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Abstract
We describe an approach to generating expla-
nations about why robot actions fail, focus-
ing on the considerations of robots that are
run by cognitive robotic architectures. We de-
fine a set of Failure Types and Explanation
Templates, motivating them by the needs and
constraints of cognitive architectures that use
action scripts and interpretable belief states,
and describe content realization and surface
realization in this context. We then describe
an evaluation that can be extended to further
study the effects of varying the explanation
templates.

1 Introduction

Robots that can explain why their behavior devi-
ates from user expectations will likely benefit by
better retaining human trust (Correia et al., 2018;
Wang et al., 2016). Robots that are driven by a
cognitive architecture such as SOAR (Laird, 2012),
ACT-R (Ritter et al., 2019), or DIARC (Scheutz
et al., 2019) have additional requirements in terms
of connecting to the architecture’s representations
such as its belief structures and action scripts. If
properly designed, these robots can build on the
interpretability of such architectures to produce
explanations of action failures.

There are various types of cognitive architec-
tures, which may be defined as “abstract models
of cognition in natural and artificial agents and the
software instantiations of such models” (Lieto et al.,
2018) but in this effort we focus on the type that
uses action scripts, belief states, and natural lan-
guage to interact with humans as embodied robots
in a situated environment. In Section 2 we describe
an approach to explaining action failures, in which
a person gives a command to a robot but the robot
is unable to complete the action. This approach
was implemented in a physical robot with a cog-
nitive architecture, and tested with a preliminary

evaluation as described in Section 3. After com-
paring our effort to related work in Section 4, we
finish by discussing future work.

2 An Approach to Action Failure
Explanation

Our approach is made up of a set of Failure Types,
a set of Explanation Templates, algorithms for Con-
tent Realization, and algorithms for Surface Real-
ization.

2.1 Failure Types
We have defined an initial set of four different fail-
ure types, which are defined by features that are rel-
evant to cognitive robots in a situated environment.
One approach to designing such robots is to pro-
vide a database of action scripts that it knows how
to perform, or that it is being taught how to perform.
These scripts often have prerequisites that must be
met before the action can be performed; for ex-
ample, that required objects must be available and
ready for use. These action scripts also often have
defined error types that may occur while the action
is being executed, due to the unpredictability of the
real world. Finally, in open-world environments
robots usually have knowledge about whether a
given person is authorized to command a particular
action. Incorporating these feature checks into the
architecture of the robot allows for automatic error
type retrieval when any of the checks fail, essen-
tially providing a safety net of built-in error ex-
planation whenever something goes wrong. These
features are used to define the failure types as fol-
lows. When a robot is given a command, a series
of checks are performed.

First, for every action necessary to carry out that
command, the robot checks to see whether the ac-
tion exists as an action script in the robot’s database
of known actions. If it does not, then the action is
not performed due to an Action Ignorance failure
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type. This would occur in any situation where the
robot lacks knowledge of how to perform an action,
for example, if a robot is told to walk in a circle,
but has not been instructed what walking in a circle
means in terms of actions required.

Second, the robot checks whether it is obligated
to perform the action, given its beliefs about the au-
thorization level of the person giving the command.
If the robot is not obligated to perform the action,
the system aborts the action with an Obligation
Failure type. An example of this failure would be
if the person speaking to the robot does not have
security clearance to send the robot into certain
areas.

Third, the robot checks the conditions listed at
the start of the action script, which define the facts
of the environment which must be true before the
robot can proceed. The robot evaluates their truth
values, and if any are false, the system exits the ac-
tion with a Condition Failure type. For example,
a robot should check prior to walking forward that
there are no obstacles in its way before attempting
that action.

Otherwise, the robot proceeds with the rest of
the action script. However, if at any point the robot
suffers an internal error which prevents further
progress through the action script, the system exits
the action with a Execution Failure type. These
failures, in contrast, to the pre-action condition
failures, come during the execution of a primitive
action. For example, if a robot has determined that
it is safe to walk forward, but after engaging its
motors to do just that, either an internal fault with
the motors or some other unforseen environmental
hazard result in the motors not successfully engag-
ing. In either case, from the robot’s perspective,
the only information it has is that despite executing
a specific primitive (engaging the motors), it did
not successfully return the expected result (motors
being engaged).

2.2 Explanation Templates

Once the type of failure is identified, the explana-
tion assembly begins. The basic structure of the
explanation is guided by the nature of action scripts.
We consider an inherently interpretable action rep-
resentation that has an intended goal G and failure
reason R for action A, and use these to build four
different explanation templates of varying depth.

The GA template captures the simplest type of
explanation: “I cannot achieve G because I cannot

do A.” For example, “I cannot prepare the product
because I cannot weigh the product.”

The GR template captures a variant of the first
explanation making expicit reference to a reason:
“I cannot achieve G because of R.” For example,
“I cannot prepare the product because the scale is
occupied.”

The GGAR template combines the above two
schemes by explicitly linking G with A and R: “I
cannot achieve G because to achieve G I must do A,
but R is the case.” For example, “I cannot prepare
the product because to prepare something I must
weigh it, but the scale is occupied.”

Finally, the GGAAR template explicitly states
the goal-action and action-failure reason connec-
tions: “I cannot achieve G because for me to
achieve G I must do A, and I cannot do A because
of R.” For example, “I cannot prepare the product
because to prepare something I must weigh it, and
I cannot weigh the product because the scale is
occupied.”

2.3 Content Realization
Given the failure type that has occurred, and the
explanation template (which is either set as a pa-
rameter at launch-time or determined at run-time),
a data structure carrying relevant grammatical and
semantic information is constructed.

The code version of an explanation template con-
tains both bound and generic variables, which in
the GGAAR template looks like:

can(not(BOUND-G),
because(advrb(infinitive(GENERIC-G),
must(GENERIC-A)), can(not(BOUND-A),
because(REASON))))

BOUND-G and GENERIC-G are the bound and
unbound versions of the goal. For ex-
ample did(self,prepare(theProduct)) is the
bound version which specifies the product, and
did(self,prepare(X)) is the unbound version.

Similarly, GENERIC-A is the generic
form of the sub-action which failed, such
as did(self,weigh(X)), BOUND-A is the
lowest-level sub-action, such as did(self,

weigh(theProduct)), and REASON is the error
reason, such as is(theScale,occupied).

So the resulting form would look like:

can(not(prepare(self,theProduct)),
because(advrb(infinitive(
prepare(self,X)), must(
weigh(self,X))),
can(not(weigh(self,theProduct)),
because(is(theScale,occupied)))))
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Figure 1: Study Procedure.

and would then be submitted to the Surface Re-
alization process.

2.4 Surface Realization

Translating the semantic form of the explanation
into natural language is a matter of identifying
grammatical structures such as premodifiers, in-
finitives, conjunctions, and other parts of speech by
recursively iterating through the predicate in search
of grammar signifiers.

This process involves populating grammatical
data structures (i.e. clauses) with portions of the
semantic expression and their relevant grammatical
information. During each recursive call, the name
of the current term is checked to see if it matches a
grammatical signifier; if so, it is unwrapped further
and recurses over the inner arguments. Without
any more specific signifiers, the term name can be
assumed to be a verb, the first argument the subject,
and the second the object of the clause. The gram-
matical signifiers are used to assign grammatical
structure as needed, which are then conjugated and
fully realized using SimpleNLG (Gatt and Reiter,
2009) into natural language, such as: “I cannot
prepare the product because to prepare something
I must weigh it, and I cannot weigh the product
because the scale is occupied.”

3 Evaluation

To validate our system, we conducted a user study.
Besides testing the components all working to-
gether, we were also interested in understanding
the effect of the different types of explanation tem-
plates on human perceptions of the explanations
given. This study was conducted under the over-
sight of an Institutional Review Board.

3.1 Methods

100 participants were recruited via Amazon’s Me-
chanical Turk and completed this study online
through a web interface.

As shown in Figure 1, after a brief introduction,
participants were shown four different videos, one
at a time, in which a robot was instructed to “pre-
pare the product.” In each video the robot explained
that it could not complete the task due to one of
four failure types described in Section 2.1. For
example, in the first video the robot might explain
that it did not know how to perform the action, in
the second video the robot might explain that the
person was not authorized to make the action re-
quest, in the third video the robot might explain
that the scale was occupied, and in the fourth video
the robot might explain that their pathfinding algo-
rithm had failed. 25 participants were shown videos
in which the explanations used the GA template,
25 in which the videos used the GR template, 25
with the GGAR template, and 25 with the GGAAR
template.

After each video the participants were asked
three questions.

First, to assess their understanding of how the
robot failed its task, the participants were asked
“What would you do in order to allow the robot
to complete the task?” and were given 5 possible
solutions in a multiple-choice format, only one of
which was correct. For example, given the Condi-
tion Failure error explanation in the GGAAR for-
mat: “I cannot prepare the product because to pre-
pare the product I must weigh it, and I cannot weigh
the product because the scale is occupied” possi-
ble solutions are: (1) I would have the robot learn
how to weigh things, (2) I would have the robot’s
pathfinding component debugged, (3) I would clear
the scale, (4) I would move the scale closer to the
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Figure 2: Screen Capture from Example Video with
Generated Text. A robot, given an instruction, explains
an action failure.

robot, (5) I would have the robot’s vision sensors
repaired, where 3 is the correct solution.

Second, the participants were asked “How help-
ful was the robot’s explanation?” on a 5-point
Likert scale where 1 was “Not at all” and 5 was
“Extremely.”

Third, the participants were asked “How much
did you like the robot’s explanation?” on a 5-point
Likert scale where 1 was “Not at all” and 5 was
“Extremely.”

These questionnaire items were selected with a
focus on the social interaction between the robot
and the human rather than the fluency or semantic
meaning of the natural language generation itself.
Perceived helpfulness and likability are both met-
rics of trust in a human-robot interaction, and more
specifically, they are indications of the human be-
ing comfortable cooperating with the robot. Thus
we aimed to assess how well the robot’s explana-
tion communicated the problem to the human (with
the accuracy questions), in addition to how success-
ful the explanations were as a social interaction.

The failure explanations in the videos were gen-
erated using a Wizard-of-Oz approach. Our expla-
nation approach was implemented in a PR2 robot
using the DIARC cognitive architecture (Scheutz
et al., 2019). We filmed a PR2 robot performing
preparatory-type movement (looking down at a ta-
ble full of miscellaneous items, raising its hands,
looking back up at the camera) before halting and
delivering an audio failure explanation report (gen-
erated by our system as described in Section 2
and recorded separately, then edited into the video
along with subtitles.) A screen capture of an exam-
ple video is shown in Figure 2. An example video
of an explanation is located here:

https://youtu.be/2j7r1S6zT90

Figure 3: Evaluation Results. Proportion of accurate re-
sponses, and Likert-scale ratings of likability and help-
fulness, based on Explanation Template.

3.2 Results

To investigate how the different explanation
schemas the robot gave allowed the participants
to select the accurate solution for fixing the prob-
lem, we conducted a one-way ANOVA with the
solution accuracy (number of correct solutions se-
lected across 4 different error types) as our depen-
dent variable, and explanation template (GA, GR,
GGAR and GGAAR) as the independent variable.
We observed a significant effect of explanation
template on solution accuracy F (3, 97) = 8.61,
p < .001, η2p=.21. Further pairwise comparisons
with Tukey-Kramer corrections revealed that GA
explanations lead to significantly lower solution ac-
curacy than GGAAR (p = .004), GAR (p < .001)
and GR (p = .031) explanations. No other sig-
nificant differences between explanation templates
were observed. In other words, short explanations
lacking a reason for failure will result in decreased
understanding of how to best address the failure.

We then studied perceived explanation helpful-
ness. We conducted a one-way ANOVA with ex-
planation helpfulness as the dependent variable and
explanation template (GA, GR, GGAR, GGAAR)
as the independent variable. We found a significant
effect of explanation template, F (3, 97) = 7.34,
p < .001, η2p=.30. Pairwise comparisons revealed
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a similar pattern of results as for solution accuracy:
participants perceived the GA explanations to be
less helpful than GGAAR (p = .002) and GGAR
(p < .001), however, unlike the solution accuracy
no significant differences were found between GA-
type explanations and GR-type ones. No other
significant differences in helpfulness were found
between explanation.

Finally, we investigated explanation likability
by conducting a one-way ANOVA with explana-
tion likability as the dependent variable and ex-
planation template (GA, GR, GGAR, GGAAR)
as the independent variable. We found again
a significant main effect of explanation schema
F (3, 96) = 3.59, p = .016, η2p=.10. Pairwise
comparisons revealed that GA explanations were
liked less than GGAAR (p = 0.021) and GGAR
(p = 0.053) but not significantly different from
GR. We found no other significant differences in
perceived likability between explanation templates.

This study highlights the value of providing
a failure reason R in the explanation templates,
which is shown by the reduced measures of the GA
explanations.

4 Related Work

Human-Robot Interaction (HRI) research on ex-
plaining the actions of robots (Anjomshoae et al.,
2019) is related to research on explaining planning
decisions (Fox et al., 2017; Krarup et al., 2019),
on generating language that describes the pre- and
post-conditions of actions in planners (Kutlak and
van Deemter, 2015), and on generating natural lan-
guage explanations from various types of mean-
ing representations (Horacek, 2007; Pourdamghani
et al., 2016).

In HRI work that focuses on error reporting,
Briggs and Scheutz (2015) defined a set of felicity
conditions that must hold for a robot to accept a
command. They outlined an architecture that rea-
sons about whether each felicity condition holds,
and they provided example interactions, although
they did not evaluate an implementation of their ap-
proach. Similarly, Raman et al. (2013) used a logic-
based approach to identify whether a command can
be done, and provided example situations, but no
evaluation. Our approach is similar in that we de-
fine a set of failure types for action commands, but
we implement and evaluate our approach with a
user study. Other recent HRI work has included
communicating errors using non-verbal actions to

have a robot express its inability to perform an ac-
tion (Kwon et al., 2018; Romat et al., 2016), which
does not focus on more complex system problems
using natural language communications as we do.

There has also been recent work on user model-
ing and tailoring responses to users in robots (Tor-
rey et al., 2006; Kaptein et al., 2017; Sreedharan
et al., 2018). In one effort worth building upon,
Chiyah Garcia et al. (2018) used a human expert to
develop explanations for unmanned vehicle deci-
sions. These explanations followed Kulesza et al.
(2013) in being characterized in terms of sound-
ness, relating the depth of details, and complete-
ness, relating to the number of details. Chiyah Gar-
cia et al. found links between the “low soundness
and high completeness” condition and intelligibil-
ity and value of explanations.

5 Conclusions

We have described an approach to generating ac-
tion failure explanations in robots, focusing on the
needs and strengths of a subset of cognitive robotic
architectures. This approach takes advantage of
the interpretability of action scripts and belief rep-
resentations, and is guided by recent directions in
HRI research. Importantly, the explanation of this
approach is not a post-hoc interpretation of a black-
box system, but is an accurate representation of the
robot’s operation.

Various aspects of the approach are being con-
tinually refined. Currently, new Failure Types are
being investigated, and the content realization and
surface realization algorithms are being revised and
tested.

Finally, the evaluation in Section 2.2 describes
a preliminary approach to comparing the relative
impact of the various explanation templates. We
are pursuing additional studies focusing on varying
the explanations produced. Initial studies would be
video-based, after which follow-up studies would
be conducted in the context of a task being per-
formed either in person, or via a virtual interface
that we have constructed, and the goal would be
to examine the ways that context features such as
user model, physical setting, and task state affect
the type of explanation required.
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