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Abstract

We propose BUTTER, a unified multi-
modal representation learning model for Bi-
directional mUsic-senTence ReTrieval and
GenERation. Based on the variational au-
toencoder framework, our model learns three
interrelated latent representations: 1) a la-
tent music representation, which can be used
to reconstruct a short piece, 2) keyword em-
bedding of music descriptions, which can be
used for caption generation, and 3) a cross-
modal representation, which is disentangled
into several different attributes of music by
aligning the latent music representation and
keyword embeddings. By mapping between
different latent representations, our model can
search/generate music given an input text de-
scription, and vice versa. Moreover, the model
enables controlled music transfer by partially
changing the keywords of corresponding de-
scriptions. '

1 Introduction

The ability to relate natural language descriptions
with music is of great importance. It is useful for
cross-modal music analysis, such as automatic mu-
sic captioning and music retrieval based on natural
language queries. It also has considerable research
value in cross-modal controlled music generation,
say, automatically compose a piece of music ac-
cording to text descriptions.

While traditional machine-learning algorithms
mostly consider analysis (from data to labels) and
controlled generation (from labels to data) two com-
pletely different tasks, recent progress in multi-
modal representation learning (BaltruSaitis et al.,
2018) suggests that the two tasks can be unified
into a single framework. Specifically, music and
the corresponding text descriptions can be regarded

!Codes are available at https://github.com/
ldzhangyx/BUTTER
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Figure 1: An overview of the model architecture.

as data (of two different modalities) with shared
latent representations. Therefore, if we can success-
fully learn the shared cross-modal representation,
music analysis and generation would simply refer
to various ways of mapping between such represen-
tation and data of different modalities.

Inspired by the idea above, we contribute a
multimodal representation learning model for bi-
directional music-sentence retrieval and genera-
tion. Figure 1 shows the overall model architecture.
Here, the yellow path shows music representation
learning, the blue path shows keywords summa-
rization and text generation of music description,
and the green part represents the cross-modal align-
ment between the latent music space and keyword
embeddings. The cross-modal alignment helps dis-
entangle the latent music representation into four
factors: meter, key, style, and others, in which the
first three factors have corresponding keywords de-
scriptions. During the inference time, this model
enables a number of applications:

e Task 1: Music retrieval by text description,
where the information flow is (1)—(5)+(2).
That is, to search the music segments whose la-
tent representations best correlated with the key-
words of the text description in the cross-modal
space.

e Task 2: Music captioning, where the informa-
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tion flow is (1)—(5)—(4). E.g., to output “this
is a British style song in C major of 4/4 meter”
given a segment of music.

e Task 3: Controlled music generation, where
the information flow is (2)—(5)—(3). This is
very similar to task 1, except that we are now gen-
erating/sampling new music rather than search-
ing existing music in the dataset.

e Task 4: Controlled music refinement (style
transfer), where the information flow is
(2)—(5)—(3)«—(1). That is, to learn the latent
representation of piece and then refine it by par-
tially changing the keywords of the text descrip-
tion. This task helps us answer the imaginary
questions, such as “what if a piece is composed
in a different style” .

In sum, the contributions of our paper are:

e We designed the first multimodal representation-
learning framework which unifies music analysis
and controlled music generation.

o We show that music-text alignment in the latent
space serves as an effective inductive bias for
representation disentanglement. Such disentan-
glement leads to controllable attributes of mu-
sic via natural language under weak supervision
with no need to do feature engineering for each
separated attribute.

2 Related Work

Cross-modal retrieval task has attracted researchers
for decades(Gudivada and Raghavan, 1995). Frome
et al. (2013) uses a ranking cost to map images and
phrases into a common semantic embedding. Yu
et al. (2019) uses CCA to model cross-modal re-
lation between audio and lyrics for bi-directional
retrieval. Feng et al. (2014) learns multi-modal rep-
resentations by correlating hidden representations
of two uni-modal autoencoders and minimizes a
linear combination error. Karpathy et al. (2014)
proposed a bidirectional image-sentence mapping
method by extracting local fragments. Compared
with cross-modal retrieval, cross-modal controlled
generation is in general a more difficult task since
it requires reconstruct or sample new data from the
latent representation. Recent works include auto-
matic image captioning(Xu et al., 2015; Chen and
Lawrence Zitnick, 2015; Jia et al., 2015) and text-
to-image generation(Hinz et al., 2019; Zhu et al.,
2019; El-Nouby et al., 2019). However, very few
of them consider the bi-directional generation prob-
lem.

Another related area to this study is representa-
tion disentanglement. Locatello et al. (2019) shows
that the key to a successful disentanglement is to
incorporate the model with proper inductive biases.
Speaking of the disentanglement for music, Deep
Music Analogy (Yang et al., 2019) is very rele-
vant to this study as it can disentangle pitch and
rhythm factors. However, the inductive bias comes
from a supervision (an explicit rhythm loss), while
our study uses text descriptions as a much weaker
supervision as well as a more natural form of in-
ductive bias.

3 Method
3.1 Music Modality

We use a similar data representation as in Music-
VAE (Roberts et al., 2018). Each 16-beat melody
segment x is represented as a sequence of 64 one-
hot vectors. Each vector represents a 16 note
and has 130 dimensions, representing 128 MIDI
pitches, hold and rest, respectively.

We use the VAE framework to learn the latent
code z of a melody segment (as shown in (1) and
(3) of Figure 1). We assume z conforms to a
standard Gaussian prior (denoted by p(z)), and
can be partitioned into four disentangled factors
z = [Zkey7 Zmeter, styles Zothers}’ where 2zothers rEpre-
sents the music information not covered by key,
meter or style. The VAE encoder uses a single
layer bi-directional GRU to encode the melody
and emit the mean and variance of the approxi-
mated posterior gp(z|x). We assume gg(z|z) is
isotropic Gaussian and denote its mean as e =
[exey, €meters Estyle, €others)- For the VAE decoder, we
apply a 2-layer GRU which outputs pg(z|z).

We define the reconstruction objective by the
ELBO (evidence lower bound) (Kingma and
Welling, 2013) as follows,

£1(9,0:3) = ~Earg, log po(w]2)+aKL 4] p(2) ),
()

where « is a balance parameter.

3.2 Language Modality

3.2.1 Keywords Representations

We define the keywords of a music description
as a triplet [Wkey, Wmeter, Wstyle], Where wyey €
DX weter € D™, and wyyle € DV, Here
Dkey, pmeter and DY are the dictionaries of the
three corresponding attributes. We define the over-
all dictionary D = DXy U D™eter i Dswle and



embed every keyword w € D to a | D| dimensional
one-hot vector €/,

3.2.2 Summrizer and Generator Module

We apply two GRU-based encoder-decoder mod-
els as the keyword summarizer and the descrip-
tion generator, respectively. Both models are pre-
trained with sentence-keywords pairs directly re-
trieved from the dataset. This procedure is shown
in (2) and (4) in Figure 1.

3.3 Cross-modal Alignment

We use two linear transformations f(-), g(+) to map
latent melody representation and keywords to a
shared latent space. We employ a similarity objec-
tive L, to align two representations by maximiz-
ing correlation of corresponding attributes while
minimizing the correlation of irrelevant attributes.
Formally,
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where Z = {key, meter, style},u; = f(e;), and
vy = g(el,). Here, 3 is a constant to keep the loss
term non-negative and 3 is a balance factor. Hence,
the overall loss L is calculated by £ = L, + vL,,
where + is a parameter for balancing two losses.

In theory, the cross-modal alignment module al-
lows bi-directional music-sentence retrieval and
generation by inference-time optimization of eq. 2.
In practice, we find the keyword combination that
best describes a given melody (i.e., minimizes
eq. 2) by a brute-force search. Conversely, we
compute the latent music code corresponding to a
keyword by averaging the latent codes of all music
samples aligned with the same keyword.

4 Experiments

We conduct two experiments to demonstrate that
the proposed model can be applied to the four tasks
mentioned in the introduction.

The former two tasks, i.e., music retrieval by text
description and music captioning are both about
music analysis. The core of the two tasks requires
the latent code being able to classify to the cor-
rect keywords. Our first experiment (Section 4.2)
focuses on this classification accuracy.

The latter two tasks, controlled music genera-
tion and controlled music refinement, require that
by changing the latent codes (e.g., from minor to

major key), the generated samples also have the
corresponding change (e.g., key change) while still
preserving high music quality. We conduct subject
evaluations regarding this aspect in Section 4.3.

4.1 Dataset and Training

Our dataset contains 16,257 folk songs paired with
metadata collected from the abc notation home-
page’. From metadata we select key, meter and
style as keywords, and we synthesize diverse de-
scription sentences by human craft and paraphras-
ing tools®>. We associate them with 4-bar music
segments of corresponding songs. We use 80% for
training, 10% for validation and 10% for testing.
We train our model on two keyword settings.
In the full version, the key keyword contains 25
classes including 24 major/minor keys and others;
the meter keyword contains 6 classes including
2/4,3/4,4/4,6/8,9/8 and others. In the easy ver-
sion, the key keyword contains major, minor, and
others; the meter keyword contains triple, duple,
and others. In both modes, the style keyword con-
tains 3 classes, including Chinese, English, Irish.
We set the size of GRU hidden states, latent
variables and attribute variables to 512, 256 and 32
respectively. We map the latent z and words to a
shared 32-D embedding space. During training, we
set batch size to 4 and learning rate to le—3 with
weight decay of 0.999. We set balancing factors
a=0.01,8=0.2and v = 0.1.

4.2 Objective Measurements for Cross-modal
Music Information Retrieval

We design a classification task to evaluate whether
the latent codes exey, Emeter and egty1e can predict the
corresponding keywords by the similarity objective
eq. 2. If so, it follows that with simple algorithms
the model is capable of the task music retrieval by
text description and music captioning.

To this end, we compare our models with 2 base-
line classifiers under both full version and easy
version. Both baseline models uses the same GRU
encoder ((1) in Figure 1) and replace the alignment
module ((5) in Figure 1) by three separate MLP
classifiers for the three keyword attributes accord-
ingly. Each MLP has 3 linear layers with 128 hid-
den dimensions. The first baseline method (GRU-
MLP) trains the whole network from scratch, and
the second baseline (Latent-MLP) method trains
only the MLP classifiers and fixes the GRU encoder

http://abcnotation.com/
‘https://quillbot.com/


http://abcnotation.com/
https://quillbot.com/

Key Meter - Human Accuracy
Model Full Easy Full Basy Swi¢ ~ Model  Musicality oy roer  Style
GRU-MLP 0.63 0.76 044 054 0.84 Original 3.44 0.57 0.60 0.38
Latent-MLP 045 0.83 0.38 0.72 0.90 Prior 2.68 033 043 0.31
Ours 0.60 0.77 040 0.76 0.92 Ours 3.25 035 048 0.49

Table 1: Performance of models in classification task.

parameters. Table 1 shows the evaluation results.

When all the keywords of the melody are deter-
mined, our model generates complete sentences
through the description generator. Figure 2 pro-
vides two generated examples.

Melody — T {————

Caption | This is a song in G. Is has a 2/4 meter and it is a Chinese song.

— i |

T—TESS hd u) ——

Melody

Caption | This is a 6/8-meter composition in G major. It is an Irish song.

Figure 2: Generated descriptions for input melodies.

4.3 Subjective Evaluation for Controlled
Music Generation

We wish that when we change one or more keyword
attributes, the generated music would also make
corresponding change while still preserving good
musicality. The controlled music generation and
controlled music refinement tasks directly follow
from this desired property.

We invite people to subjectively rate the quality
of the generated music. In particular, we ask the
subjects to listen to 30 samples randomly picked
from the test dataset with three types of processing,
and each type contains 10 samples:

1. (Original) No processing: identical to the

data sample.

2. (Owurs) Randomly change the latent code

(among €xey, Emeter and €gyle) into a target latent

code. E.g. to substitute exey=major @S €key= minor

3. (Prior) Randomly change the latent code into

Gaussian noise sampled from the prior distribu-

tion.

The subjects are asked to:

1. Rate the musicality of the processed sample

based on a 5-point scale from 1 (low) to 5 (high).

2. Select the keyword attributes that best de-

scribe the music. That is, 1) whether the key is

major, minor or others, 2) whether the meter is
duple, triple or others, and 3) whether the style
is Chinese, Irish or English.

Table 2: Performance of models in generation task.
Musicality means the overall quality of music.

A total of 30 subjects (9 female and 21 male)
participated in the survey. 10% of them are at the
professional level of musicological knowledge and
the 37% are over the average level. In table 2, the
left column shows the rating of musicality and the
right column shows the accuracy of selecting the
correct keywords. The results show that our pro-
posed method has higher musicality and achieves
better control of generation than randomly sam-
pling from the prior in all three factors. However,
we still see a gap between our method and the
original samples. This is probably because the se-
lected factors deal with deep music structure which
remains a challenging task for existing methods.
which we leave for future work. Moreover, due to
the cultural background of subjects, they generally
have difficulty in distinguishing between Irish and
English songs. If we combine these two categories
into one, then the scores of the original songs, ours,
and baseline are: 0.72, 0.59 and 0.32, respectively.
Figure 3 shows a transfer example:

Origin = = ~
(Chinese Style) % F 2

Culture Transfer
(to English)

Figure 3: An example of music refinement.

5 Conclusion and Limitations

In conclusion, we contributed a unified multi-
modal representation learning model allowing bi-
directional retrieval and generation between music
and sentences. The cross-modal alignment serves
as an effective inductive bias to disentangle latent
representations of music according to text.

We see that the current text description is still
very rigid, limited to three keywords and the text
descriptions have to cover the exact keywords. In
the future, we will make the text description more
flexible, covering more music attributes while al-
lowing synonyms. In addition, human descriptions
of music may be subjective and ill-defined, making
the learning process difficult. It will be the biggest
challenge our model faces in the future.
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