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Abstract

The element-wise attention mechanism has
been widely used in modern sequence mod-
els for text and music. The original atten-
tion mechanism focuses on token-level simi-
larity to determine the attention weights. How-
ever, these models have difficulty capturing
sequence-level relations in music, including
repetition, retrograde, and sequences. In this
paper, we introduce a new attention mod-
ule called the sequential attention (SeqAttn),
which calculates attention weights based on
the similarity between pairs of sub-sequences
rather than individual tokens. We show that
the module is more powerful at capturing
sequence-level music relations than the orig-
inal design. The module shows potential in
both music relation discovery and music gen-
eration.1

1 Introduction
Music is one type of sequential data with distinc-
tive structures. Various kinds of similarity occur
among different phrases of a single music piece.
Many music relations are based on sequence-level
similarity. For example, a modulated sequence
describes a music relation where two phrases’
rhythm is the same, but the pitches are shifted.

A well-known method to capture relations in a
sequence is the transformer model (Vaswani et al.,
2017). Transformer-based models have had recent
success in sequence generation and representation
learning for both text (Radford et al., 2019; De-
vlin et al., 2018) and music (Huang et al., 2018;
Dhariwal et al., 2020).

The core mechanism of the transformer is the
element-wise attention layer. The attention mod-
ule allows information exchange between any
tokens in the sequences. However, it is not

1Code and pre-trained models are available at https:
//github.com/music-x-lab/SeqAttn
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Figure 1: An overview of a self-attentive monophonic
language model with the sequential attention mecha-
nism. The model tries to predict the next token (repre-
sented by a question mark) by attending to related sub-
sequences appear previously. (1) and (2) show two po-
tential alignments. The model assigns a larger weight
(matching score) to key sequence (1) over (2) since key
sequence (1) has strong relations (tonal sequence) with
the query sequence and can help to predict the next to-
ken (E4 in this case).

an explicit inductive bias for direct sequence-to-
sequence matching. Second, a multi-layer at-
tention setting is required: the model needs to
collect the sequential information using the po-
sitional embedding (Vaswani et al., 2017; Shaw
et al., 2018) on the first layer, and then compare
the sequential information on the subsequent lay-
ers. These problems make the model hard to train
and require additional parameters, which may also
harm the model’s generalization ability.

In this paper, we propose the sequential atten-
tion module, a new attention module that explic-
itly models sequence-level music relations. In
this module, we measure the similarity of two se-
quences by a token-wise comparison instead of
the dynamic time warping approach (Walder and

https://github.com/music-x-lab/SeqAttn
https://github.com/music-x-lab/SeqAttn
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Figure 2: The architecture of the sequential attention
unit with H heads. The model takes in the key and the
query sequence and outputs the matching scores s(h)

and the predicted embedding q̃
(h)
N for each head.

Kim, 2018; Hu et al., 2003) to ensure time effi-
ciency. We also show how to build a self-attentive
language model based on the module to capture
phrase-level self-similarity in a music piece. An
overview of the process is shown in Figure 1. We
show by experiments that the proposed model is
better at capturing such self-similarity than the
transformer model with a comparable size.

2 Proposed Method

2.1 Sequential Attention Unit
We first introduce the basic unit of the proposed
module. The design is shown in Figure 2. As-
sume that we have two sequences of equal length,
the query sequence q = (q1, q2, ..., qN ) and the
key sequence k = (k1, k2, ..., kN ). Each qn, kn is
an embedding vector of dimension dsv. Here, qN
is unknown while k1...N and q1...N−1 are known.
The target of the unit is to (1) estimate their match-
ing score (s) between q and k, and (2) if they are
well matched, predict the unknown element qN
given the corresponding key element kN .

The module uses a multi-head setting (Vaswani
et al., 2017) to allow learning multiple distinct re-
lations between the same q, k pair. For a sequen-
tial attention unit with H attention heads, we have:

[s(1...H); q̃
(1...H)
N ] = SeqAttn(q1...N−1,k1...N , e)

(1)
where e is a relative positional embedding vector.
We first concatenate the corresponding elements in
the query and key sequences, as well as the relative
positional embedding (fn = [qn; kn; e]), and feed
them to a uni-directional LSTM. The last hidden
state hn and the last key element kn are used to
estimate the matching score s(h) and the predicted
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Figure 3: The architecture of the conditional sequential
attention unit with H heads. The Multi-Layer Percep-
tron (MLP) has the same architecture as the uncondi-
tioned module.

q̃
(h)
N for each head h = 1...H:

hN = LSTM(f1, f2, ..., fN−1) (2)

[s(1...H); q̃
(1...H)
N ] = MLP([hN ; kN ]) (3)

where MLP is a multi-layer perceptron with 3
fully connected layers and Rectified Linear Unit
(ReLU) activations.

2.2 Self-Attention Layer
We now consider how to integrate the module
into a language model using self-attention. Self-
attention is a method to generate new tokens in
a sequence by attending to previously generated
ones. Given a partial sequence x1...N−1, we want
to predict xN . We first enumerate the distance
i = 1, 2, 3, ... between the query sequence and the
key sequence. For each i, we calculate the match-
ing score si and the predicted embedding x̃N,i:

[s
(1..H)
i ; x̃

(1..H)
N,i ] = SeqAttn(x1...N−1, x1−i...N−i, ei)

(4)
where ei is a learned relative positional embedding
for distance i. We will assign xk = 0 for all non-
positive indices k ≤ 0. Then, a weighted average
of x̃N,i is calculated as a final prediction. For each
head h = 1...H , we have:

ŝ
(h)
i =

exp(s
(h)
i )∑

i′ exp(s
(h)

i′ )
(5)

x̃
(h)
N =

∑
i ŝ

(h)
i x̃

(h)
N,i (6)

x̃N = Linear([x̃
(1)
N ; ...; x̃

(H)
N ]) (7)

We can then use Softmax(Linear(x̃N )) to pre-
dict the probability of the actual tokens for xn.

In practice, we do not enumerate all i values
since most of the alignments do not agree with the
rhythmic structure, thus less meaningful to per-
form the comparison. We can eliminate such cases
to make the model more efficient. See section 3.2
for a detailed setting.



2.3 Conditional Sequential Attention
For the conditional sequence generation task, we
propose the modified sequence attention unit, as
shown in Figure 3. Here, we want to generate a tar-
get sequence xs given a known condition sequence
xc (e.g., to generate the melody given the chord se-
quence). The major modification is that we add a
backward LSTM to match the future conditions in
order to generate the current token.

Assume we have the query sequence q =
(q1, q2, ..., qM ) and the key sequence k =
(k1, k2, ..., kM ) of equal length M . Each qn =
(qcn, q

s
n) and kn = (kcn, k

s
n) are now a tuple of

the sample and the condition. We assume that all
conditions kc1..M , qc1..M and a part of the samples
ks1..N , qs1..N−1 are known (N ≤M ). We are inter-
ested in estimating qsN . In this case, we change the
Eqn. 2 and 3 to the following:

−→
h N = LSTMfw(f1, f2, ..., fN−1) (8)

←−
h N = LSTMbw(bM , bM−1, ..., bN+1) (9)

[s(1...H); q̃
(1...H)
N ] = MLP([

−→
h N ;
←−
h N ; kN ; qcN ])

(10)
where fn = [kn; qn; e] and bn = [kcn; q

c
n; e]. The

forward LSTM tries to match the previous samples
and the conditions, while the backward LSTM
tries to match the future conditions only.

3 Experiments

3.1 Dataset
We trained and evaluated the proposed method
on two datasets of different genres: (1) the Not-
tingham dataset (Foxley, 2011), an American folk
dataset with 1,021 songs after filtering; (2) the
POP dataset, a privately collected dataset with
1,394 Chinese pop songs with a 4/4 meter. All
songs have a monophonic melody line with chord
labels. For each dataset, we use 80% songs for
training, 10% for validation, and 10% for test-
ing. We augment the training set by pitch-shifting
within the range [-5,6] semitones.

We quantize all songs to a sixteenth-note level.
We represent each melody token as one of the 130
states: 128 onset states (for the 0-127 MIDI pitch
range), 1 sustain state and 1 silence state. Each
chord is encoded into a 36-dimensional multi-hot
vector: 12 dimensions for the root scale, 12 di-
mensions for the bass scale, and 12 dimensions for
its pitch classes.

Model Nottingham POP
Acc. Ppl. Acc. Ppl.

Unconditioned models
Mode 61.04 - 52.26 -
Ours+BA 88.23 1.54 84.08 1.77
Ours+MA - - 79.24 2.09
Transformer 84.58 1.70 70.69 2.73
Chord-conditioned models
Ours+BA 90.26 1.40 85.27 1.68
Ours+MA - - 82.44 1.88
Transformer 84.87 1.66 71.30 2.61

Table 1: The comparative results for the accuracy and
the perplexity of next token prediction on test sets.

3.2 Model Training
We implement both the conditional and uncondi-
tional models using sequential attention with H =
4 attention heads. We use dsv = 256 as the note
embedding dimension, dcv = 128 as the chord em-
bedding dimension, and dhidden = 256 as the hid-
den dimension of the LSTM and MLP layers.

As mentioned in section 2.2, we only select the
distance values i that leads to rhythmic meaningful
alignments:

i ∈ {i ∈ Z|k mod i = 0 or i mod k = 0} (11)

where k is a pre-defined group size. We ex-
perimented on two different selections: k = 4
for beat-level alignment (BA) and k = 16 for
measure-level alignment (MA, only for 4/4 me-
ter songs). For the Nottingham dataset, we only
use beat-level alignment since it contains meter
changes.

We define the model loss as the cross-entropy
loss for the next token prediction task. The model
is trained using the Adam optimizer (Kingma and
Ba, 2014) with a constant learning rate of 1e-4.
The training is stopped when the validation loss is
not improved in 20 epochs.

To increase the robustness of the model perfor-
mance, we randomly drop key-value pairs with a
probability of 50% during training to encourage
the model to discover more relations in a piece.
The attention dropout is not used in testing.

3.3 Comparative Results
We first compare the proposed method against
baseline methods for the next token prediction
task. To predict the next token in a partial phrase,
it is beneficial if the model learns to attend to sim-



Input Sequence Prediction Ref.

(1)
A4 (s) B4 (s) C5 (s) G4 (s) F4 (s) (s) (s) E4 (s) (s) (s)
A4 (s) B4 (s) C5 (s) G4 (s) F4 (s) (s) (s) ?

E4: 89.40%
D4: 2.20%

E4

(2)
G4 (s) A4 (s) G4 (s) F4 (s) E4 (s) D4 (s) C4 (s) (s) (s)
F4 (s) G4 (s) F4 (s) E4 (s) D4 (s) C4 (s) ?

Bb3: 51.24%
B3: 36.85%

B3

(3)
C4 (s) D4 (s) E4 (s) F4 (s) G4 (s) E4 (s) C4 (s) G3 (s)
D4 (s) E4 (s) F#4 (s) G4 (s) A4 (s) F#4 (s) D4 (s) ?

A3: 21.85%
(s): 14.68%

A3

Table 2: A case study of the module’s behavior for different music relations: (1) exact repetition, (2) tonal sequence
and (3) modulating sequence. The question mark is the token to predict and the (s) token is the sustain label. The
table shows the top two predictions and their probability from the sequential attention model.
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Figure 4: A generated sample. All chords and the melody for the first 8 bars are given. The model generates the
melody for the next 8 bars. The repetitions in the generated piece are painted in colors (green and red).

ilar phrases appear previously. We use two base-
line methods: (1) a weak baseline (Mode) that al-
ways predicts the most frequent token (the sustain
label), and (2) a 3-layer transformer model with
relative positional embedding (Shaw et al., 2018).
The model has a transformer width of 256 and 4
attention heads. The results are listed in table 1.
Results show that our proposed method acquires
higher accuracy and lower perplexity on both the
unconditioned model and the chord-conditioned
model.

3.4 Analysis of the Attention Module
To further investigate the types of music relations
that the sequential attention module captures, we
apply the unconditional model with measure-level
alignment to three 2-bar test cases with different
music relations: (1) exact repetitions (2) tonal se-
quences and (3) modulating sequences, as shown
in table 2. The model predicts reasonable results
for all three test cases. Notice that the top 2 predic-
tions of case (2) both form valid tonal sequences
(in C major and F major keys, respectively). The
model learns such music relations through self-
supervision without explicit human instructions.

3.5 Music Generation
We also perform a music generation task using the
conditioned language model. Figure 4 shows a
generated example where we generate the next 8
bars of melody according to the chords and the
first 8 bars of the melody of a sample (reelsd-

g18.mid) from the Nottingham test set. In this ex-
ample, the model learns to repeat the phrases with
the same chord sequences and to very if the chord
sequences changes.

However, as the model only performs token-by-
token prediction, it lacks control over the global
music structure. We found some generated ex-
amples have too many repetitions or too early ca-
dences. Generating music with controlled music
structures are left as a future work.

4 Conclusion

In this paper, we propose a new attention mod-
ule, the sequential attention module, that explicitly
models similarity between two sequences. Based
on the module, we implement a self-attentive mu-
sic language model. The model discovers and cap-
tures the self-similarity in music pieces and im-
proves the next token prediction results.

Several important tasks are left as future works.
First, the proposed method cannot capture music
relations of different time scales since the sequen-
tial attention module performs a token-wise align-
ment of the query and the key sequence. A differ-
ent module design is required in this case. Second,
we want to explore whether the discovered rela-
tions can help us in other analysis and generation
tasks, e.g., automatic music segmentation, and au-
tomatic music accompaniment.
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