our adopted changes in phase-1. Additionally, even
though the baseline underperformed, the reranking
was still capable of considerably boosting the origi-
nal ranking order, which also reinforces the idea of
some inconsistency. It is worth recalling that this
evaluation is performed in a residual manner, since
it uses the first 30 topics from the first round, which
means that the previous feedback for the first 30
topics do not account for this evaluation.

Concerning the other systems, the top-
performing among the feedback runs used SciBert

"https://github.com/castorini/anserini/blob/master/docs/
experiments-covid.md

as a reranker, while the second relied on the
ELECTRA (Clark et al., 2020) model, also another
transform-based model. Interestingly the third top
performing run, from the UlowaS team, used a
more traditional approach, employing an ensemble
of two runs produced with relevance feedback for
the first 30 topics, using the feedback from the first
round, and pseudo-relevance feedback for the new
topics.

4.2.1 Lessons learned

From the descriptions of the top runs, we observed
that the majority of the teams that used neural
ranking solutions adopted SciBert, although other
transform-based alternatives were also used, such
as ELECTRA, Bert, and T5. Additionally, the num-
ber of top runs that explored these neural ranking
models seemed to increase, which may be related
to the availability of training data from the first
round. Another interesting detail concerns the num-
ber of documents that are ranked. Up to this round,
we reranked the top-1000 documents retrieved dur-
ing phase-I. However, if using a stronger baseline
built on additional signals beyond the exact match,
such as relevance feedback, it may be beneficial
to rerank a smaller subset, with the intuition of
preserving some of the original order and apply
reranking to less extent.

We also would like to reinforce the importance of
relevance feedback techniques for building a runs
for this particular challenge, given the nature of the
residual evaluation. In other words, this evaluation
offers an excellent setting to use relevance feedback
techniques, since it has available a large amount
of relevant documents to the majority of the topics
that belong to the test set for each round.

4.3 Round 3

Building upon the information gathered from the
previous rounds, we opted to use the UlowaS base-
line, which was kindly shared with the commu-
nity, as our baseline, i.e., it replaces the phase-I
step. Phase-II consisted of the same neural ranking
model presented in this paper, pretrained on the
BioASQ data, and finetuned with feedback data
from rounds 1 and 2. Furthermore, we chose only
to rank the top-K documents of the baseline. To
find the value of K we performed experiences with
the round 2 model and the respective UlowaS base-
line, selecting K = 10 as an optimal value for
boosting both metrics.


https://tinyurl.com/trec-covid-rnd2
https://tinyurl.com/trec-covid-rnd2

System nDCG@10 P@5

covidex.r3.t5_1r 0.7740 0.8600
Ours 0.7715 0.8650
UlowaS_Rd3Borda 0.7658 0.8900
Phase-I baseline (UlowaS)  0.7617 0.8750
TREC Baseline (r3.rf) 0.6883 0.7950
TREC Baseline (r3.fusion2) 0.6100 0.7150

Table 3: The top 3 runs (overall) in terms of nDCG@ 10
and P@5. Followed by the adopted baseline and both
TREC baselines.

The third round received a total of 79 runs from
31 teams. Results are presented in Table 3 and a
more complete leaderboard is available in https:
//tinyurl.com/trec-covid-rnd3.

In this round, our top submission ranked second
amongst 79 runs. When compared against the base-
line, it is possible to notice that there was only a
small improvements in terms of nDCG@ 10, which
may make the quality of the reranking questionable.
However, both metrics are already quite high, ar-
guably, making the comparison less discriminative.
Worth of mention is another run from the UlowaS
team that tried to rerank their baseline but failed
to obtain an improvement, which highlights the
presented reranking challenge.

Regarding the other runs, the top-performing run
also explored an insightful strategy, that consists
of interpolation between the scores provided by a
finetuned TS model and a logistic regression classi-
fier trained on tf-idf from round 1 and 2. The third
best run belongs to the UlowaS team and shares the
same principle described in Section 4.2. According
to the run description®, this should correspond to
our phase-I baseline results, despite the different
results shown in the table. We believe that this
difference can be explained by a reported bug that
caused some judgments to be missing from the
feedback data that we used to measure the baseline
performance.

4.3.1 Lessons learned

It is clear that the “heavy lifting” is done by the
strong baseline from the UlowaS team and this run
just tries to explore this strong baseline by improv-
ing the top documents, i.e., focusing more on top
precision. Nonetheless, it is also noteworthy that
the neural ranking model that explores a different
set of relevance signals was able to indeed boost
the original baseline. Furthermore, this also empiri-

8https://ir.nist.gov/covidSubmit/archive/round3/
UlowaS_Rd3Borda.pdf

cally reinforces the idea of only reranking a smaller
subset of documents. However, a better approach
to make this combination is a clear route to explore.

5 Performance comparison

In this section, we empirically analyse the perfor-
mance of our neural ranking solution by comparing
it against several transform based-models.

Following the literature, we selected BERT (De-
vlin et al., 2018) model and BERT variants, since
they seem to be the most widely adopted. More pre-
cisely in our tests we use the following pretrained
models:

* BERT (x12) (Devlin et al., 2018) with 12 lay-
ers and 110 million parameters

* BERT (x24) (Devlin et al., 2018) with 24 lay-
ers and 340 million parameters

* distilBERT (Sanh et al., 2020) with 6 layers
and 66 million parameters

* ALBERT (Lan et al., 2020) with 12 layers and
11 million parameters

Regarding the methodology, we performed an
inference time evaluation over 100 queries, each
associated with 250 documents, totalling 25000
query-documents pairs as our samples. Further-
more, we performed all the tests in the machine
presented on Table 4 with TensorFlow 2.2.0 and
CUDA 10.1, and decorated the models with the
“tf.function” converting them into a static com-
putation graph for performance reasons. For the
transform-based models we used the HuggingFaces
(Wolf et al., 2019) library with the corresponding
TensorFlow version. Following the literature (Yang
et al., 2019; Nogueira et al., 2019; Dai and Callan,
2019), we fed to the transform-based models the
input “[CLS] query tokens [SEP] document tokens
[SEP]” and further fed the resulting “[CLS]” rep-
resentations to a multi layer perception computing
the final document score.

Table 4: Specification of the hardware used during the
inference times experiments.

CPU 2x Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz

GPU Nvidia Tesla K80 with 12 GB

RAM 128 GB

*https://www.tensorflow.org/versions/r2.2/api_docs/python/
tf/function
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Figure 4: Comparison of the inference times of the pro-
posed model running on CPU against several transform-
based models running on GPU.

Figure 4 shows a comparison of the infer-
ence times, measured in seconds, of our pro-
posed model against the previously enumerated
transform-based alternatives, for varying batch
sizes. Our model was 7.5 faster than distilBERT,
the fastest transform-based model variant, and 212
times faster than BERT (x24). Significantly, our
model was able to perform inference in less than
one second, for a batch size of 128 and while run-
ning on CPU, which makes it more suitable for
deploying in real-world search applications.

6 Conclusion

This paper presents and analyses several adapta-
tions of an information retrieval pipeline to address
the challenge of Covid-19 literature search. Our
system is based on previous work on the BioASQ
8b challenge that we adapt to the novel coronavirus
literature. The system follows a two-stage retrieval
pipeline, with BM25 as the first stage and a light
interaction-based model, with only 620 trainable
parameters, as the second stage.

We evaluate our system performance on the three
available rounds of the ongoing TREC Covid com-
petition, where in general we obtained competitive
results against a wide variety of solution. We also
explored the trends of the top submissions to evolve
our initial approach. In terms of results, our best
ranks were twelfth in one hundred, in round 1, and
second in seventy-nine in round 3.

As more direct future work we propose to con-
tinually explore a better reranking strategy to apply
on a strong baseline, especially a baseline based
on relevance feedback that seems to be suitable
to this residual evaluation setting. Another line
of work could encompass combining a transform-
based model, like BERT, in our architecture, since
these are well suited to our objective of better eval-

uating the passage context. This combination may
be achieved by simply replacing the word2vec em-
beddings by context embeddings or by completely
replacing the interaction network.
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