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Abstract

Our ability to limit the future spread of
COVID-19 will in part depend on our under-
standing of the psychological and sociological
processes that lead people to follow or reject
coronavirus health behaviors. We argue that
the virus has taken on heterogeneous meanings
in communities across the United States and
that these disparate meanings shaped commu-
nities’ response to the virus during the early,
vital stages of the outbreak in the U.S. Using
word embeddings, we demonstrate that coun-
ties where residents socially distanced less on
average (as measured by residential mobility)
more semantically associated the virus in their
COVID discourse with concepts of fraud, the
political left, and more benign illnesses like
the flu. We also show that the different mean-
ings the virus took on in different communi-
ties explains a substantial fraction of what we
call the “Trump Gap,” or the empirical ten-
dency for more Trump-supporting counties to
socially distance less. This work demonstrates
that community-level processes of meaning-
making determined behavioral responses to
the COVID-19 pandemic and that these pro-
cesses can be measured unobtrusively using
Twitter.

1 Introduction

The COVID-19 Pandemic is one of the most sig-
nificant and devastating events in human history,
with over thirty-five million confirmed cases and
over one million deaths globally (as of October 6,
2020). Part of the reason this virus has claimed
so many lives is that individuals and the commu-
nities they are embedded in vary in the degree to

which they take the virus seriously and follow sug-
gested governmental guidelines aimed at reducing
the spread of the virus, including the practice of
social distancing. The degree to which the virus
will continue to spread—especially as we await a
second wave of infections—will depend not only
on our biological understanding of the virus, but
also on our understanding of the social factors that
govern the degree to which everyday individuals
are willing to and do in fact engage in coordinated
efforts to help slow the spread of the virus.

An especially interesting case of response to the
virus is the United States, the global leader in coro-
navirus deaths at the time of writing. Variation in
response to the pandemic in the United States is
particularly interesting because it does not appear
to be randomly distributed, but in fact highly pre-
dictable. Political party identification in particular
seems to be strongly associated with the degree to
which individuals endorse health behaviors recom-
mended by authoritative organizations such as the
CDC and WHO (Allcott et al. 2020; Painter and
Qiu 2020).

We seek to build on this work by identifying,
at least in part, the reason why we observe these
behavioral disparities. Rejecting these health be-
haviors is not definitionally related to identifying as
a Republican or supporting Donald Trump. We con-
tend instead that in addition to the virus’s objective
properties, SARS-CoV-2 has taken on heteroge-
neous socially constructed meanings (Berger and
Luckmann 1966; Goldberg and Stein 2018), which
vary over the population and shape communities’
response to the pandemic. We further contend that
this variation in how people understand the virus



partially accounts for the link between political
party identification and these behavioral outcomes.

Research in sociology and anthropology (e.g.
Geertz 1973; Rawlings and Childress 2019) finds
that the meanings humans associate with different
concepts tend to cluster in groups. One way that
these meanings are clustered is by geography. Here,
we leverage geographic variation in the content
of discourse related to COVID-19 over the social
media platform Twitter to explore the relationships
between political identity, the potentially variable
meaning of COVID-19, and social distancing.

To do this, we capture elements of what COVID-
19 means to different populations using word em-
beddings, a technique that has been demonstrated
to measure widely-held cognitive associations in
groups (Bolukbasi et al. 2016; Caliskan et al. 2017;
Garg et al. 2018; Kozlowski et al. 2019). This ap-
proach allows us to pick up on the disparate ways
COVID-19 is interpreted by the residents of differ-
ent U.S. counties. Further, we use Google Mobility
Report data1 to demonstrate that these disparate
meanings both correlate with the degree to which
individuals stay at home, our indicator of social dis-
tancing, and accounts for a substantial proportion
of what we call the “Trump gap,” or the tendency
toward less social distancing within counties that
exhibited greater support for Donald Trump in the
2016 presidential election.

First, using Word2Vec to capture interpretable,
theoretically meaningful differences in meanings
attributed to the virus, we find that counties in
which the virus is discussed in a way that is se-
mantically similar to the concepts (a) the political
left, (b) fraudulence, and (c) the flu and the com-
mon cold are less likely to social distance. We
further corroborate these findings with a minimal
pair analysis, demonstrating that a BERT-based
deep learning model trained on our data learns to
associate social distancing with (a) blaming the
pandemic on the political left, (b) questioning the
reality of the virus, and (c) likening the virus to
cold or flu. Finally, we demonstrate with mediation
analysis that variation in the meanings associated
with the virus mediates nearly one-fifth of the asso-
ciation between support for Donald Trump in the
2016 presidential election and social distancing at
the county level.

1https://www.google.com/covid19/
mobility/

2 Data

2.1 Twitter Corpus

We curated a corpus of English-language, U.S.-
based tweets—any that contained at least one of
a set of coronavirus-related hashtags—that were
created between February 28 and May 182 (for
other work using related corpora, see Eichstaedt
et al. 2015; Jaidka et al. 2020). We used the sub-
set of these tweets for which we could identify a
U.S. county of origin and which were not retweets
or shares. After pre-processing (see below), this
resulted in a final corpus of approximately 1.1 mil-
lion coronavirus-related tweets originating from
181 U.S. counties.

For our Word2Vec-based analyses (Sections 3
and 5), we preprocessed the Twitter data in several
ways to ensure we were gaining the most accurate
and potent signal possible. First, we removed stop
words, URLs, punctuation, and all non-alphabetic
characters and lowercased all letters. Next, we re-
moved all tweets in which there were not at least
two words. Finally, because we conduct analyses
at the county level, we dropped all tweets origi-
nating in counties for which we had fewer than
one-thousand tweets. In our BERT-based analyses
(Section 4), we utilized a larger, less restrictive sub-
set of the data that went through less preprocessing
(described in Section 4).3

Using several publicly-available sources, we
combined this data with county-level demographic
information including income, population density,
education, and Donald Trump’s vote margin in each
county during the 2016 U.S. presidential election.

2.2 Measuring Social Distancing

To capture adherence to social distancing guide-
lines at the county level, we use data from Google
COVID-19 Community Mobility Reports, which
record daily human mobility levels in various set-
tings such as workplaces, residential areas, and re-
tail/recreation. We focus on the change in mobility
in residential areas, an indicator of the amount of
people staying at home. In order for two individu-
als who do not live together to interact with one an-
other, at least one of them must leave their home—

2We ended our observation period a week before the mur-
der of George Floyd so that our outcome measure would not
pick up any changes in mobility due to related protests.

3Due to an error in our Twitter scraping pipeline, tweets
in our dataset are truncated to a maximum length of 140
characters. We plan to replicate our studies with non-truncated
tweets in future work.

https://www.google.com/covid19/mobility/
https://www.google.com/covid19/mobility/


the exact behavior these data reflect.4 For each
county, we compute the average mobility score
for the week leading up to the observation period
(February 21 to February 27) as well as the average
mobility score for the week just after the obser-
vation period (May 18 to May 24). We then take
the latter less the former as our measure of social
distancing adherence.5

The resulting measure tells us the degree to
which residents of each county increased or de-
creased their adherence to social distancing guide-
lines over the observation period—specifically the
degree to which residential mobility (which we
interpret as being positively correlated to social
distancing) increased over that time frame. In the
counties we analyze in Sections 3 and 5, this mea-
sure ranges from 5.4 to 26.4 (µ = 14.5, σ2 = 4.0).
Because this measure captures within-county vari-
ation over time, the potential for county attributes
that do not vary over time (and whose relationship
to the outcome do not vary over time) to confound
our analyses is minimized.

3 Theory-Driven Word2Vec Analysis

We measure semantic associations between words
as they are used in a county’s COVID discourse
using the Word2Vec word embedding algorithm
(Mikolov et al., 2013). The algorithm places each
word that appears in a corpus in a high-dimensional
space where the proximity of two words in that
space is proportional to the similarity of the words
that appear in the linguistic contexts of those words.
More intuitively, the Word2Vec algorithm creates a
k-dimensional space in which semantically similar
words, defined roughly as the interchangeability
of those words, appear closer to one another than
do semantically dissimilar words. We measure the
semantic similarity of any two words by taking
one less the cosine distance of the vector repre-
sentations of the words’ positions within the word
embedding space.

Using Word2Vec to reliably measure variation in
meaning is difficult because the algorithm requires
a large amount of text to accurately represent the
meaning of a word in any one context and because

4We acknowledge that this measure has severe limitations;
it would not perfectly reflect, for instance, the degree to which
individuals in a county traveled to residential areas that were
not their own home.

5Each individual measure is in comparison to a pre-COVID
baseline, but since we take the difference in these scores, we
essentially “net out” this baseline.

spaces that result from applying the algorithm to
disparate corpora do not necessarily align straight-
forwardly. Many existing solutions to these issues
make difficult to verify assumptions about the pro-
cess by which language is generated. We combat
these issues with a novel, Word2Vec-based mea-
surement strategy which maintains the algorithm’s
non-parametric properties.

This strategy, illustrated in Figure 1, first in-
volves taking a fixed number of randomly selected
tweets from each county and building a “baseline
model.” This baseline model leverages text from
all counties to build a corpus large enough to train
a reliable Word2Vec model and reflects semantic
relations consistent across our corpus. Then, for
each county, we fine-tune that baseline model to
create a “county-specific model,” which leverages
a new sample of text from each county as well
as the semantic information encoded in the base-
line model to build an embedding space which re-
flects the county’s potentially idiosyncratic seman-
tic relationships. In order to make distances across
different county-specific models more compara-
ble, we measure the semantic similarity between
words as the difference between the similarity of
two keywords (e.g., “coronavirus” and “hoax”) in
the county-specific model less the similarity of the
same word pair in the baseline model. This ap-
proximates measuring how counties deviate from
the central tendency in their semantic association
between words.

Imagine a scenario in which we have a pop-
ulation of one hundred counties, and we are in-
terested in the degree to which residents of each
county semantically associate the words “sky” and
“blue.” Further imagine that in ninety-nine of the
one-hundred counties, these words are strongly as-
sociated and similarly so, but that in one county
these words are much more weakly associated.6

Our hope with this measurement strategy is that the
semantic similarity between “sky” and “blue” in
the baseline model (which again is built from a bal-
anced random sample of texts from each county)
would mostly reflect the ninety-nine counties in
which “sky” and “blue” have relatively high seman-
tic similarity, but that the county-specific models,
each of which is fine-tuned on all text produced
by its corresponding county, would more faithfully
reflect each county’s own, potentially unique, se-

6Perhaps the sky in that county has temporarily become
orange/red due to wildfires in that area.



Figure 1: To build a baseline model and accompany-
ing county-specific models, we (A) select a fixed-size,
random sample of tweets from each county to train
the baseline model and (B) create a copy of that base-
line model for each county and fine-tune that baseline
model on a sample of tweets from each model’s respec-
tive county.

mantic relationships. Then, the difference between
the semantic similarity of two words in the baseline
model and any county-specific model would reflect
how the county’s own semantic relationships dif-
fers from the central tendency of all counties. In
this scenario, we would expect a relatively small,
positive deviation from the central tendency for
the semantic similarity of “sky” and “blue” for
ninety-nine of the one-hundred counties, and a
much larger, negative deviation from the central
tendency for the one outlier county. This strategy
allows us to reliably capture variation in the degree
to which different counties semantically associate
these two words, even though we might not have a
sufficient amount of text data to train a from-scratch
Word2Vec model for any particular county.

To combat the stochasticity inherent to the
Word2Vec algorithm as well as in sampling texts
to build the baseline model, we create fifty sep-
arate baseline model/county-specific model pairs
using random samples of one-thousand tweets from
each county and take the average delta similar-
ity score across all fifty. Finally, in accordance
with related literature, we measure semantic rela-
tionships between concepts using a set of related
words. The concepts of interest to us include the
coronavirus (“coronavirus” and “covid”), the po-
litical left (“democrat”, “democrats”, and “liber-
als”), relatively benign illnesses (“flu”, “influenza”,
and “cold”), and fraudulence (“hoax”, “fake”, and
“scam”). We standardize (mean center and rescale

to have a standard deviation of one) each of these
measures to ease interpretation.

3.1 Results

Table 1 presents the results of a series of ordinary
least squares (OLS) regression models predicting
a county’s change in residential mobility from var-
ious linguistic associations of interest. In models
one, two, and three, we test whether our measured
linguistic associations are correlated with our mea-
sure of the change in social distancing at the county
level. Then, in models four, five, and six, we test
whether these same associations are robust to the
inclusion of a set of competitive control variables,
including Trump’s vote margin, population density,
median income, and education.

Model one reports a significant, negative rela-
tionship between our social distancing measure
and the semantic similarity of the virus and the
political left, which we believe reflects the degree
to which individuals blame the virus on the polit-
ical left. Model four shows that this association
remains significant in the presence of our control
variables. Model two demonstrates that counties
social distances less the more they semantically
associated the virus and the concept of fraudulence,
or explicitly (and potentially implicitly) questioned
the reality of the global pandemic. Model 5 shows
that this association is robust to our control vari-
ables. Finally, model three shows that counties
social distanced significantly less the more their
COVID discourse exhibited a stronger association
between COVID-19 and less serious illnesses, or
the more they likened the coronavirus to these rel-
atively benign illnesses. However, as can be seen
in model six, this association is not robust to our
controls.

In the models without controls, a one-standard-
deviation increase in any of the three linguistic
measures is associated with a sizeable decrease
in social distancing (between -0.18 standard de-
viations and -0.22 standard deviations). Adding
Trump vote margin and our control variables, we
still see significant decreases in social distancing
associated with two of our distance measures: a
one-standard-deviation change in the association of
the virus with the political left or with fraud is as-
sociated with a decrease in the change in social dis-
tancing of approximately 0.07 standard deviations
and 0.09 standard deviations, respectively. Notably,
a one-standard-deviation increase in Trump vote



Table 1: Meanings of COVID-19 and Changes in Social Distancing

(1) (2) (3) (4) (5) (6)

Association with left -0.210∗∗ -0.0733∗

(0.0737) (0.0303)

Association with fraud -0.176∗ -0.0870∗∗

(0.0742) (0.0299)

Association with flu -0.221∗∗ -0.0420
(0.0735) (0.0303)

Trump vote margin -0.416∗∗∗ -0.417∗∗∗ -0.435∗∗∗

(0.0349) (0.0343) (0.0344)

Other controls 3 3 3

Constant 0.0 0.0 0.0 0.0 0.0 0.0

N 178 178 178 175 175 175
R2 0.044 0.031 0.049 0.853 0.855 0.849
“Other controls” includes log population density, log median income, and education index

All measures are mean-centered and standardized

Standard errors in parentheses; excluded for constants
+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

margin is associated with a decrease in our social
distancing measure of approximately 0.4 standard
deviations in models four, five, and six.

The R2 statistics of models (1) - (3) are low by
most standards in machine learning. Our goal is not
to build a model that accounts for as much varia-
tion in the outcome as possible, but to use statistical
modeling to rigorously test whether reliable associ-
ations between theoretically meaningful variables
exist, which our models succeed in doing. In other
words, we’re not concerned whether these single,
potentially noisy socio-psychological measures ex-
plain a sizeable proportion of the variance of our
outcome variable, which is undeniably the prod-
uct of myriad factors, but are instead concerned
with whether these measures, which hopefully cor-
respond to our theoretical constructs of interest, are
related to our outcome in a consistent, reliable way.

4 Minimal Pair Analysis

Observational results like the ones reported in Table
1 have their strengths but also have inherent limi-
tations. One major concern is that our Word2Vec
model might pick up on information we do not in-
tend for it to learn, introducing bias in the parame-
ter estimates of our OLS regressions. One potential
source of bias is that while the language produced
by county residents might vary in the linguistic fea-

ture of interest (e.g., likening the virus to the flu),
it might also vary on many other dimensions. The
root of this problem is that we have neither com-
plete information about nor experimental control
over the text we collected from Twitter.

To partially address this, we train a deep-learning
model to predict social distancing in a county from
tweets originating from that county, then feed syn-
thetic texts into that model that we systematically
manipulate to only vary on the linguistic feature of
interest. We assess whether the model has “learned”
to associate social distancing with the same linguis-
tic features we explored in Section 3, i.e. likening
the virus to the flu, alleging that the pandemic is
a hoax, or implicating the U.S. political left in the
spread of the disease.

4.1 Predictive Model

We utilize Bidirectional Encoder Representations
from Transformers (BERT) models (Devlin et al.,
2018), which are highly general in that they have
been shown to achieve state-of-the-art performance
on a large array of Natural Language Processing
tasks. We employ a BERT model that is pre-trained
on masked language modeling and next-sequence
prediction tasks and apply a fine-tuning approach
with this model to a wide sample of our county-
level Twitter corpus.



We set up the BERT fine-tuning as a sequence
prediction task: given a sample of tweets from a
county, the model predicts the same Google mo-
bility metric described in Section 2.2 above. In
contrast to analyses in Sections 3 and 5, in this
section we drop only counties for which we have
fewer than 512 tokens of Twitter data, leaving a
total of 745 counties.

Moreover, for this section the original tweets
are lowercased but are otherwise unaltered so as
to leverage pre-trained BERT’s understanding of
syntactic dependencies and compositional seman-
tic meaning (that is, we do not employ the pre-
processing described above): we leave in non-ascii
letters, urls, hashtags, and an anonymized user tag
(<user>). A dummy token—[NEWTWEET]—is
prepended to each tweet in the corpus. We con-
catenate the tweets of each county into documents
which serve as the basis of the analysis.

4.2 Prediction Details and Evaluation

We use the simpletransformers library7

to interface with the Huggingface transformers
module (Wolf et al., 2019). We employ the
bert-base-uncased model (12 transformer
layers, 12 self-attention heads, hidden size 768,
110 million total parameters). The pooled output
of the model is fed to a linear layer, with a mean
squared error loss function to support regression.
We employ a maximum sequence length of 512
(the longest sequence permitted by the model), a
training batch size of 8, an evaluation batch size of
8, a learning rate of 4e-5 with Adam optimization
(Adam epsilon value of 1e-8), and a training time
of 10 epochs.8

A 10% sample of counties are left out of training
for evaluation. We use the R2 statistic to assess the
accuracy of predicted values for the held-out set
against their observed values.

We fine-tune and compute predictions on the
held-out set with the bert-base-uncased
model 30 times, generating 30 separate fine-tuned
models. In each instance of fine-tuning, we first
randomly sample a single 512-token sequence from
each concatenation of tweets from every county in

7https://github.com/ThilinaRajapakse/simpletransformers
8We determined the epoch size by analyzing the evaluation

loss over epochs for one random fine-tuning, discarded for
future analyses. We found that most reduction in loss occurred
after 5 epochs and that the loss was mostly level for the 5
subsequent epochs. The learning rate, batch size, and Adam
epsilon value are defaults for the simpletransformers
package.

the training set. In other words, each fine-tuned
model is trained on distinct data consisting of 673
sequences of 512 tokens, one sequence for each
county in the training set. A new single random
512-token sequence is also sampled for counties
in the evaluation set when generating predictions
for fine-tuned models on the evaluation set (that is,
no fine-tuned model sees the exact same Twitter
data when making predictions on the evaluation
set). We average the predictions of each model on
the held-out set to yield the predictions which we
compare against our observed values.

4.3 Prediction Results
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Figure 2: Average predicted change in social distanc-
ing (Google mobility metric, described in Section 2.1)
from 30 fine-tuned BERT models, plotted against ob-
served values in the evaluation set. Error bars indi-
cate 95% confidence intervals of prediction means (dis-
played in red).

Figure 2 displays the predictions generated by
the 30 fine-tuned BERT models against observed
values in the evaluation set. The mean of these
predictions achieves an R2 of 0.43 on the held-out
set, indicating that our BERT model is reasonably
capable of predicting social distancing at the county
level from tweets appearing in that county.

4.4 Experiments

Though we have demonstrated that our deep-
learning model can reasonably predict our social
distancing variable at the county level from Twitter
data, the “black-box” nature of neural network-
based language models precludes us from under-
standing what the model has “learned” about the



linguistic correlates of social distancing via exami-
nation of model parameter values alone.

One means of assessing what a neural network
model has learned in training is minimal pair anal-
ysis. This analysis involves constructing artificial
pairs of text, where members of the pair differ along
some linguistic feature of interest. Each member of
the pair is then fed separately to the model, which
computes a prediction of the outcome for each
member. Differences between predicted values for
the two texts in each pair is evidence of a learned
association between the linguistic feature and the
outcome.

For our minimal pair analysis, we construct arti-
ficial pairs of synthetic Twitter data and retrieve our
(fine-tuned and un-tuned) models’ social distancing
predictions for each. We compare the predicted dif-
ferences within pairs produced by the tuned models
against the predicted differences produced by the
un-tuned model. This allows us to assess whether—
over the course of fine-tuning—our neural network
models learned the linguistic associations we mea-
sure in our theory-driven Word2Vec analyses (Sec-
tion 3).9

Our minimal pairs differ according to one of
the three following linguistic features of interest:
blaming the pandemic on the political left, likening
SARS-CoV-2 to the flu, and questioning the reality
or severity of the pandemic. For each comparison,
we first create a control document of Twitter data,
consisting of five manually-constructed tweets that
suppress the linguistic feature of interest; and an
experimental document, where we manually alter
tweets in the control document in order to evoke
that linguistic feature. Table 2 presents a sample
control and experimental tweet for each linguistic
feature of interest—the full set of such texts that
comprise the control and experimental documents
are reported in the appendix. These documents are
fed to our 30 fine-tuned BERT models as well as
our un-tuned model to produce the predicted values
of interest.

9We take inspiration from the minimal pair analysis em-
ployed by Schuster et al. (2019), who probe the behavior of
neural networks trained to predict the strength of pragmatic in-
ference licensing in corpus data. For other recent applications
of this type of analysis to neural network language modeling,
see e.g. Ettinger et al. (2018), who probe the ability of neural
nets to learn information about compositional semantic mean-
ing; and Futrell et al. (2019), who probe their ability to learn
syntactic representations.

Likening the virus to the flu:
Control: This virus is very different from the flu.
Experimental: This virus is very similar to the flu.
Alleging fraudulence:
Control: The pandemic is real.
Experimental: The pandemic is fake.
Implicating the political left:
Control: People need to start taking responsibility
during this pandemic.
Experimental: Democrats need to start
taking responsibility during this pandemic.

Table 2: Example control and experimental sentences
from the BERT experiments.

4.5 Experiment Results

Model predictions on the control versus experi-
mental sets of data are displayed in Table 3. For
each pair of data, we compare the average differ-
ence in predictions produced by our 30 fine-tuned
models against the difference in predictions of the
bert-base-uncased model initialized with-
out fine-tuning (identical architecture and random
seed as our fine-tuned models).

The fine-tuned models predict lower reductions
in mobility for experimental documents vs. control
documents on all three tests. By contrast, in the
case of the “flu” and “fraudulence” experiments,
the un-tuned model predicts a much higher reduc-
tion in mobility between our control and experi-
mental data, counter to our theoretical predictions.
Moreover, though the un-tuned model generates
the predicted effect in the case of the “left” experi-
ment, the magnitude of the effect is greater in the
case of our fine-tuned models.

To assess whether the predictions of the fine-
tuned models differed significantly from those of
the un-tuned model in each of our three experi-
ments, we used a one-sample Fisher randomization
test to determine the probability that the observed
difference in predicted social distancing for the
control and experimental tweets produced by the
untrained model is drawn from the same popula-
tion as that same value for the 30 trained models10

Each comparison is significant at the p < 0.05
level. These results demonstrate that our neural
network models learned the linguistic correlates of
social distancing that we explored in section 3 and
corroborate the results presented therein.

10We use one-sided p-values since these analyses are meant



Likening to the flu***
Model Control Exper. % Change

Fine-tuned 0.130 0.127 -2.22
Un-tuned 0.303 0.308 1.79

Alleging fraudulence***
Model Control Exper. % Change

Fine-tuned 0.169 0.167 -1.06
Un-tuned 0.287 0.308 7.34

Implicating the political left*
Model Control Exper. % Change

Fine-tuned 0.190 0.165 -12.9
Un-tuned 0.324 0.290 -10.6

Table 3: (Average) predicted values for our three sets of
control and experimental documents from our un-tuned
model (fine-tuned models). Significance values assess
the differences in differences using a one-sample Fisher
randomization test. * p < 0.05; *** p < 0.001

5 Mediation analysis

We have shown that variation in the meanings
attributed to the virus are associated with social
distancing using two different methodological ap-
proaches. Now we test whether meanings at-
tributed to the virus mediate the relationship be-
tween Trump vote margin in the 2016 election and
social distancing.

As we note above, Trump vote margin at the
county level in the 2016 presidential election is
strongly associated with an increase in social dis-
tancing in the early days of the COVID-19 pan-
demic. Indeed, when regressing our measure of
social distancing on Trump vote margin only, we
get an in-sample R2 of 0.38. The exact set of mech-
anisms linking Trump vote margin to social dis-
tancing, however, remains unknown. Mediation
analysis allows us to test individual mechanisms,
i.e. whether a given variable (the mediator) “ex-
plains” the relationship between the other variables.
Put differently, mediation analysis seeks to identify
whether part of the “total effect” of an independent
variable on the outcome is accounted for by an “in-
direct effect,” or an effect on the mediating variable
which subsequently affects the outcome.

We use mediation analysis to formally test
whether measures of the meanings attributed to the

to confirm the analyses presented in section 3.

virus mediate (explain) the relationship between
Trump vote margin and social distancing in whole
or in part. Rather than use our three hypothesized
associations (Section 3), however, we acknowledge
the complexity of what COVID-19 means and take
an exploratory approach. First, we identify the
one-thousand most frequent unigrams in the entire
corpus, excluding “coronavirus” and “covid.” Next,
for each county, we measure the distance between
each of these words and our linguistic indicators
of the virus (the tokens “coronavirus” and “covid”)
as in Section 3. This gives us a larger set of as-
sociations between the virus and frequent words,
providing more leverage on what meanings are at-
tributed to the virus and how these vary from county
to county. This in total creates a 1000×N matrix,
where N is the number of counties we analyze.

Next, we reduce the dimensionality of this ma-
trix by estimating its top three principal compo-
nents, creating three orthogonal measures that ex-
plain the most variation in these one-thousand mea-
sures. These three dimensions succinctly describe
the variation in meanings attributed to the virus
in each county in our analysis. When regressing
our social distancing measure on these dimensions
simultaneously, each coefficient is statistically sig-
nificant at the p < 0.001 level and the model has
an in-sample R2 of 0.36.

In order to test whether these measures of the
meanings attributed to the virus mediate the rela-
tionship between Trump vote margin in the 2016
election and social distancing in the early days of
the pandemic, we use structural equation modeling
(SEM) and proceed in two stages. In the first stage,
social distancing is regressed on Trump vote mar-
gin alone, providing an estimate of the total effect
of Trump vote margin on social distancing. In the
second, social distancing is regressed on Trump
vote margin and all three principal components.

5.1 Results

Figure 3 reports the resulting estimates. The dashed
horizontal line between Trump vote margin and so-
cial distancing is the total effect, i.e. the strength
of the association between Trump vote margin and
social distancing in a bivariate regression. This
estimate indicates that a one-standard-deviation in-
crease in Trump vote margin is associated with a
decrease in social distancing of 0.614 standard de-
viations. The solid horizontal line indicates the re-
maining direct effect when the three principal com-



Figure 3: Results from structural equation modeling
(SEM). Our inductively derived dimensions of virus
meaning mediate 19.2% of the total effect of trump
vote margin on our social distancing measure. All vari-
ables are mean-centered and standardized.

ponents are included. Pertinently, this direct effect
is reduced to -0.496, meaning that a one-standard-
deviation increase in Trump vote margin is asso-
ciated with a decrease in social distancing of only
0.496 standard deviations net of our linguistically-
derived measures.

The diagonal lines in Figure 3 represent the indi-
rect effect of Trump vote margin on social distanc-
ing passed through the principal components (the
mediating variables). We have summed the coef-
ficients to simplify presentation, but it is difficult
to interpret the coefficients corresponding to the
principal components. We therefore focus on the
portion of the total effect that is mediated by these
measures of the meanings attributed to the virus.
Consequently, we can conclude that our three com-
ponents together mediate 19.2% of the association
between Trump vote margin and social distancing.

6 Discussion and Conclusions

In our theory-driven analyses using Word2Vec, we
demonstrated that counties social distanced less the
more their COVID-19 discourse was indicative of
cognitive associations between the virus and the
concepts of (a) the political left, (b) fraud, and (c)
less serious illnesses. We reaffirmed these findings
using a deep learning model and BERT, showing
that a model trained on our data learned to predict
less social distancing for synthetic counties which
(a) blame the political left for the pandemic, (b)
question the reality or severity of the pandemic,
and (c) liken the virus to the flu, compared to con-
trol versions of these counties. Through mediation
analysis, we further showed that the heterogeneity
in meanings the virus took on across the U.S. de-
rived through PCA explains almost 20% of what
we call the Trump gap, i.e. the empirical pattern
that counties where residents supported Donald
Trump in the 2016 election more social distanced

less.
While it is impossible to rigorously identify a

causal effect with the present analyses, we miti-
gate concerns about spuriousness by using within-
county variation in social distancing as well as by
controlling for several potential confounding vari-
ables. Our experiments described in Section 4 fur-
ther mitigate these concerns. Additionally, we es-
tablish temporal precedence by using the change in
the outcome measured after the language variables.
As always, omitted variables may be present; our
analyses are suited to making strong claims about
causality.

Overall, our results confirm that the different
meanings attributed to the virus are associated with
individuals’ tendency to social distance. In fact,
we demonstrate with mediation analysis that these
meanings explain a great deal of the association be-
tween support for Trump in 2016 U.S. presidential
election and social distancing, an empirical regular-
ity that has been demonstrated (typically at the in-
dividual level) elsewhere. This means that if public
health officials hope to increase adherence to social
distancing (and potentially other health behavior-
related) guidelines in the future, they must be mind-
ful of the various meanings attributed to the virus in
different communities, and attend to the dynamic
process by which it might acquire new meanings.

This study outlines an approach to measuring the
variation in meaning attributed to a novel concept
in a population when limited text is available for
each sub-population and builds on recent literature
introducing minimal pair analysis of synthetic text.
Additionally, our results demonstrate the impor-
tance of the process of the social construction of
meaning, in accordance with arguments champi-
oned by sociologists for over a century. Finally,
it demonstrates that large-scale social media text
can be mined productively to recover traces of this
collective meaning-making, and that, in principle,
this can be done quickly enough to inform public
health policy and messaging.
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7 Appendix

7.1 Documents used in BERT minimal pair
analysis

7.1.1 Mentioning the flu
Control document: [NEWTWEET] This virus is
very different from the flu. [NEWTWEET] This
virus is nothing like the flu. [NEWTWEET] This
virus is much deadlier than the flu. [NEWTWEET]
This virus is more dangerous than the flu.
[NEWTWEET] I’m more afraid of this virus than
I am of the flu.

Experimental document: [NEWTWEET] This
virus is very similar to the flu. [NEWTWEET]
This virus is just like the flu. [NEWTWEET] This
virus is as deadly as the flu. [NEWTWEET] This
virus is as dangerous as the flu. [NEWTWEET]
I’m more afraid of the flu than I am of this virus.

7.1.2 Mentioning fraudulence
Control document: [NEWTWEET] The pan-
demic is real. [NEWTWEET] The pandemic needs
to be taken seriously. [NEWTWEET] The virus
is not a hoax. [NEWTWEET] The virus is not a
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scam. [NEWTWEET] The pandemic is not at all
made up.

Experimental document: [NEWTWEET] The
pandemic is fake. [NEWTWEET] The pandemic
doesn’t need to be taken seriously. [NEWTWEET]
The virus is a hoax. [NEWTWEET] The virus is a
scam. [NEWTWEET] The pandemic is completely
made up.

7.1.3 Mentioning the political left
Control document: [NEWTWEET] People
need to start taking responsibility during this pan-
demic. [NEWTWEET] The behavior of some
people during this pandemic is totally reckless!
[NEWTWEET] I blame this virus on careless peo-
ple. [NEWTWEET] People are the cause of this
virus. [NEWTWEET] I’m so angry at the people
who caused this pandemic!

Experimental document: [NEWTWEET]
Democrats need to start taking responsibility dur-
ing this pandemic. [NEWTWEET] The behavior
of some democrats during this pandemic is totally
reckless! [NEWTWEET] I blame this virus on
careless democrats. [NEWTWEET] Democrats
are the cause of this virus. [NEWTWEET] I’m so
angry at the democrats who caused this pandemic!


