
Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI, pages 96–108
July 9, 2020. c©2020 Association for Computational Linguistics

96

Learning to Classify Intents and Slot Labels Given a Handful of Examples

Jason Krone
Amazon AI

Palo Alto, CA
kronej@amazon.com

Yi Zhang
Amazon AI
Seattle, WA

yizhngn@amazon.com

Mona Diab∗
The George Washington University

Washington, DC
mtdiab@gwu.edu

Abstract

Intent classification (IC) and slot filling (SF)
are core components in most goal-oriented dia-
logue systems. Current IC/SF models perform
poorly when the number of training examples
per class is small. We propose a new few-shot
learning task, few-shot IC/SF, to study and im-
prove the performance of IC and SF models
on classes not seen at training time in ultra
low resource scenarios. We establish a few-
shot IC/SF benchmark by defining few-shot
splits for three public IC/SF datasets, ATIS,
TOP, and SNIPS. We show that two pop-
ular few-shot learning algorithms, model ag-
nostic meta learning (MAML) and prototyp-
ical networks, outperform a fine-tuning base-
line on this benchmark. Prototypical networks
achieves substantial gains in IC performance
on the ATIS and TOP datasets, while both pro-
totypical networks and MAML outperform
the baseline with respect to SF on all three
datasets. In addition, we demonstrate that joint
training as well as the use of pre-trained lan-
guage models, ELMo and BERT in our case,
are complementary to these few-shot learning
methods and yield further gains.

1 Introduction

In the context of goal-oriented dialogue systems,
intent classification (IC) is the process of classify-
ing a user’s utterance into an intent, such as Book-
Flight or AddToPlaylist, referring to the user’s goal.
While slot filling (SF) is the process of identify-
ing and classifying certain tokens in the utterance
into their corresponding labels, in a manner akin
to named entity recognition (NER). However, in
contrast to NER, typical slots are particular to the
domain of the dialogue, such as music or travel. As
a reference point, we list intent and slot label an-
notations for an example utterance from the SNIPS

dataset with the AddToPlaylist IC in Figure 1.
∗Work performed while at Amazon AI

Token Slot Label
Please O

add O
some O
Pete AddToPlaylist:artist

Townshend AddToPlaylist:artist
to O

my AddToPlaylist:playlist owner
playlist O
Fiesta AddToPlaylist:playlist
Hits AddToPlaylist:playlist
con AddToPlaylist:playlist
Lali AddToPlaylist:playlist

Figure 1: Tokens and corresponding slot labels for an
utterance from the AddToPlaylist intent class in the
SNIPS dataset prefixed by intent class name.

As of late, most state-of-the-art IC/SF models
are based on feed-forward, convolutional, or re-
current neural networks (Hakkani-Tür et al., 2016;
Goo et al., 2018; Gupta et al., 2019). These neural
models offer substantial gains in performance, but
they often require a large number of labeled ex-
amples (on the order of hundreds) per intent class
and slot-label to achieve these gains. The relative
scarcity of large-scale datasets annotated with in-
tents and slots prohibits the use of neural IC/SF
models in many promising domains, such as medi-
cal consultation, where it is difficult to obtain large
quantities of annotated dialogues.

Accordingly, we propose the task of few-shot
IC/SF, catering to domain adaptation in low re-
source scenarios, where there are only a handful of
annotated examples available per intent and slot in
the target domain. To the best of our knowledge,
this work is the first to apply the few-shot learning
framework to a joint sentence classification and
sequence labeling task. In the NLP literature, few-
shot learning often refers to a low resource, cross
lingual setting where there is limited data available
in the target language. We emphasize that our defi-
nition of few-shot IC/SF is distinct in that we limit

97

the amount of data available per target class rather
than target language.

Few-shot IC/SF builds on a large body of exist-
ing few-shot classification work. Drawing inspi-
ration from computer vision, we experiment with
two prominent few shot image classification ap-
proaches, prototypical networks and model agnos-
tic meta learning (MAML). Both these methods
seek to decrease over-fitting and improve general-
ization on small datasets, albeit via different mech-
anisms. Prototypical networks learns class specific
representations, called prototypes, and performs
inference by assigning the class label associated
with the prototype closest to an input embedding.
Whereas MAML modifies the learning objective
to optimize for pre-training representations that
transfer well when fine-tuned on a small number of
labeled examples.

For benchmarking purposes, we establish few-
shot splits for three publicly available IC/SF
datasets: ATIS (Hemphill et al., 1990), SNIPS

(Coucke et al., 2018), and TOP (Gupta et al., 2018).
Empirically, prototypical networks yields substan-
tial improvements on this benchmark over the pop-
ular “fine-tuning” approach (Goyal et al., 2018;
Schuster et al., 2018), where representations are
pre-trained on a large, “source” dataset and then
fine-tuned on a smaller, “target” dataset. Despite
performing worse on intent classification, MAML
also achieves gains over “fine-tuning” on the slot
filling task. Orthogonally, we experiment with the
use of two pre-trained language models, BERT
and ELMO, as well as joint training on multiple
datasets. These experiments show that the use of
pre-trained, contextual representations is comple-
mentary to both methods. While prototypical net-
works is uniquely able to leverage joint training to
consistently boost slot filling performance.

In summary, our primary contributions are four-
fold:

1. Formulating IC/SF as a few-shot learning
task;

2. Establishing few-shot splits1 for the ATIS,
SNIPS, and TOP datasets;

3. Showing that MAML and prototypical net-
works can outperform the popular “fine-
tuning” domain adaptation framework;

1Few-shot split intent assignments given in section A.1

4. Evaluating the complementary of contextual
embeddings and joint training with MAML
and prototypical networks.

2 Related Work

2.1 Few-shot Learning

Early adoption of few-shot learning in the field
of computer vision has yielded promising re-
sults. Neural approaches to few-shot learning
in computer vision fall mainly into three cate-
gories: optimization-, metric-, or memory-based.
Optimization-based methods typically learn an ini-
tialization or fine-tuning procedure for a neural
network. For instance, MAML (Finn et al., 2017)
directly optimizes for representations that gener-
alize well to unseen classes given a few labeled
examples. Using an LSTM based meta-learner,
Ravi and Larochelle (2016) learn both the initial-
ization and the fine-tuning procedure. In contrast,
metric-based approaches learn an embedding space
or distance metric under which examples belong-
ing to the same class have high similarity. Pro-
totypical networks (Snell et al., 2017), siamese
neural networks (Koch, 2015), and matching net-
works (Vinyals et al., 2016) all belong to this cat-
egory. Alternatively, memory based approaches
apply memory modules or recurrent networks with
memory, such as a LSTM, to few-shot learning.
These approaches include differentiable extensions
to k-nearest-neighbors (Kaiser et al., 2017) and ap-
plications of the Neural Turing Machines (Graves
et al., 2014; Santoro et al., 2016).

2.2 Few-shot Learning for Text Classification

To date, applications of few-shot learning to natural
language processing focus primarily on text clas-
sification tasks. Yu et al. (2018) identify “clusters”
of source classification tasks that transfer well to
a given target task, and meta learn a linear combi-
nation of similarity metrics across “clusters”. The
source tasks with the highest likelihood of trans-
fer are used to pre-train a convolutional network
that is subsequently fine-tuned on the target task.
Han et al. (2018) propose FewRel, a few-shot re-
lation classification dataset, and use this data to
benchmark the performance of few-shot models,
such as prototypical networks and SNAIL (Mishra
et al., 2017). ATAML (Jiang et al., 2018), one of the
few optimization based approaches to few-shot sen-
tence classification, extends MAML to learn task-
specific as well as task agnostic representations

98

using feed-forward attention mechanisms. (Dou
et al., 2019) show that further pre-training of con-
textual representations using optimization-based
methods benefits downstream performance.

2.3 Few-shot Learning for Sequence Labeling

In one of the first works on few-shot sequence
labeling, Fritzler et al. (2019) apply prototypical
networks to few-shot named entity recognition by
training a separate prototypical network for each
named entity type. This design choice makes their
extension of prototypical networks more restrictive
than ours, which trains a single model to classify
all sequence tags. (Hou et al., 2019) apply a CRF
based approach that learns emission scores using
pre-trained, contextualized embeddings to few-shot
SF (on SNIPS) and few-shot NER.

3 Task Formulation

3.1 Few-shot Classification

The goal of few-shot classification is to adapt a
classifier fφ to a set of new classes L not seen
at training time, given a few labeled examples
per class l ∈ L. In this setting, train and test
splits are defined by disjoint class label sets Ltrain
and Ltest, respectively. The classes in Ltrain are
made available for pre-training and those in Ltest
are held out for low resource adaptation at test
time. Few-shot evaluation is done episodically, i.e.
over a number of mini adaptation datasets, called
episodes. Each episode consists of a support set
S and a query set Q. The support set contains kl
labeled examples Sl = {(xil, yl)|i∈(1. . .kl)} per
held out class l ∈ L; we define S =

⋃
l∈L Sl. Sim-

ilarly, the query set contains kq labeled instances
Ql = {(xjl , yl)|j∈(1. . .kq)} for each class l ∈ L
s.t. Ql ∩ Sl = {}; we define Q =

⋃
l∈LQl. The

support set provides a few labeled examples of new
classes not seen at training time that fφ must adapt
to i.e. learn to classify, whereas the query set is
used for evaluation. The definition of few-shot
classification requires that evaluation is done on
episodes; however, most few-shot learning methods
train as well as evaluate on episodes. Consistent
with prior work, we train both MAML and proto-
typical networks methods on episodes, as opposed
to mini-batches.

3.2 Few-shot IC/SF

Few-shot IC/SF extends the prior definition of few-
shot classification to include both IC and SF tasks.

As Geng et al. (2019) showed, it is straightforward
to formulate IC as a few-shot classification task.
Simply let the class labels yl in section 3.1 corre-
spond to IC labels and partition the set of ICs into
the train and test splits, Ltrain and Ltest. Building
on this few-shot IC formulation, we re-define the
support and query sets to include the slots tl, in
addition the intent yl, assigned to each example xl.
Thus, the set of support and query instances for
class l ∈ L become Sl = {(xil, til, yl)|i∈(1. . .kl)}
and Ql = {(xjl , t

j
l , yl)|j∈(1. . .kq)}, respectively.

To construct an episode, we sample a total of kl+kq
labeled examples per IC l ∈ L to form the support
and query sets. Since utterances can exhibit many
unique slot-label combinations, it is possible to
sample an episode such that a slot-label appears in
only the query or support set. Therefore, to ensure
fair evaluation, we “mask” any slot-label that ap-
pears in only the query or support set by replacing
it with the Other slot label, which is ignored by our
SF evaluation metric.

4 Approach

4.1 Prototypical Networks for Joint Intent
Classification and Slot Filling

The original formulation of prototypical networks
(Snell et al., 2017) is not directly applicable to
sequence labeling. Accordingly, we extend proto-
typical networks to perform joint sentence classifi-
cation and sequence labeling. Our extension com-
putes “prototypes” cl and ca for each intent class l
and slot-label a, respectively. Each prototype c ∈
RD is the mean vector of the embeddings belong-
ing to a given intent class or slot-label class. These
embeddings are output by a sequence encoder
fφ(x) :→ RD, which takes a variable length utter-
ance of m tokens xi = (xi1, x

i
2, . . . , x

i
m) as input,

and outputs the final hidden state h ∈ RD of the en-
coder. For ease of notation, let Sl = {(xil, til, yl)}
be the support set instances with intent class yl.
And let Sa = {(xi[1:j], t

i
[1:j], y

i)|tij = a} be the
support set sub-sequences with slot-label a for the
token xij in xi. Using this notation, we calculate
slot-label and intent class prototypes as follows:

cl =
1

|Sl|
∑

(xi,ti,yl)∈Sl

fφ(x
i) (1)

ca =
1

|Sa|
∑

(xi
[1:j]

, ti
[1:j]

, yi)

fφ(x
i
[1:j]) (2)

99

Figure 2: Three model architectures, each consisting of an embedding layer, comprised of either GloVe word em-
beddings (GloVe), GloVe word embeddings concatenated with ELMo embeddings (ELMo), or BERT embeddings
(BERT), that feed into a bi-directional LSTM, which is followed by fully connected intent and slot output layers.

Given an example (x∗, t∗, y∗) ∈ Q, we compute
the conditional probability p(y = l | x∗, S) that
the utterance x∗ has intent class l as the normal-
ized Euclidean distance between fφ(x∗) and the
prototype cl,

p(y = l | x∗, S) =
exp(−‖fφ(x∗)− cl‖22)∑
l′ exp(−‖fφ(x∗)− cl′‖

2
2)

Similarly, we compute the conditional probabil-
ity p(t∗j = a | x∗, S) that the j-th token x∗j in the
utterance x∗ has slot-label t∗j = a as the normal-
ized Euclidean distance between fφ(x∗[1:j]) and the
prototype ca,

p(t∗j = a | x∗, S) =
exp(−

∥∥∥fφ(x∗[1:j])− ca∥∥∥22)∑
a′ exp(−

∥∥∥fφ(x∗[1:j])− ca′∥∥∥22)
We define the joint IC and SF prototypical loss

function Lproto as the sum of the IC and SF neg-
ative log-likelihoods averaged over the query set
instances given the support set:

Lproto =
1

|Q|
∑

(x∗,t∗,y∗)∈Q

LprotoIC + LprotoSF

LprotoIC = − log p(y = y∗ | x∗, S)

LprotoSF = −
∑
t∗j∈t∗

log p(t∗j = a | x∗, S)

4.2 Model Agnostic Meta Learning (MAML)
MAML optimizes the parameters φ of the encoder
fφ such that when φ is fine-tuned on the support
set S for d steps, φ′ ← Finetune(φ, d |S), the fine-
tuned model fφ′ generalizes well to new class in-
stances in the query set Q. This is achieved by
updating φ to minimize the loss of the fine-tuned
model L(fφ′ , Q) on the query set Q. The update

to φ takes the form φ← φ−∇φL(fφ′ , Q), where
L is the sum of IC and SF softmax cross entropy
loss functions. Concretely, given a support and
query set (S,Q), MAML performs the following
two step optimization procedure:

1. φ′ ← Finetune(φ, d |S)

2. φ← φ−∇φL(fφ′ , Q)

Although, the initial formulation of MAML, which
we outline here, utilizes stochastic gradient descent
(SGD) to update the initial parameters φ, in prac-
tice, an alternate gradient based update rule can
be used in place of SGD. Empirically, we find it
beneficial to use Adam in place of SGD.

A drawback to MAML is that computing the
“meta-gradient”∇φL(fφ′ , Q) requires calculating
a second derivative, since the gradient must back-
propagate through the sequence of updates made by
Finetune(φ, d |S). Fortunately, in the same work
where (Finn et al., 2017) introduce MAML, they
propose a first order approximation of MAML,
foMAML, which ignores these second derivative
terms and performs nearly as well as the original
method. We utilize foMAML in our experiments
to avoid memory issues associated with MAML.

5 Few-shot IC/SF Benchmark

As there is no existing benchmark for few-shot
IC/SF, we propose few-shot splits for the Air Travel
Information System (ATIS, Hemphill et al. (1990)),
SNIPS (Coucke et al., 2018), and Task Oriented
Parsing (TOP, (Gupta et al., 2018)) datasets. A
few-shot IC/SF benchmark is beneficial for two
reasons. Firstly, the benchmark evaluates gener-
alization across multiple domains. Secondly, re-
searchers can combine these datasets in the future
to experiment with larger settings of n-way during
training and evaluation.

100

Split
ATIS SNIPS TOP

#Utt #IC #SL #SV #Utt #IC #SL #SV #Utt #IC #SL #SV
Train 4,373 5 116 461 8,230 4 33 8,549 20,345 7 38 5,574
Dev 662 7 122 260 - - - - 4,333 5 33 2,228
Test 829 7 128 258 6,254 3 20 7,567 4,426 6 39 1,341
Total 5,864 19 366 583 14,484 7 53 13,599 29,104 18 110 6821

Table 1: Statistics on utterance (Utt), intent (IC), slot label (SL), and slot value (SV) counts for ATIS, TOP, and
SNIPS few-shot train, development, and test splits as well as the full dataset, provided under the heading total.

5.1 Datasets

ATIS is a well-known dataset for dialog system
research, which comprises conversations from the
airline domain. SNIPS, on the other hand, is a
public benchmark dataset developed by the Snips
corporation to evaluate the quality of IC and SF
services. The SNIPS dataset comprises multiple do-
mains including music, media, and weather. TOP,
which pertains to navigation and event search, is
unique in that 35% of the utterances contain multi-
ple, nested intent labels. These hierarchical intents
require the use of specialized models. Therefore,
we utilize only the remaining, non-hierarchical 65%
of utterances in TOP. To put the size and diversity
of these datasets in context, we provide utterance,
intent, slot-label, and slot value counts for each
dataset in table 1.

5.2 Few-shot Splits

We target train, development, and test split sizes
of 70%, 15%, and 15%, respectively. However,
the ICs in these datasets are highly imbalanced,
which prevents us from hitting these targets exactly.
Thereby, we manually select the ICs to include
in each split. For the SNIPS dataset, we choose
not to form a development split because there are
only 7 ICs in the SNIPS dataset, and we require a
minimum of 3 ICs per split. During preprocessing
we modify slot label names by adding the associ-
ated IC as a prefix to each slot. This preprocessing
step ensures that the slot labels are no longer pure
named entities, but specific semantic roles in the
context of particular intents. In table 1, we provide
statistics on the few-shot splits for each dataset.

6 Experiments

6.1 Episode Construction

For train and test episodes, we sample both the the
number of classes in each episode, the “way” n,
and the number of examples to include for each

sampled class l, the class “shot” kl, using the pro-
cedure put forward in (Triantafillou et al., 2019).
By sampling the shot and way, we allow for unbal-
anced support sets and a variable number of classes
per episode. These allowances are compatible with
the large degree of class imbalances present in our
benchmark, which would make it difficult to apply
a fixed shot and way for all intents.

To construct an episode given a few-shot class
split Lsplit, we first sample the way n uniformly
from the range [3, |Lsplit|]. We then sample n in-
tent classes uniformly at random from Lsplit to
form L. Next, we sample the query shot kq for the
episodes as follows:

kq = min(10, (min
l∈L

[0.5 ∗ |Xl|]))

where Xl is the set of examples with class label
l. Given the query shot kq, we compute the target
support set size for the episode as:

|S| = min(Kmax,
∑
l∈L
dβmin(20, |Xl| − q)e)

where β is sampled uniformly from the range
(0, 1] and Kmax is the maximum episode size.
Lastly, we sample the support shot kl for each class
as:

kl = min(bRl ∗ (|S| − |L|)c+ 1, |Xl| − q)

where Rl is a noisy estimate of the normalized
proportion of the dataset made up by class l, which
we compute as follows:

Rl =
exp(αl) ∗ |Xl|∑

l′∈L exp(αl′) ∗ |Xl′ |)

The noise in our estimate of the proportion Rl is
introduced by sampling the value of αl uniformly
from the interval [log(0.5), log(2)).

101

6.2 Episode Sizes

We present IC/SF results for two settings of maxi-
mum episode size, Kmax = 20 and Kmax = 100,
in tables 2/4 and 3/5, respectively. When the maxi-
mum episode size Kmax = 20, the average support
set shot kl is 3.58 for ATIS, 3.78 for TOP, and
5.22 for SNIPS. In contrast, setting the maximum
episode size to Kmax = 100 increases the average
support set shot kl to 9.15 for ATIS, 9.81 for TOP,
and 10.83 for SNIPS.

6.3 Training Settings

In our experiments, we consider two training set-
tings. One in which we train on episodes, or
batches in the case of our baseline, from a single
dataset. And another, joint training approach that
randomly selects the dataset from which to sample
a given episode/batch. After sampling an episode,
we remove its contents from a buffer of available
examples. If there are no longer enough examples
in the buffer to create an episode, we refresh the
buffer to contain all examples.

6.4 Network Architecture

We evaluate the network architectures depicted in
Figure 2. These networks consist of an embedding
layer, a sequence encoder, and two output layers
for slots and intents, respectively. We greedily
predict the slot-label for each token in the input
sequence, according to the maximum output logit at
each position. We plan to explore alternate search
algorithms (e.g., beam search) in future work.

Each architecture uses a different pre-trained em-
bedding layer type, which are either non-contextual
or contextual. We experiment with one non-
contextual embedding, GLOVE word vectors (Pen-
nington et al., 2014), as well as two contextual
embeddings, GLOVE concatenated with ELMO

embeddings (Peters et al., 2018), and BERT em-
beddings (Devlin et al., 2018). The sequence en-
coder is a bi-directional LSTM (Hochreiter and
Schmidhuber, 1997) with a 512-dimensional hid-
den state. Output layers are fully connected and
take concatenated forward and backward LSTM
hidden states as input. Pre-trained embeddings are
kept frozen for training and adaptation. Attempts
to fine-tune BERT led to inferior results. We refer
to each architecture by its embedding type, namely
GLOVE, ELMO, or BERT.

6.5 Baseline

We compare the performance of our approach
against a FINE-TUNE baseline, which implements
the domain adaptation framework commonly ap-
plied to low resource IC/SF (Goyal et al., 2018).
We pre-train the FINE-TUNE baseline, either jointly
or individually, on the classes in our training
split(s). Then at evaluation time, we freeze the
pre-trained encoder and “fine-tune” new output lay-
ers for the slots and intents included in the support
set. This fine-tuned model is then used to predict
the intent and slots for each held out example in
the query set.

6.6 Hyper-parameters

We train all models using the Adam optimizer
(Kingma and Ba, 2014). We use the default learn-
ing rate of 0.001 for the baseline and prototypical
networks. For foMAML we set the outer learning
rate to 0.0029 and finetune for d = 8 steps with an
inner learning rate of 0.01. We pre-train the FINE-
TUNE baseline with a batch size of 512. At test
time, we fine-tune the baseline for 10 steps on the
support set. We train the models without contextual
embeddings (GloVe alone) for 50 epochs and those
with contextual ELMo or BERT embeddings for
30 epochs because they exhibit faster convergence.

6.7 Evaluation Metrics

To assess the performance of our models, we re-
port the average IC accuracy and slot F1 score over
100 episodes sampled from the test split of an in-
dividual dataset. We use the AllenNLP (Gardner
et al., 2017) CategoricalAccuracy implementation
to compute IC Accuracy. And to compute slot F1
score, we use the seqeval library’s span based F1
score implementation.2 The span based F1 score
is a relatively harsh metric in the sense that a slot
label prediction is only considered correct if the
slot label and span exactly match the ground truth
annotation.

7 Results

7.1 Few-shot Learning Algorithms

Prototypical networks Considering both IC and
SF tasks, prototypical networks is the best perform-
ing algorithm. The most successful variant of proto-
typical networks, Proto ELMO + joint training, ob-
tains absolute improvements over the FINE-TUNE

2https://github.com/chakki-works/seqeval

102

Embed. Algorithm IC Accuracy
SNIPS SNIPS (joint) ATIS ATIS (joint) TOP TOP (joint)

GloVe Fine-tune 69.52 ± 2.88 70.25 ± 1.85 49.50 ± 0.65 58.26 ± 1.12 37.58 ± 0.54 40.93 ± 2.77
GloVe foMAML 61.08 ± 1.50 59.67 ± 2.12 54.66 ± 1.82 45.20 ± 1.47 33.75 ± 1.30 31.48 ± 0.50
GloVe Proto 68.19 ± 1.76 68.77 ± 1.60 65.46 ± 0.81 63.91 ± 1.27 43.20 ± 0.85 38.65 ± 1.35
ELMo Fine-tune 85.53 ± 0.35 87.64 ± 0.73 49.25 ± 0.74 58.69 ± 1.56 45.49 ± 0.61 47.63 ± 2.75
ELMo foMAML 78.90 ± 0.77 78.86 ± 1.31 53.90 ± 0.96 52.47 ± 2.86 38.67 ± 1.02 36.49 ± 0.99
ELMo Proto 83.54 ± 0.40 85.75 ± 1.57 65.95 ± 2.29 65.19 ± 1.29 50.57 ± 2.81 50.64 ± 2.72
BERT Fine-tune 76.04 ± 8.84 77.53 ± 5.69 43.76 ± 4.61 50.73 ± 3.86 39.21 ± 3.09 40.86 ± 3.75
BERT foMAML 67.36 ± 1.03 68.37 ± 0.48 50.27 ± 0.69 48.80 ± 2.82 38.50 ± 0.43 36.20 ± 1.21
BERT Proto 81.39 ± 1.85 81.44 ± 2.91 58.84 ± 1.33 58.82 ± 1.55 52.76 ± 2.26 52.64 ± 2.58

Table 2: Kmax = 20 average IC accuracy on 100 test episodes from the ATIS, SNIPS, or TOP datasets in the form
mean ± standard deviation, computed over 3 random seeds, comparing GloVe, ELMo, and BERT model variants
for both individual and joint training, where we train on all training sets and test on a specific test set.

Embed. Algorithm IC Accuracy
SNIPS SNIPS (joint) ATIS ATIS (joint) TOP TOP (joint)

GloVe Fine-tune 72.24 ± 2.58 73.00 ± 1.84 49.91 ± 1.90 56.07 ± 2.94 39.66 ± 1.34 41.10 ± 0.65
GloVe foMAML 66.75 ± 1.28 67.34 ± 2.62 54.92 ± 0.87 58.46 ± 1.91 33.62 ± 1.53 35.68 ± 0.62
GloVe Proto 70.45 ± 0.49 72.66 ± 1.96 70.25 ± 0.39 69.58 ± 0.41 48.84 ± 1.59 46.85 ± 0.86
ELMo Fine-tune 87.69 ± 1.05 88.90 ± 0.18 49.42 ± 0.79 56.99 ± 2.12 47.44 ± 1.61 48.87 ± 0.54
ELMo foMAML 80.80 ± 0.47 81.62 ± 1.07 59.10 ± 2.52 56.16 ± 1.34 41.80 ± 1.49 36.24 ± 0.79
ELMo Proto 86.76 ± 1.62 87.74 ± 1.08 70.10 ± 1.26 71.89 ± 1.45 58.60 ± 1.91 56.87 ± 0.39
BERT Fine-tune 76.66 ± 8.68 79.53 ± 4.25 44.08 ± 6.05 49.71 ± 3.84 40.05 ± 2.35 40.46 ± 1.74
BERT foMAML 70.43 ± 1.56 72.79 ± 1.11 51.36 ± 3.74 50.25 ± 0.88 36.15 ± 2.17 35.24 ± 0.35
BERT Proto 83.51 ± 0.88 86.29 ± 1.09 66.89 ± 2.31 65.70 ± 2.31 61.30 ± 0.32 62.51 ± 1.79

Table 3: Kmax = 100 average IC accuracy on 100 test episodes from the ATIS, SNIPS, or TOP datasets in the
form mean ± standard deviation, computed over 3 random seeds, comparing GloVe, ELMo, and BERT model
variants for both individual and joint training, where we train on all training sets and test on a specific test set.

Embed. Algorithm Slot F1 Measure
SNIPS SNIPS (joint) ATIS ATIS (joint) TOP TOP (joint)

GloVe Fine-tune 6.72 ± 1.24 6.68 ± 0.40 2.57 ± 1.21 13.22 ± 1.07 0.90 ± 0.51 0.76 ± 0.21
GloVe foMAML 14.07 ± 1.01 12.91 ± 0.43 18.44 ± 0.91 16.91 ± 0.32 5.34 ± 0.43 9.22 ± 1.03
GloVe Proto 29.63 ± 0.75 27.75 ± 2.52 31.19 ± 1.15 38.45 ± 0.97 10.65 ± 0.83 18.55 ± 0.35
ELMo Fine-tune 22.02 ± 1.13 16.00 ± 2.07 7.47 ± 2.60 7.19 ± 1.71 1.26 ± 0.46 1.17 ± 0.32
ELMo foMAML 33.81 ± 0.33 32.82 ± 0.84 27.58 ± 1.25 24.45 ± 1.20 22.35 ± 1.23 15.53 ± 0.64
ELMo Proto 59.88 ± 0.53 59.73 ± 1.72 33.97 ± 0.38 40.90 ± 2.21 20.12 ± 0.25 28.97 ± 0.82
BERT Fine-tune 12.47 ± 0.31 8.75 ± 0.28 9.24 ± 1.67 15.93 ± 3.10 3.15 ± 0.28 1.08 ± 0.30
BERT foMAML 12.72 ± 0.12 13.28 ± 0.53 18.91 ± 1.01 16.05 ± 0.32 5.93 ± 0.43 8.23 ± 0.81
BERT Proto 42.09 ± 1.11 43.77 ± 0.54 37.61 ± 0.82 39.27 ± 1.84 20.81 ± 0.40 28.24 ± 0.53

Table 4: Kmax = 20 average Slot F1 score on 100 test episodes from the ATIS, SNIPS, or TOP datasets in the
form mean ± standard deviation, computed over 3 random seeds, comparing GloVe, ELMo, and BERT model
variants for both individual and joint training, where we train on all training sets and test on a specific test set.

Embed. Algorithm Slot F1 Measure
SNIPS SNIPS (joint) ATIS ATIS (joint) TOP TOP (joint)

GloVe Fine-tune 7.06 ± 1.87 7.76 ± 0.91 2.72 ± 1.65 17.20 ± 3.03 1.26 ± 0.44 0.67 ± 0.33
GloVe foMAML 16.77 ± 0.67 16.53 ± 0.32 17.80 ± 0.42 23.33 ± 2.89 4.11 ± 0.81 9.89 ± 1.13
GloVe Proto 31.57 ± 1.28 31.17 ± 1.31 31.32 ± 2.79 41.07 ± 1.14 9.99 ± 1.08 18.93 ± 0.77
ELMo Fine-tune 22.37 ± 0.91 17.09 ± 2.57 8.93 ± 2.86 11.09 ± 2.00 2.04 ± 0.41 1.03 ± 0.24
ELMo foMAML 36.10 ± 1.49 37.33 ± 0.24 26.91 ± 2.64 26.37 ± 0.15 18.32 ± 0.52 16.55 ± 0.79
ELMo Proto 62.71 ± 0.40 62.14 ± 0.75 35.20 ± 2.46 41.28 ± 2.73 18.44 ± 2.41 28.33 ± 1.33
BERT Fine-tune 14.71 ± 0.43 10.50 ± 0.90 11.53 ± 1.46 20.41 ± 1.85 4.98 ± 0.66 1.48 ± 0.85
BERT foMAML 14.99 ± 1.29 15.83 ± 0.94 17.68 ± 2.42 17.11 ± 1.31 3.37 ± 0.36 10.58 ± 0.45
BERT Proto 46.50 ± 0.75 48.77 ± 0.71 40.63 ± 3.37 43.10 ± 1.76 20.58 ± 2.27 28.92 ± 1.09

Table 5: Kmax = 100 average Slot F1 score on 100 test episodes from the ATIS, SNIPS, or TOP datasets in the
form mean ± standard deviation, computed over 3 random seeds, comparing GloVe, ELMo, and BERT model
variants for both individual and joint training, where we train on all training sets and test on a specific test set.

103

ELMO + joint training baseline of up to 6% IC
accuracy and 43 slot F1 points for Kmax = 20,
and 14% IC accuracy and 45 slot F1 points for
Kmax = 100. The one case in which Proto ELMO

+ joint training does worse than the baseline is on
SNIPS IC, but these losses are all under 2%. Over
the 36 possible combinations of dataset, embedding
type, and setting of Kmax, Prototypical networks
performs best in 27/36 instances for IC and 35/36
instances for SL. In comparison, FINE-TUNE per-
forms best in 9/36 instances for IC and is never
the best algorithm for SL. Conversely, foMAML
is never the best algorithm for IC and is the best
algorithm in 1/36 cases for SL.

foMAML The results for foMAML are more
mixed in terms of IC and SF performance rel-
ative to the baseline. The best foMAML vari-
ant, foMAML ELMO, underperforms FINE-TUNE

ELMO on SNIPS and TOP IC by up to 6%.
Yet foMAML improves IC accuracy by 4%
(Kmax = 20) to 9% (Kmax = 100) on ATIS.
foMAML ELMO consistently outperforms FINE-
TUNE ELMO on SF for all datasets, generating
gains of 11∼21 F1 points for Kmax = 20 and
13∼17 F1 points for Kmax = 100. Notably,
BERT and foMAML do not work well in combina-
tion. Specifically, the SF performance of foMAML
BERT is comparable to, or worse than, foMAML
GLOVE on all datasets for both Kmax = 20 and
Kmax = 100.

7.2 Model Variants
Non-contextual Pretrained Embeddings The
GLOVE model architecture does not perform as
well as ELMO or BERT. On average over exper-
imental settings, the GLOVE variant of the win-
ning algorithm has 10% lower IC Accuracy and
16 point lower slot F1 score than the winning al-
gorithm paired with the best model. Note that an
experimental setting here refers to a combination
of dataset, value of Kmax, and use of individual
or joint training. Somewhat surprisingly, GLOVE

performs nearly as well as ELMO and even better
than BERT on ATIS IC. We speculate that ATIS
IC does not benefit as much from the use of ELMO

or BERT because ATIS carrier phrases are less
diverse, as evidenced by the smaller number of
unique carrier phrases in the ATIS test set (527)
compared to SNIPS (3,718) and TOP (4,153).

Contextual Pretrained Embeddings A priori,
it is reasonable to suspect that the performance

gain obtained by our few-shot learning algorithms
could be dwarfed by the benefit of using a large,
pre-trained model like ELMO or BERT. However,
our experimental results suggest that the use of
pre-trained language models is complementary to
our approach, in most cases. For example, ELMO

increases the slot F1 score of foMAML from 14.07
to 33.81 and boosts the slot F1 of prototypical net-
works from 31.57 to 62.71 on the SNIPS dataset
for Kmax = 100. Similarly, when Kmax = 20,
BERT improves foMAML and prototypical net-
works TOP IC accuracy from 33.75% to 38.50%
and from 43.20% to 52.76%, respectively. In ag-
gregate, we find ELMO outperforms BERT. We
quantify this via the average absolute improvement
ELMO obtains over BERT when both models use
the winning algorithm for a given dataset and train-
ing setting. On average, ELMO improves IC ac-
curacy over BERT by 2% for Kmax = 20 and 1%
for Kmax = 100. With respect to slot F1 score,
ELMO produces an average gain over BERT of
5 F1 points for Kmax = 20 and 3 F1 points for
Kmax = 100. This is consistent with previous
findings in (Peters et al., 2019) that ELMO can out-
perform BERT on certain tasks when the models
are kept frozen and not fine-tuned.

7.3 Joint Training

Few-shot learning algorithms are in essence learn-
ing to learn new classes. Therefore, these algo-
rithms should be adept at leveraging a diverse train-
ing dataset to improve generalization. We test this
hypothesis by jointly training each approach on all
three datasets. Our results demonstrate that joint
training has little effect on IC Accuracy; however,
it improves the SF performance of prototypical
networks, particularly on ATIS and TOP. Joint
training increases Prototypical networks average
slot F1 score, computed over datasets and model
variants, by 4.41 points from 31.77 to 36.18 for
Kmax = 20 and by 5.20 points from 32.99 to 38.19
when Kmax = 100. In comparison, Fine-tune ob-
tains much smaller average absolute improvements,
0.55 F1 points and 1.29 F1 points for Kmax = 20
and Kmax = 100, respectively.

8 Conclusion

We show that few-shot learning techniques can sub-
stantially improve IC/SF performance in ultra low
resource scenarios. Specifically, our extension of
prototypical networks for joint IC and SF consis-

104

tently outperforms a fine-tuning baseline with re-
spect to both IC Accuracy and slot F1 score. More-
over, we establish a benchmark for few-shot IC/SF
to support future work on this important topic. Our
contribution is a step toward the creation of more
sample efficient IC/SF models. Yet there is still
considerable work to be done in pursuit of this goal.
In particular, we encourage the creation of larger
few-shot IC/SF benchmarks to test how few-shot
learning algorithms scale with larger episode sizes.

References
Alice Coucke, Alaa Saade, Adrien Ball, Théodore

Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calt-
agirone, Thibaut Lavril, Maël Primet, and Joseph
Dureau. 2018. Snips voice platform: an embedded
spoken language understanding system for private-
by-design voice interfaces. CoRR, abs/1805.10190.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Zi-Yi Dou, Keyi Yu, and Antonios Anastasopoulos.
2019. Investigating meta-learning algorithms for
low-resource natural language understanding tasks.
arXiv preprint arXiv:1908.10423.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70,
pages 1126–1135. JMLR. org.

Alexander Fritzler, Varvara Logacheva, and Maksim
Kretov. 2019. Few-shot classification in named en-
tity recognition task. In Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing,
pages 993–1000. ACM.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew
Peters, Michael Schmitz, and Luke S. Zettlemoyer.
2017. Allennlp: A deep semantic natural language
processing platform.

Ruiying Geng, Binhua Li, Yongbin Li, Yuxiao Ye,
Ping Jian, and Jian Sun. 2019. Few-shot text clas-
sification with induction network. arXiv preprint
arXiv:1902.10482.

Chih-Wen Goo, Guang Gao, Yun-Kai Hsu, Chih-Li
Huo, Tsung-Chieh Chen, Keng-Wei Hsu, and Yun-
Nung Chen. 2018. Slot-gated modeling for joint
slot filling and intent prediction. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Pa-
pers), pages 753–757.

Anuj Goyal, Angeliki Metallinou, and Spyros Mat-
soukas. 2018. Fast and scalable expansion of natural
language understanding functionality for intelligent
agents. arXiv preprint arXiv:1805.01542.

Alex Graves, Greg Wayne, and Ivo Danihelka.
2014. Neural turing machines. arXiv preprint
arXiv:1410.5401.

Arshit Gupta, John Hewitt, and Katrin Kirchhoff. 2019.
Simple, fast, accurate intent classification and slot
labeling. arXiv preprint arXiv:1903.08268.

Sonal Gupta, Rushin Shah, Mrinal Mohit, Anuj Ku-
mar, and Mike Lewis. 2018. Semantic parsing for
task oriented dialog using hierarchical representa-
tions. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2787–2792, Brussels, Belgium. Association
for Computational Linguistics.

Dilek Hakkani-Tür, Gökhan Tür, Asli Celikyilmaz,
Yun-Nung Chen, Jianfeng Gao, Li Deng, and Ye-
Yi Wang. 2016. Multi-domain joint semantic frame
parsing using bi-directional rnn-lstm. In Inter-
speech, pages 715–719.

Xu Han, Hao Zhu, Pengfei Yu, Ziyun Wang, Yuan
Yao, Zhiyuan Liu, and Maosong Sun. 2018. Fewrel:
A large-scale supervised few-shot relation classifica-
tion dataset with state-of-the-art evaluation. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 4803–
4809.

Charles T Hemphill, John J Godfrey, and George R
Doddington. 1990. The atis spoken language sys-
tems pilot corpus. In Speech and Natural Language:
Proceedings of a Workshop Held at Hidden Valley,
Pennsylvania, June 24-27, 1990.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Yutai Hou, Zhihan Zhou, Yijia Liu, Ning Wang, Wanx-
iang Che, Han Liu, and Ting Liu. 2019. Few-shot
sequence labeling with label dependency transfer.
arXiv preprint arXiv:1906.08711.

Xiang Jiang, Mohammad Havaei, Gabriel Chartrand,
Hassan Chouaib, Thomas Vincent, Andrew Jesson,
Nicolas Chapados, and Stan Matwin. 2018. Atten-
tive task-agnostic meta-learning for few-shot text
classification.

Łukasz Kaiser, Ofir Nachum, Aurko Roy, and Samy
Bengio. 2017. Learning to remember rare events.
arXiv preprint arXiv:1703.03129.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Gregory Koch. 2015. Siamese neural networks for one-
shot image recognition.

http://arxiv.org/abs/1805.10190
http://arxiv.org/abs/1805.10190
http://arxiv.org/abs/1805.10190
http://arxiv.org/abs/arXiv:1803.07640
http://arxiv.org/abs/arXiv:1803.07640
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/D18-1300
https://doi.org/10.18653/v1/D18-1300

105

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and
Pieter Abbeel. 2017. A simple neural attentive meta-
learner. arXiv preprint arXiv:1707.03141.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proc. of NAACL.

Matthew E. Peters, Sebastian Ruder, and Noah A.
Smith. 2019. To tune or not to tune? adapting pre-
trained representations to diverse tasks. In Proceed-
ings of the 4th Workshop on Representation Learn-
ing for NLP (RepL4NLP-2019), pages 7–14, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Sachin Ravi and Hugo Larochelle. 2016. Optimization
as a model for few-shot learning.

Adam Santoro, Sergey Bartunov, Matthew Botvinick,
Daan Wierstra, and Timothy Lillicrap. 2016. Meta-
learning with memory-augmented neural networks.
In International conference on machine learning,
pages 1842–1850.

Sebastian Schuster, Sonal Gupta, Rushin Shah, and
Mike Lewis. 2018. Cross-lingual transfer learning
for multilingual task oriented dialog. arXiv preprint
arXiv:1810.13327.

Jake Snell, Kevin Swersky, and Richard Zemel. 2017.
Prototypical networks for few-shot learning. In Ad-
vances in Neural Information Processing Systems,
pages 4077–4087.

Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pas-
cal Lamblin, Kelvin Xu, Ross Goroshin, Carles
Gelada, Kevin Swersky, Pierre-Antoine Manzagol,
and Hugo Larochelle. 2019. Meta-dataset: A dataset
of datasets for learning to learn from few examples.
arXiv preprint arXiv:1903.03096.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap,
Daan Wierstra, et al. 2016. Matching networks for
one shot learning. In Advances in neural informa-
tion processing systems, pages 3630–3638.

Mo Yu, Xiaoxiao Guo, Jinfeng Yi, Shiyu Chang, Saloni
Potdar, Yu Cheng, Gerald Tesauro, Haoyu Wang,
and Bowen Zhou. 2018. Diverse few-shot text clas-
sification with multiple metrics. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 1206–1215.

A Appendices

A.1 Few-shot IC/SF Splits
We list the few-shot splits that we establish for the
ATIS, SNIPS, and TOP datasets in tables 6, 7, 8,
respectively. In addition to the assignment of intent
classes to train, development (dev) and test splits,
we also report the number of utterances and slot
labels associated with each intent class.

https://doi.org/10.18653/v1/W19-4302
https://doi.org/10.18653/v1/W19-4302

106

Split IC Name # Utt # SL SL Names (without IC prefix)
Train atis flight 4298 71 or, mod, meal, flight, economy, connect, day name, city name, round trip,

class type, flight mod, compartment, flight stop, flight days, flight time,
fare amount, airline name, airline code, airport name, airport code, cost relative,
aircraft code, flight number, period of day, toloc.city name, arrive time.time,
meal description, toloc.state name, depart time.time, toloc.state code, de-
part date.year, fare basis code, fromloc.city name, stoploc.city name, from-
loc.state name, toloc.airport name, fromloc.state code, toloc.country name,
toloc.airport code, stoploc.state code, fromloc.airport name, fromloc.airport code,
stoploc.airport name, stoploc.airport code, depart date.day name, ar-
rive date.day name, depart time.end time, arrive time.end time, re-
turn date.day name, arrive date.month name, arrive date.day number, de-
part date.month name, depart date.day number, depart time.start time, ar-
rive time.start time, depart time.period mod, arrive time.period mod, re-
turn time.period mod, return date.month name, return date.day number, ar-
rive time.time relative, depart time.time relative, depart date.date relative,
return date.date relative, arrive date.date relative, depart time.period of day,
depart date.today relative, arrive date.today relative, arrive time.period of day,
return time.period of day, return date.today relative

Train atis capacity 37 5 mod, airline name, aircraft code, toloc.city name, fromloc.city name
Train atis flight no 20 22 or, flight mod, class type, flight time, airline name, cost relative, flight number,

toloc.city name, arrive time.time, toloc.state name, depart time.time,
toloc.state code, fromloc.city name, stoploc.city name, fromloc.state name,
depart date.day name, depart date.month name, depart date.day number, ar-
rive time.time relative, depart time.time relative, depart time.period of day,
depart date.today relative

Train atis meal 12 12 meal, airline name, airline code, flight number, toloc.city name, arrive time.time,
toloc.state code, meal description, fromloc.city name, toloc.airport code, de-
part date.day name, depart time.period of day

Train atis restriction 6 6 round trip, fare amount, cost relative, toloc.city name, restriction code, from-
loc.city name

Dev atis airfare 471 45 or, meal, economy, connect, round trip, class type, flight mod, fare amount,
flight stop, flight time, flight days, airline name, airline code, cost relative,
flight number, aircraft code, toloc.city name, depart time.time, toloc.state code,
toloc.state name, depart date.year, arrive time.time, fromloc.city name, sto-
ploc.city name, toloc.airport name, fromloc.state name, toloc.airport code, from-
loc.state code, fromloc.airport code, fromloc.airport name, depart date.day name,
arrive date.day name, arrive date.month name, arrive date.day number, de-
part date.month name, depart date.day number, return date.month name,
return date.day number, depart time.period mod, depart time.time relative,
depart date.date relative, arrive time.time relative, arrive date.date relative,
depart time.period of day, depart date.today relative

Dev atis flight time 55 20 flight mod, class type, flight time, airline name, airline code, air-
port name, flight number, aircraft code, toloc.city name, depart time.time,
meal description, fromloc.city name, toloc.airport code, fromloc.airport name,
depart date.day name, depart date.month name, depart date.day number, de-
part date.date relative, depart time.time relative, depart time.period of day

Dev atis quantity 54 25 economy, city name, class type, round trip, flight stop, flight days, airline code,
airline name, flight number, aircraft code, toloc.city name, arrive time.time,
fare basis code, depart time.time, fromloc.city name, stoploc.city name,
toloc.airport name, arrive date.month name, arrive date.day number, de-
part date.month name, depart date.day number, arrive time.time relative, de-
part time.time relative, depart date.today relative, depart time.period of day

Dev atis distance 30 8 city name, airport name, toloc.city name, depart time.time, fromloc.city name,
fromloc.airport name, depart date.month name, depart date.day number

Dev atis city 25 11 city name, class type, airline name, airport code, airport name,
toloc.city name, depart time.time, fromloc.city name, fromloc.airport code,
depart time.time relative, depart time.period of day

Dev atis ground fare 25 6 city name, airport name, transport type, toloc.city name, fromloc.city name, from-
loc.airport name

Dev atis airline;atis flight no 2 7 toloc.city name, arrive time.time, fromloc.city name, depart date.month name, de-
part date.day number, depart date.date relative, arrive time.time relative

Test atis ground service 291 23 or, time, day name, city name, state code, state name, month name, day number,
flight time, airport name, airport code, time relative, transport type, today relative,
period of day, toloc.city name, fromloc.city name, toloc.airport name,
fromloc.airport name, depart date.day name, depart date.month name, de-
part date.day number, depart date.date relative

Test atis airline 195 36 mod, connect, city name, class type, round trip, flight stop, flight days,
airline code, airport name, airline name, aircraft code, flight number,
cost relative, toloc.city name, toloc.state code, depart time.time, arrive time.time,
toloc.state name, fromloc.city name, stoploc.city name, toloc.airport name, from-
loc.state code, fromloc.airport code, fromloc.airport name, depart date.day name,
depart time.end time, arrive date.month name, arrive date.day number, de-
part date.month name, depart date.day number, depart time.start time, de-
part time.time relative, depart date.date relative, depart date.today relative,
depart time.period of day, arrive time.period of day

Test atis abbreviation 180 14 mod, meal, meal code, days code, class type, airport code, airline code, air-
line name, aircraft code, booking class, toloc.city name, fare basis code, restric-
tion code, fromloc.city name

Test atis aircraft 90 23 mod, city name, class type, flight mod, airline name, airline code, flight number,
aircraft code, toloc.city name, depart time.time, toloc.state code, ar-
rive time.time, fromloc.city name, stoploc.city name, depart date.day name,
arrive date.day name, depart date.month name, depart date.day number, ar-
rive date.month name, arrive date.day number, depart time.time relative, ar-
rive time.time relative, depart time.period of day

Test atis airport 38 9 mod, city name, state code, state name, flight stop, airport name, airline name,
toloc.city name, fromloc.city name

Test atis flight;atis airfare 33 21 flight mod, round trip, fare amount, flight stop, airline name, flight number,
cost relative, toloc.city name, depart time.time, arrive time.time, toloc.state code,
fromloc.city name, depart date.day name, return date.day name, de-
part date.month name, depart date.day number, depart time.time relative,
depart date.date relative, arrive time.time relative, return date.date relative,
depart time.period of day

Test atis day name 2 2 toloc.city name, fromloc.city name

Table 6: Few-shot splits for the ATIS dataset, listing the split assignment, number of utterances (# Utt), number of
slot labels (# SL), and names of slot labels associated with each intent class (IC). For brevity, we exclude the intent
class prefix that we add to the slot label names during prepossessing (in the form intent-name/slot-name).

107

Split IC Name # Utt # SL SL Names (without IC prefix)
Train BookRestaurant 2073 14 poi, sort, city, state, country, cuisine,

facility, timeRange, served dish, restau-
rant type, restaurant name, spatial relation,
party size number, party size description

Train SearchScreeningEvent 2059 7 timeRange, movie name, movie type, ob-
ject type, location name, spatial relation, ob-
ject location type

Train RateBook 2056 7 best rating, rating unit, object name, ob-
ject type, rating value, object select, ob-
ject part of series type

Train AddToPlaylist 2042 5 artist, playlist, music item, entity name,
playlist owner

Test PlayMusic 2100 9 sort, year, album, genre, track, artist, service,
playlist, music item

Test GetWeather 2100 9 city, state, country, timeRange, geo-
graphic poi, spatial relation, current location,
condition temperature, condition description

Test SearchCreativeWork 2054 2 object name, object type

Table 7: Few-shot splits for the SNIPS dataset, listing the split assignment, number of utterances (# Utt), number
of slot labels (# SL), and names of slot labels associated with each intent class (IC). For brevity, we exclude the
intent class prefix that we add to the slot label names during prepossessing (in the form intent-name/slot-name).

108

Split IC Name # Utt # SL SL Names (without IC prefix)
Train IN:GET EVENT 10063 9 SL:AMOUNT, SL:ORDINAL, SL:LOCATION,

SL:DATE TIME, SL:NAME EVENT,
SL:CATEGORY EVENT, SL:ATTENDEE EVENT,
SL:ATTRIBUTE EVENT, SL:ORGANIZER EVENT

Train IN:GET INFO TRAFFIC 8629 11 SL:PATH, SL:SOURCE, SL:LOCATION,
SL:WAYPOINT, SL:DATE TIME, SL:DESTINATION,
SL:PATH AVOID, SL:METHOD TRAVEL,
SL:ROAD CONDITION, SL:WAYPOINT AVOID,
SL:OBSTRUCTION AVOID

Train IN:UNSUPPORTED 1484 0
Train IN:GET ESTIMATED DEPARTURE 160 10 SL:PATH, SL:SOURCE, SL:WAYPOINT,

SL:LOCATION, SL:DESTINATION,
SL:METHOD TRAVEL, SL:ROAD CONDITION,
SL:OBSTRUCTION AVOID,
SL:DATE TIME ARRIVAL,
SL:DATE TIME DEPARTURE

Train IN:UNINTELLIGIBLE 4 0
Train IN:GET EVENT ATTENDEE AMOUNT 3 5 SL:ORDINAL, SL:LOCATION, SL:DATE TIME,

SL:NAME EVENT, SL:CATEGORY EVENT
Train IN:GET EVENT ORGANIZER 2 3 SL:LOCATION, SL:DATE TIME,

SL:CATEGORY EVENT
Dev IN:GET ESTIMATED DURATION 2309 12 SL:PATH, SL:SOURCE, SL:WAYPOINT,

SL:DATE TIME, SL:DESTINATION,
SL:PATH AVOID, SL:METHOD TRAVEL,
SL:WAYPOINT AVOID, SL:ROAD CONDITION,
SL:OBSTRUCTION AVOID,
SL:DATE TIME ARRIVAL,
SL:DATE TIME DEPARTURE

Dev IN:GET DISTANCE 1962 9 SL:PATH, SL:SOURCE, SL:AMOUNT,
SL:DESTINATION, SL:PATH AVOID,
SL:UNIT DISTANCE, SL:METHOD TRAVEL,
SL:OBSTRUCTION AVOID,
SL:DATE TIME DEPARTURE

Dev IN:GET LOCATION 47 5 SL:LOCATION, SL:POINT ON MAP,
SL:LOCATION USER, SL:LOCATION MODIFIER,
SL:CATEGORY LOCATION

Dev IN:GET INFO ROUTE 13 5 SL:PATH, SL:SOURCE, SL:WAYPOINT,
SL:DESTINATION, SL:DATE TIME DEPARTURE

Dev IN:GET EVENT ATTENDEE 2 2 SL:ATTENDEE EVENT, SL:CATEGORY EVENT
Test IN:UNSUPPORTED NAVIGATION 2175 0
Test IN:GET DIRECTIONS 752 12 SL:PATH, SL:SOURCE, SL:WAYPOINT,

SL:DESTINATION, SL:PATH AVOID,
SL:METHOD TRAVEL, SL:WAYPOINT AVOID,
SL:ROAD CONDITION, SL:OBSTRUCTION AVOID,
SL:DATE TIME ARRIVAL,
SL:DATE TIME DEPARTURE,
SL:ROAD CONDITION AVOID

Test IN:GET ESTIMATED ARRIVAL 538 11 SL:PATH, SL:SOURCE, SL:WAYPOINT,
SL:LOCATION, SL:DESTINATION,
SL:PATH AVOID, SL:METHOD TRAVEL,
SL:ROAD CONDITION, SL:OBSTRUCTION AVOID,
SL:DATE TIME ARRIVAL,
SL:DATE TIME DEPARTURE

Test IN:UNSUPPORTED EVENT 424 0
Test IN:GET INFO ROAD CONDITION 316 9 SL:PATH, SL:SOURCE, SL:LOCATION,

SL:DATE TIME, SL:DESTINATION,
SL:METHOD TRAVEL, SL:ROAD CONDITION,
SL:DATE TIME ARRIVAL,
SL:DATE TIME DEPARTURE

Test IN:UPDATE DIRECTIONS 221 7 SL:PATH, SL:SOURCE, SL:DESTINATION,
SL:PATH AVOID, SL:OBSTRUCTION AVOID,
SL:DATE TIME ARRIVAL,
SL:DATE TIME DEPARTURE

Table 8: Few-shot splits for the TOP dataset, listing the split assignment, number of utterances (# Utt), number of
slot labels (# SL), and names of slot labels associated with each intent class (IC). For brevity, we exclude the intent
class prefix that we add to the slot label names during prepossessing (in the form intent-name/slot-name).

