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Abstract

Task-oriented dialog models typically leverage
complex neural architectures and large-scale,
pre-trained Transformers to achieve state-of-
the-art performance on popular natural lan-
guage understanding benchmarks. However,
these models frequently have in excess of tens
of millions of parameters, making them im-
possible to deploy on-device where resource-
efficiency is a major concern. In this work,
we show that a simple convolutional model
compressed with structured pruning achieves
largely comparable results to BERT (Devlin
et al., 2019) on ATIS and Snips, with under
100K parameters. Moreover, we perform ac-
celeration experiments on CPUs, where we ob-
serve our multi-task model predicts intents and
slots nearly 63× faster than even DistilBERT
(Sanh et al., 2019).

1 Introduction

The advent of smart devices like Amazon Alexa,
Facebook Portal, and Google Assistant has in-
creased the necessity of resource-efficient task-
oriented systems (Coucke et al., 2018; Zhang et al.,
2020; Desai et al., 2020). These systems chiefly
perform two natural language understanding tasks,
intent detection and slot filling, where the goals
are to understand what the user is trying to ac-
complish and the metadata associated with the re-
quest, respectively (Gupta et al., 2018). However,
there remains a disconnect between state-of-the-
art task-oriented systems and their deployment in
real-world applications. Recent top performing sys-
tems have largely saturated performance on ATIS
(Hemphill et al., 1990) and Snips (Coucke et al.,
2018) by leveraging complex neural architectures
and large-scale, pre-trained language models (De-
vlin et al., 2019), but their usability in on-device
settings remains suspect (Qin et al., 2019; Cheng
et al., 2017). Mobile phones, for example, have

sharp hardware constraints and limited memory ca-
pacities, implying systems must optimize for both
accuracy and resource-efficiency as possible to be
able to run in these types of environments (Lin
et al., 2010; McIntosh et al., 2018).

In this work, we present a vastly simplified,
single-layer convolutional model (Kim, 2014; Bai
et al., 2018) that is highly compressible but nonethe-
less achieves competitive results on task-oriented
natural language understanding benchmarks. In
order to compress the model, we use structured
magnitude-based pruning (Anwar et al., 2017; Li
et al., 2017), a two-step approach where (1) entire
convolutional filters are deleted according to their
`2 norms; and (2) remaining portions of the under-
lying weight matrix are spliced together. The suc-
cessive reduction in the number of convolutional
output connections permits downstream weight ma-
trices to reduce their number of input connections
as well, collectively resulting in a smaller model.
Structured pruning and re-training steps are then in-
terleaved to ensure the model is able to reconstruct
lost filters that may contribute valuable informa-
tion. During test-time, however, we use the pruned
model as-is without further fine-tuning.

Our simple convolutional model with structured
pruning obtains strong results despite having less
than 100K parameters. On ATIS, our multi-task
model achieves 95% intent accuracy and 94% slot
F1, only about 2% lower than BERT (Devlin et al.,
2019). Structured pruning also admits significantly
faster inference: on CPUs, we show our model
is 63× faster than DistilBERT. Unlike compres-
sion methods based on unstructured pruning (Fran-
kle and Carbin, 2019), our model enjoys speedups
without having to rely on a sparse tensor library at
test-time (Han et al., 2016), thus we demonstrate
the potential for usage in resource-constrained, on-
device settings. Our code is publicly available at
https://github.com/oja/pruned-nlu.

https://github.com/oja/pruned-nlu
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2 Related Work

Task-Oriented Dialog. Dialog systems perform
a range of tasks, including language understanding,
dialog state tracking, content planning, and text
generation (Bobrow et al., 1977; Henderson, 2015;
Yu et al., 2016; Yan et al., 2017; Gao et al., 2018).
For smart devices, specifically, intent detection and
slot filling form the backbone of natural language
understanding (NLU) modules, which can either
be used in single-turn or multi-turn conversations
(Coucke et al., 2018; Rastogi et al., 2020). We
contribute a single-turn, multi-task NLU system es-
pecially tailored for on-device settings, as demon-
strated through acceleration experiments.

Model Compression. In natural language pro-
cessing, numerous works have used compression
techniques like quantization (Wróbel et al., 2018;
Zafrir et al., 2019), distillation (Sanh et al., 2019;
Tang et al., 2019; Jiao et al., 2020), pruning (Yoon
et al., 2018; Gordon et al., 2020), and smaller repre-
sentations (Ravi and Kozareva, 2018; Kozareva and
Ravi, 2018; Desai et al., 2020). Concurrently, Desai
et al. (2020) develop lightweight convolutional rep-
resentations for on-device task-oriented systems,
related to our goals, but they do not compare with
other compression methods and solely evaluate on
a proprietary dataset. In contrast, we compare
the efficacy of structured pruning against strong
baselines—including BERT (Devlin et al., 2019)—
on the open-source ATIS and Snips datasets.

3 Convolutional Model

Convolutions for On-Device Modeling. State-
of-the-art task-oriented models are largely based
on recurrent neural networks (RNNs) (Wang et al.,
2018) or Transformers (Qin et al., 2019). However,
these models are often impractical to deploy in low-
resource settings. Recurrent models must sequen-
tially unroll sequences during inference, and self-
attention mechanisms in Transformers process se-
quences with quadratic complexity (Vaswani et al.,
2017). High-performing, pre-trained Transformers,
in particular, also have upwards of tens of millions
of parameters, even when distilled (Tang et al.,
2019; Sanh et al., 2019).

Convolutional neural networks (CNNs), in con-
trast, are highly parallelizable and can be signif-
icantly compressed with structured pruning (Li
et al., 2017), while still achieving competitive per-
formance on a variety of NLP tasks (Kim, 2014;

Gehring et al., 2017). Furthermore, the core con-
volution operation has enjoyed speedups with ded-
icated digital signal processors (DSPs) and field
programmable gate arrays (FPGAs) (Ahmad and
Pasha, 2020). Model compatibility with on-device
hardware is one of the most important consider-
ations for practitioners as, even if a model works
well on high throughput GPUs, its components may
saturate valuable resources like memory and power
(Lin et al., 2010).

Model Description. Model inputs are encoded
as a sequence of integers w = (w1, · · · , wn) and
right-padded up to a maximum sequence length.
The embedding layer replaces each token wi with
a corresponding d-dimensional vector ei ∈ Rd

sourced from pre-trained GloVe embeddings (Pen-
nington et al., 2014). A feature map c ∈ Rn−h+1

is then calculated by applying a convolutional filter
of height h over the embedded input sequence. We
apply max-over-time pooling ĉ = max(c) (Col-
lobert et al., 2011) to simultaneously reduce the
dimensionality and extract the most salient fea-
tures. The pooled features are then concatenated
and fed through a linear layer with dropout (Sri-
vastava et al., 2014). The objective is to maximize
the log likelihood of intents, slots, or both (under
a multi-task setup), and is optimized with Adam
(Kingma and Ba, 2015).

To ensure broad applicability, our model em-
phasizes simplicity, and therefore minimizes the
number of extraneous architectural decisions: there
is only a single convolutional block, no residual
connections, and no normalization layers.

Temporal Padding. The model described above
is capable of predicting an intent that encompasses
the entire input sequence, but cannot be used for se-
quence labeling tasks, namely slot filling. To create
a one-to-one correspondence between input tokens
and output slots, Bai et al. (2018) left-pad the input
sequence by k − 1, where k is the kernel size. We
modify this by loosening the causality constraint
and instead padding each side by k−1

2 . Visually,
this results in a “centered” convolution that incul-
cates bidirectional context when computing a fea-
ture map. Note that this padding is unnecessary for
intent detection, therefore we skip it when training
a single-task intent model.

Multi-Task Training. Intent detection and slot
filling can either be disjointly learned with dedi-
cated single-task models or jointly learned with a
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unified multi-task model (Liu and Lane, 2016). In
the latter model, we introduce task-specific heads
on top of the common representation layer and si-
multaneously optimize both objectives:

Ljoint = αLintent + (1− α)Lslot

for α where 0 ≤ α ≤ 1. Empirically, we observe
that weighting Lslot more than Lintent results in
higher performance (α ≈ 0.2). Our hypothesis
is that, because of the comparative difficulty of
the slot filling task, the model is required to learn a
more robust representation of each utterance, which
is nonetheless useful for intent detection.

4 Structured Pruning

Structured vs. Unstructured Pruning. Prun-
ing is one compression technique that removes
weights from an over-parameterized model (Le-
Cun et al., 1990), often relying on a heuristic func-
tion that ranks weights (or groups of weights) by
their importance. Methods for pruning are broadly
categorized as unstructured and structured: unstruc-
tured pruning allows weights to be removed haphaz-
ardly without geometric constraints, but structured
pruning induces well-defined sparsity patterns, for
example, dropping entire filters in a convolutional
layer according to their norm (Molchanov et al.,
2016; Li et al., 2017; Anwar et al., 2017). Crit-
ically, the model’s true size is not diminished
with unstructured pruning, as without a sparse
tensor library, weight matrices with scattered zero
elements must still be stored (Han et al., 2016). In
contrast, structurally pruned models do not rely on
such libraries at test-time since non-zero units can
simply be spliced together.

Pruning Methodology. The structured pruning
process is depicted in Figure 1. In each pruning it-
eration, we rank each filter by its `2 norm, greedily
remove filters with the smallest magnitudes, and
splice together non-zero filters in the underlying
weight matrix. The deletion of a single filter re-
sults in one less output channel, implying we can
also remove the corresponding input channel of
the subsequent linear layer with a similar splicing
operation. Repetitions of this process result in an
objectively smaller model because of reductions in
the convolutional and linear layer weight matrices.
Furthermore, this process does not lead to irregular
sparsity patterns, resulting in a general speedup on
all hardware platforms.

Figure 1: Structured pruning of convolutional models
by (1) ranking filters by their `2 norm, then (2) splicing
out the lowest norm filter, resulting in a successively
smaller weight matrix. Because each filter convolves
input filters cin into one output filter cout, removing a
single filter results in cout − 1 output channels.

The heuristic function for ranking filters and
whether to re-train the model after a pruning step
are important hyperparameters. We experimented
with both `1 and `2 norms for selecting filters, and
found that `2 slightly outperforms `1. More com-
plicated heuristic functions, such as deriving filter
importance according to gradient saliency (Persand
et al., 2020), can also be dropped into our pipeline
without modification.

One-Shot vs. Iterative Pruning. Furthermore,
when deciding to re-train the model, we experiment
with one-shot and iterative pruning (Frankle and
Carbin, 2019). One-shot pruning involves repeat-
edly deleting filters until reaching a desired sparsity
level without re-training, whereas iterative pruning
interleaves pruning and re-training, such that the
model is re-trained to convergence after each prun-
ing step. These re-training steps increase overall
training time, but implicitly help the model “recon-
struct” deleted filter(s), resulting in significantly
better performance. During test-time, however, the
pruned model uses significantly fewer resources,
as we demonstrate in our acceleration experiments.

5 Tasks and Datasets

We build convolutional models for intent detec-
tion and slot filling, two popular natural language
understanding tasks in the task-oriented dialog
stack. Intent detection is a multi-class classifica-
tion problem, whereas slot filling is a sequence
labeling problem. Formally, given utterance tokens
w = (w1, · · · , wn), models induce a joint distribu-
tion P (y∗intent,y

∗
slot|w) over an intent label y∗intent
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Models ATIS Snips

Intent Slot Intent Slot

Baselines

Slot-Gated RNN 94.10 95.20 97.00 88.80
Stack Propagation 96.90 95.90 98.00 94.20
DistilBERT (66M) 96.98 95.44 97.94 94.59
BERT (110M) 97.16 96.02 98.26 95.05

Method: No Compression

Single-Task 94.94 94.01 96.54 85.06
Multi-Task (195K/174K) 94.98 94.30 96.97 84.38

Method: Structured Pruning

Single-Task 95.45 94.61 96.94 85.11
Multi-Task (97K/87K) 95.39 94.42 97.17 83.81

Table 1: Intent accuracy and slot F1 of baseline mod-
els (Goo et al., 2018; Qin et al., 2019; Sanh et al., 2019;
Devlin et al., 2019) and our systems on ATIS and Snips.
We experiment with single-task and multi-task models.
Number of model parameters are shown in parenthe-
ses where applicable; multi-task models use the format
(ATIS/Snips).

and slot labels y∗
slot = (y

∗(1)
slot , · · · ,y

∗(n)
slot ). These

models are typically multi-task: intent and slots
predictions are derived with task-specific heads
but share a common representation (Liu and Lane,
2016). However, since the intent and slots of
an utterance are independent, we can also learn
single-task models, where an intent model opti-
mizes P (y∗intent|w) and a slot model optimizes
P (y∗

slot|w). We experiment with both approaches,
although our ultimate compressed model is multi-
tasked as aligned with on-device use cases.

Following previous work, we evaluate on ATIS
(Hemphill et al., 1990) and Snips (Coucke et al.,
2018), both of which are single-turn dialog bench-
marks with intent detection and slot filling. ATIS
has 4,478/500/893 train/validation/test samples, re-
spectively, with 21 intents and 120 slots. Snips has
13,084/700/700 samples with 7 intents and 72 slots.
Our setup follows the same preparation as Zhang
et al. (2019).

6 Experiments and Results

We evaluate the performance, compression, and
acceleration of our structured pruning approach
against several baselines. Note that we do not em-
ploy post-hoc compression methods like quantiza-
tion (Guo, 2018), as they are orthogonal to our core
method, and can be utilized at no additional cost to
further improve performance on-device.

Params CR (%) Pruning Distillation

Intent Slot Intent Slot

195K 0% 94.98 94.30 93.84 94.12
156K 20% 95.39 94.19 94.85 94.22
117K 40% 95.03 94.14 94.51 94.13
78K 60% 95.10 94.12 92.27 94.32
39K 80% 94.40 93.91 90.48 94.05
19K 90% 92.23 93.20 78.28 92.46

9K 95% 88.35 92.19 70.89 89.54
2K 99% 79.49 87.17 70.89 64.75

Table 2: ATIS performance of multi-task models com-
pressed with structured pruning (ours) and knowledge
distillation (Hinton et al., 2015) as the compression rate
(CR; %) increases. We report intent accuracy and slot
F1. Darker shades of red indicate higher absolute per-
formance drops with respect to 100%.

6.1 Benchmark Results

We experiment with both single-task and multi-task
models, with and without structured pruning, on
ATIS and Snips. The results are displayed in Table
1. Our multi-task model with structured pruning,
even with over a 50% reduction in parameters, per-
forms on par with our NO COMPRESSION baselines.
On ATIS, our model is comparable to SLOT-GATED

RNN (Goo et al., 2018) and is only about 2% worse
in accuracy/F1 than BERT. However, we note that
our model’s slot F1 severely drops off on Snips,
possibly because it is a much larger dataset span-
ning a myriad of domains. Whether our pre-trained
embeddings have sufficient explanatory power to
scale past common utterances is an open question.

Furthermore, to approximate what information is
lost after compression, we analyze which samples’
predictions flip from correct to incorrect after struc-
tured pruning. We observe that sparser models tend
to prefer larger classes; for example, in slot filing,
tags are often mislabeled as “outside” in IOB label-
ing (Tjong and Sang, 2000). This demonstrates a
trade-off between preserving non-salient features
that work on average for all classes or salient fea-
tures that accurately discriminate between the most
prominent classes. Our model falls on the right end
of this spectrum, in that it greedily de-prioritizes
representations for inputs that do not contribute as
much to aggregate dataset log likelihood.

6.2 Comparison with Distillation

In addition, we compare structured pruning with
knowledge distillation, a popular compression tech-
nique where a small, student model learns from a
large, teacher model by minimizing the KL diver-
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Figure 2: Performance-compression tradeoff curves on
ATIS and Snips, comparing multi-task models com-
pressed with structured pruning (ours) and knowledge
distillation (Hinton et al., 2015). Pruning curves denote
the mean of five compression runs with random restarts.
Note that the y-axis ticks are not uniform across graphs.

gence between their output distributions (Hinton
et al., 2015). Using a multi-task model on ATIS,
we compress it with structured pruning and distilla-
tion, then examine its performance at varying levels
of compression. The results are shown in Table 2.
Distillation achieves similar results as structured
pruning with 0-50% sparsity, but its performance
largely drops off after 80%. Surprisingly, even with
extreme compression (99%), structured pruning is
about 10% and 20% better on intents and slots,
respectively.

Our results show that, in this setting, the iterative
refinement of a sparse topology admits an easier
optimization problem; learning a smaller model
directly is not advantageous, even when it is su-
pervised with a larger model. Furthermore, the
iterative nature of structured pruning means it is
possible to select a model that optimizes a particu-
lar performance-compression trade off along a spar-
sity curve, as shown in Figure 2. To do the same
with distillation requires re-training for a target
compression level each time, which is intractable
with a large set of hyperparameters.

6.3 Acceleration Experiments

Lastly, to understand how our multi-task model
with structured pruning performs without signifi-
cant computational resources, we benchmark its
test-time performance on a CPU and GPU. Specifi-
cally, we measure several models’ inference times
on ATIS and Snips (normalized by the total num-
ber of test samples) using an Intel Xeon E3-1270

System ATIS Snips

CPU ↓ GPU ↓ CPU ↓ GPU ↓

DistilBERT 22.15 ms 1.87 ms 21.81 ms 1.76 ms
BERT 43.19 ms 2.80 ms 43.04 ms 2.72 ms

Pruning 0.35 ms 0.37 ms 0.33 ms 0.36 ms
Distillation 0.40 ms 0.37 ms 0.38 ms 0.37 ms

Table 3: Average CPU and GPU inference time (in mil-
liseconds) of baselines (Sanh et al., 2019; Devlin et al.,
2019) and our multi-task models on ATIS and Snips.

v3 CPU and NVIDIA GTX 1080-TI GPU. Results
are shown in Table 3. Empirically, we see that our
pruned model results in significant speedups with-
out a GPU compared to both a distilled model and
BERT. DistilBERT, which is a strong approxima-
tion of BERT, is still 63× slower than our model.
We expect that latency disparities on weaker CPUs
will be even more extreme, therefore selecting a
model that maximizes both task performance and
resource-efficiency will be an important considera-
tion for practitioners.

7 Conclusion

In this work, we show that structurally pruned
convolutional models achieve competitive perfor-
mance on intent detection and slot filling at only a
fraction of the size of state-of-the-art models. Our
method outperforms popular compression methods,
such as knowledge distillation, and results in large
CPU speedups compared to BERT and DistilBERT.
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