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Abstract
We collected a corpus of dialogues in a Wizard of Oz (WOz) setting in the Internet of Things (IoT) domain. We asked users participating
in these dialogues to rate the system on a number of aspects, namely, intelligence, naturalness, personality, friendliness, their enjoyment,
overall quality, and whether they would recommend the system to others. Then we asked dialogue observers, i.e., Amazon Mechanical
Turkers (MTurkers), to rate these dialogues on the same aspects. We also generated simulated dialogues between dialogue policies and
simulated users and asked MTurkers to rate them again on the same aspects. Using linear regression, we developed dialogue evaluation
functions based on features from the simulated dialogues and the MTurkers’ ratings, the WOz dialogues and the MTurkers’ ratings,
and the WOz dialogues and the WOz participants’ ratings. We applied all these dialogue evaluation functions to a held-out portion of
our WOz dialogues, and we report results on the predictive power of these different types of dialogue evaluation functions. Our results
suggest that for three conversational aspects (intelligence, naturalness, overall quality) just training evaluation functions on simulated
data could be sufficient.
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1. Introduction
In order to build a dialogue system for a particular domain,
data in this domain are required. Ideally these data should
record interactions between real users and a dialogue sys-
tem, or, if a dialogue system is not available (which is very
common in the initial stages of development), interactions
between real users and a Wizard (a human playing the role
of the system), in a so called Wizard of Oz (WOz) set-
ting (Dahlbäck et al., 1993). However, this approach can
be quite expensive and time consuming. Building the ini-
tial dialogue system or the WOz environment can be costly.
Furthermore, training one or more Wizards and recruiting
human participants to interact with the Wizards can signifi-
cantly add to the overall cost, and the whole process can be
time consuming. An alternative cheaper approach is to gen-
erate artificial data, either by having dialogue policies inter-
act with simulated users and generate a very large number
of dialogues (El Asri et al., 2016), or by having linguists
write a variety of dialogues (Georgila et al., 2018).
Here we use human-system data collected in a WOz setting,
and simulated dialogues generated by having dialogue poli-
cies interact with simulated users. Simulated dialogues can
be very useful in bootstrapping the development of a dia-
logue system, but they do not fully represent how real users
would react in real time to system interventions in a specific
context. Real user behavior can be unpredictable and vary
widely from user to user. Thus it is difficult for simulated
dialogues to capture all aspects of real use, especially the
relative frequencies of different kinds of issues.
Our goal is to develop dialogue quality evaluation functions
to predict ratings of real users interacting with a dialogue
system. We hypothesize that dialogue quality evaluation
functions trained on real users’ dialogues and real users’
ratings (i.e., ratings of human users participating in the di-
alogue) would be more highly predictive of real users’ rat-
ings (on unseen data) than evaluation functions trained on

real users’ dialogues and human observers’ ratings (i.e., rat-
ings of Amazon Mechanical Turkers who read the real di-
alogues and rate them), or evaluation functions trained on
simulated dialogues and human observers’ ratings (i.e., rat-
ings of Amazon Mechanical Turkers who read the simu-
lated dialogues and rate them). The question that we want
to address is what kind of error in our predictions we should
expect when we use simulated data and ratings of Ama-
zon Mechanical Turkers (MTurkers), or real users’ data and
MTurkers’ ratings to train our evaluation functions, instead
of the gold-standard of having access to both real users’ di-
alogues and real users’ ratings. When deploying dialogue
systems typically we collect dialogues from real users but
not their ratings, as it would be very disruptive to the users
if we constantly asked them to evaluate their interaction
with the system. Thus having MTurkers rate real dialogues
is a realistic approach.
We collected a corpus of dialogues in a WOz setting in the
Internet of Things (IoT) domain. The IoT is the network of
physical devices (e.g., home appliances, health monitoring
devices, etc.) connected to the Internet. IoT devices can be
controlled each one separately by individual apps, or all to-
gether via an integrated app. Alternatively, IoT devices can
be controlled by a smart assistant via human-system dia-
logue interaction (Jeon et al., 2016), which is the approach
that we follow here. We asked the users participating in
these dialogues to rate the system on a number of aspects,
namely, intelligence, naturalness, personality, friendliness,
their enjoyment, overall quality, and whether they would
recommend the system to others. Then we asked MTurkers
to rate these dialogues on the same aspects. We also gen-
erated simulated dialogues between dialogue policies and
simulated users and again asked MTurkers to rate them on
the same aspects. Using linear regression, we developed di-
alogue evaluation functions based on features from the sim-
ulated dialogues and the MTurkers’ ratings, the WOz dia-
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logues and the MTurkers’ ratings, and the WOz dialogues
and the WOz participants’ (real users’) ratings. We applied
all these dialogue evaluation functions to a held-out portion
of our WOz dialogues, and we report results on the predic-
tive power of these different types of dialogue evaluation
functions.
To our knowledge no such study has been performed be-
fore, and certainly not in the IoT domain. Previous work on
dialogue evaluation in the IoT domain considered dialogue
quality evaluation functions trained on dialogues written by
linguists and MTurkers’ ratings (Georgila et al., 2018). Fur-
thermore, Gordon et al. (2018) established links between
objective measures and more nuanced subjective judge-
ments, namely, intelligence, personality, pleasantness, and
naturalness, also in the IoT domain.

2. Related Work
Hastie (2012) presents an overview of evaluation frame-
works and metrics that have been proposed in the literature
for measuring the quality of human-system dialogue inter-
action, mainly for task-oriented dialogue systems. Some
of these metrics are subjective (e.g., user satisfaction, per-
ceived task completion, etc.), while others are objective
(e.g., word error rate, dialogue length, etc.). Objective mea-
sures can be calculated from the interaction logs while sub-
jective assessments can be collected via surveys and ques-
tionnaires (Hone and Graham, 2000; Paksima et al., 2009).
PARADISE is perhaps the most well-known framework for
evaluating dialogue systems, and an attempt to automate the
evaluation process (Walker et al., 2000). PARADISE seeks
to optimize a desired quality such as user satisfaction by
formulating it as a linear combination of a variety of met-
rics, such as task success and dialogue cost (e.g., dialogue
length, speech recognition errors, etc.). The contribution
of each factor is determined by weights calculated via lin-
ear regression. The advantage of this method is that once
a desired quality has been formulated as a realistic evalua-
tion function, it can be optimized by controlling the factors
that affect it. In the example above, user satisfaction can
be optimized by increasing task success, and minimizing
dialogue length and speech recognition errors.
Reinforcement learning (RL) is a very popular approach
to learning dialogue policies from data or simulated users
(SUs) (Jurčı́ček et al., 2012). In RL, a typical reward func-
tion is for the system to earn a number of points for a fully
or partially successful dialogue, and subtract a penalty per
system turn to ensure that the learned dialogue policies will
not favor lengthy and tedious dialogues (Henderson et al.,
2008). Note however that longer dialogue lengths are not
necessarily indicative of poor dialogue quality but depend-
ing on the task they may actually indicate user engagement
and satisfaction (Foster et al., 2009).
Schatzmann et al. (2006) present an overview of metrics
that have been proposed in the literature for measuring
the quality of SUs used for training and evaluating dia-
logue policies. The action generated by the SU is com-
pared against the user action in a human-human or human-
system reference corpus (in the same dialogue context), and
measures such as precision, recall, accuracy, and perplexity
are used (Schatzmann et al., 2005; Georgila et al., 2005;

Georgila et al., 2006; Pietquin and Hastie, 2013). Also,
to take into account the fact that SU actions are generated
based on a probability distribution, expected precision, ex-
pected recall, and expected accuracy are used (Georgila et
al., 2006). However, these metrics can be problematic be-
cause if a SU action is not the same as the user action in the
reference corpus, this does not necessarily mean that it is a
poor action. Also, once a user or system response deviates
from the corresponding action in the reference corpus, the
remaining dialogue will unfold in an entirely different way
than the fixed dialogue in the reference corpus, which will
make further comparisons meaningless.
In non-task-oriented dialogue systems (e.g., chatbots) de-
veloping robust evaluation metrics can be even harder than
for task-oriented dialogue (Misu et al., 2012). Here it is not
clear what success means and task-specific objective met-
rics are not appropriate. Instead subjective evaluations for
appropriateness of responses can be much more meaning-
ful, which has led to the development of coding schemes
for response appropriateness in such cases (Traum et al.,
2004; Robinson et al., 2010).
Currently, word-overlap similarity metrics such as BLEU,
METEOR, and ROUGE (originally employed in machine
translation and summarization) are widely used for mea-
suring chatbot dialogue quality. However, BLEU, ME-
TEOR, and ROUGE suffer from the same problems as the
aforementioned SU evaluation metrics. In fact it has been
shown that BLEU, METEOR, and ROUGE do not correlate
well with human judgements of dialogue quality (Liu et al.,
2016). Discriminative BLEU, a variation of BLEU where
reference strings are scored for quality by human raters,
was found to correlate better with human judgements than
standard BLEU (Galley et al., 2015). To address the issues
with BLEU, METEOR, and ROUGE, next utterance classi-
fication was introduced as a method for evaluating chatbots
(Lowe et al., 2016), but the proposed metric recall@k is
very similar to the recall metric previously used for evalu-
ating SUs, and consequently has the same limitations. Also,
topic-based metrics for chatbot evaluation (topic breadth
and topic depth) were found to correlate well with human
judgements (Guo et al., 2017).

3. Wizard of Oz Data Collection
We built a GUI-based environment for our Wizard of Oz
(WOz) data collection (Gordon et al., 2019). A human
Wizard plays the role of the system by pressing buttons in
a GUI. Each button corresponds to a Wizard action which
is then transformed into a sentence (through template-based
natural language generation) and provided to the user. Thus
the human user receives system output and responds ac-
cordingly. Note that there are additional buttons on the
Wizard’s GUI that do not send messages to the user, but are
used for updating the status of the devices. Both the user
and the Wizard can see the dialogue as it unfolds. They can
also see the status of the devices and the changes occur-
ring during the interaction. This is particularly important
because how users perceive the status of the devices can af-
fect the flow of the interaction. For example, if the system
confirms a request to move the channel of the speaker up
one and the user then changes their mind to ask for moving
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Dialogue 1
no misunderstandings, direct, explicit
Task: AC wifi in kitchen, turn on.
(AC wifi in kitchen: status is off)
U: Turn on the wifi for the AC in the kitchen.
S: Ok. I connected the wifi for the AC in the kitchen.
(AC wifi in kitchen: status is on)
Dialogue 2
misunderstandings, conversational, implicit
Task: light in bedroom, turn on in 15 min.
(Light in bedroom: status is off)
U: In 15 min, turn on the light in the bedroom.
S: Sure thing! I’ll take care of that in 5 min.
(Light in bedroom: status scheduled to become on in
5 min)
U: Not 5 minutes. It should be on in 15 min.
S: Sorry! I took care of that for you.
(Light in bedroom: status scheduled to become on in
15 min)
Dialogue 3
misunderstandings, direct, implicit
Task: speaker in living room, turn off;
TV in living room, turn off;
speaker in bedroom, turn on.
(Speaker in living room: status is on)
(TV in living room: status is on)
(Speaker in bedroom: status is off)
U: Turn off the speaker and the TV in the living room.
S: Ok. I did that.
(Speaker in living room: status is off)
(TV in living room: status is off)
U: Turn on the speaker in the bedroom.
S: You would like the speaker on in the living room?
U: I would like the speaker on in the bedroom.
S: Ok. It has been done.
(Speaker in bedroom: status is on)

Figure 1: Example WOz dialogues.

the channel one down, correct system behavior will depend
on whether the system has already performed the action at
the time of correction (if so, then the speaker might need to
move down 2 channels, if not, only one). Another example
of the importance of showing the status of the devices is
that the user could ask the system to perform an action and
the system could respond “done”. Unless the user can see
the status of the devices, there is no way they can be sure
that the action was actually performed.
The devices that we consider in our IoT ontology are
washer, speaker, bulb, TV, and air-conditioner (AC). We
may also have multiple devices of the same type (e.g., there
can be a TV in the bedroom, a TV in the living room, and a
TV in the kitchen). We created 8 system profiles represent-
ing a mixture of 3 different system features:

• Conversational behavior (e.g., “thanks, it’s my plea-
sure to help”) vs. formal/direct behavior (e.g., “thank
you”).

• Implicit system responses (e.g., “your request has

been taken care of”) vs. explicit system responses
(e.g., “I’ve turned on the light in the kitchen”).

• Errors (misunderstandings) vs. no errors: Error condi-
tions represent all possible errors a Virtual Home As-
sistant might make, including carrying out a request
for the wrong device, for the device in the wrong loca-
tion, for the wrong time (e.g., in 5 minutes instead of
in 15 minutes), turning a device or device component
on instead of off, or vice versa, and changing settings
incorrectly (e.g., setting volume to 8 instead of 4, or
setting temperature to hot instead of cold).

The features of the profile serve as a guide for the Wiz-
ard. Thus the Wizard uses buttons that generate appropriate
language for conversational vs. formal/direct behavior and
explicit vs. implicit system responses. Also, if the profile
says that there should be misunderstandings, the Wizard
pretends not to understand the user’s request and deliber-
ately confirms the wrong command.
Figure 1 shows three WOz dialogues. There are no errors
in the first dialogue, whereas the second and third dialogues
contain misunderstandings. The first and third ones have a
direct style, while the second is conversational, and finally
the first one has explicit acknowledgement of what the sys-
tem will do, while the second and third just confirm receipt
and performance without specifying what was done.
We collected data from 18 real users in our WOz setting.
Each user interacted with 4 system profiles. We designed
36 tasks and each user was required to complete 12 tasks
(randomly selected from the 36 tasks), 3 tasks per sys-
tem profile. The tasks were representative of typical tasks
one might accomplish with the help of a Virtual Home As-
sistant, such as turning on the lights, turning off the TV,
etc. There was a set of 6 tasks specific to each of the 5
devices (TV, bulb, speaker, washer, AC) as well as a set
of 6 tasks that include multiple device types (TV/washer,
bulb/TV/speaker, etc.). Each task had an error condition
which was determined by which system profile was paired
with the task. If the profile included errors, the error con-
dition would be carried out, otherwise it would not. There
was a post-dialogue survey at the end of each completed
task where the WOz participants were asked to rate on a
7-point Likert scale (1:low, 7:high) the system in each one
of their interactions regarding the following aspects: intel-
ligence, naturalness, personality, friendliness, their enjoy-
ment, overall quality, and whether they would recommend
the system to others. Note that the users had no informa-
tion about the profiles and different possible behaviors of
the system (Wizard). They were just instructed to interact
with the system and rate their interaction based on their own
interpretation of the rated aspects.
The next step was to collect MTurkers’ ratings for the WOz
dialogues. We recruited 101 MTurkers. Each MTurker was
asked to rate 10 individual WOz dialogues (randomly se-
lected from our corpus of WOz dialogues), and in particular
the system in terms of intelligence, naturalness, personality,
friendliness, their enjoyment, overall quality, and whether
they would recommend the system to others. Basically the
MTurkers had to answer the same survey questions as the
real users in the WOz data collection, and similarly to the



729

Real Users’ Feature Pearson’s r
Rating
Intelligence Misund -0.65***
Naturalness Convers 0.28***
Naturalness Misund -0.31***
Overall quality Misund -0.58***
Recommend Misund -0.54***
Personality Convers 0.41***
Personality Misund -0.17*
Enjoyment Convers 0.18*
Enjoyment Misund -0.49***
Friendliness Convers 0.32***
Friendliness Misund -0.23**

Table 1: Pearson’s r correlations of real users’ ratings with
dialogue features, WOz dialogues (***: p < 0.001, **:
p < 0.01, *: p < 0.05, with Holm-Bonferroni correction).

real users they had no information about the profiles and the
different possible behaviors of the system (Wizard). They
were just instructed to rate the dialogues based on their own
interpretation of the rated aspects.
Due to software issues we ended up with 186 WOz dia-
logues where we had both WOz participants’ ratings and
MTurkers’ ratings. Because of how we had set up the sys-
tem profiles, for each one of these WOz dialogues we also
have the following 3 binary features: conversational, ex-
plicit, and misunderstandings. Thus, for the conversational
system profile, conversational=1. For the direct system pro-
file, conversational=0. For the explicit system responses
profile, explicit=1. For the implicit system responses pro-
file, explicit=0. When there are errors in a dialogue, misun-
derstandings=1, otherwise misunderstandings=0.
We calculated pairwise Pearson correlations between the
features in our WOz data and real users’ ratings. Note
that “***” means that the correlation is very significant
(p < 0.001), “**” means that the correlation is significant
(p < 0.01), and “*” means that the correlation is borderline
significant (p < 0.05); the p values are corrected for multi-
ple comparisons using the method of Holm-Bonferroni. We
found that overall quality and recommend system to oth-
ers have high correlations with intelligence (0.88*** and
0.85*** respectively). Also, recommend system to others
and enjoyment have high correlations with overall quality
(0.93*** and 0.87*** respectively). Enjoyment has a high
correlation with recommend system to others (0.90***).
Table 1 shows the correlations of the real users’ ratings
with the conversational and misunderstandings binary fea-
tures in the WOz dialogues. Correlations with the explicit
feature were not significant.
We also calculated pairwise Pearson correlations between
the features in our WOz data and MTurkers’ ratings. Sim-
ilarly to the real users’ ratings, overall quality and recom-
mend system to others have high correlations with intel-
ligence (0.81*** and 0.86*** respectively). Recommend
system to others has a high correlation with overall qual-
ity (0.85***). Personality has a high correlation with nat-
uralness (0.88***), and enjoyment has a high correlation
with recommend system to others (0.86***). Table 2 shows

MTurkers’ Feature Pearson’s r
Rating
Intelligence Misund -0.50***
Naturalness Convers 0.54***
Overall quality Convers 0.23**
Overall quality Misund -0.50***
Recommend Convers 0.21***
Recommend Misund -0.45***
Personality Convers 0.48***
Enjoyment Convers 0.34***
Enjoyment Misund -0.31***
Friendliness Convers 0.36***
Friendliness Misund -0.23**

Table 2: Pearson’s r correlations of MTurkers’ ratings with
dialogue features, WOz dialogues (***: p < 0.001, **:
p < 0.01, *: p < 0.05, with Holm-Bonferroni correction).

Real Users’ MTurkers’ Pearson’s r
Rating Rating
Intelligence Intelligence 0.39***
Naturalness Naturalness 0.20**
Overall quality Overall quality 0.43***
Recommend Recommend 0.40***
Personality Personality 0.27***
Enjoyment Enjoyment 0.25***
Friendliness Friendliness 0.27***

Table 3: Pearson’s r correlations of real users’ ratings with
MTurkers’ ratings, WOz dialogues (***: p < 0.001, **:
p < 0.01, *: p < 0.05, with Holm-Bonferroni correction).

the correlations of the MTurkers’ ratings with the conver-
sational and misunderstandings binary features in the WOz
dialogues. Correlations with the explicit feature were not
significant.
In both Table 1 and Table 2 we can see positive correlations
of ratings with conversational system behavior, and nega-
tive correlations of ratings with misunderstandings. It is
interesting that while the real users and the MTurkers were
rating the same dialogues the resulting correlations are dif-
ferent. This shows that how dialogue participants perceive
their interaction with the system is different from how di-
alogue observers perceive the interaction, which of course
is not surprising. Table 3 shows the correlations between
real users’ ratings and MTurkers’ ratings for the same as-
pect, e.g., correlation between naturalness and naturalness,
intelligence and intelligence, etc. The correlations are pos-
itive and significant but not that high, which again is not
surprising.

4. Simulated Data
We developed an agenda-based simulated user (SU)
(Schatzmann and Young, 2009) for the IoT domain. We
also developed a system policy that interacts with the SU.
The agenda can be thought of as a stack containing the SU’s
pending actions, also called speech acts, which are required
for accomplishing the SU’s goal. For example, the agenda
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could be initialized with requests for changing the status
of devices. Based on hand-crafted rules (informed by our
data), new speech acts are generated and pushed onto the
agenda as a response to the system’s actions. For exam-
ple, if the system says “please specify the location of the
device”, a speech act for providing the location of the de-
vice will be pushed onto the agenda. At the same time,
no longer relevant speech acts will be removed from the
agenda. When the SU is ready to respond, 1, 2, or more
speech acts will be popped off the agenda based on a ran-
dom probability distribution. The generated simulated di-
alogues also include the status of the devices and their up-
dates as the dialogue unfolds.
This is a very sophisticated SU that can handle multiple
devices, misunderstandings, and different user types (con-
versational vs. direct/formal; preferring explicit vs. implicit
system responses). The tasks, status of devices, and dif-
ferent user types are randomly initialized at the beginning
of each dialogue. Also, the system policy that we devel-
oped can exhibit different kinds of behavior similar to the
WOz setting (misunderstandings vs. no misunderstandings,
conversational vs. direct system behavior, implicit vs. ex-
plicit system behavior), and these types of behaviors are
randomly initialized at the beginning of each dialogue. The
natural language generation part of the system policy uses
different templates for misunderstandings vs. no misunder-
standings, conversational vs. direct system behavior, and
implicit vs. explicit system behavior.
There are 3 types of SUs: (1) Partial-input: the SU does not
always provide the full command, e.g., “turn on the light”
(here the location is missing). The decisions on what to
generate are made randomly during the interaction. This
SU can deal with misunderstandings, that is, it can un-
derstand that the system got confused and correct the sys-
tem or reprovide the request. (2) Full-input: the SU al-
ways provides the full command, e.g., “turn on the light in
the kitchen”. This SU can also deal with misunderstand-
ings. (3) Baseline: the SU is full-input and is not able to
deal with misunderstandings. This SU always provides the
full user request, regardless of how the conversation un-
folds and even if this request has been partially fulfilled,
and it repeats this request verbatim until all tasks have been
completed, or after a pre-determined number of turns is ex-
ceeded. Examples of the partial-input SU, the full-input
SU, and the baseline SU are shown in Figure 2. The natural
language generation part of the SU uses different templates
for simulating the above types of SU, and for making the
SU provide direct vs. conversational responses.
In order to make a decision, the SU only has access to the
information that a real user would have, i.e., status of de-
vices, previous user action and intention, and previous sys-
tem action. Likewise the system policy has only access to
the information that a real system would have, i.e., status
of devices, previous system action and intention, and previ-
ous user action. The system policy and the SU do not have
access to each other’s internal representations and can deal
with misunderstandings and missing information by using
techniques such as reference resolution. Thus both the sys-
tem policy and the SU are very realistic and can work with
other users and system policies respectively.

Partial-input SU
System configuration: no misunderstandings, conver-
sational, explicit
(Washer in bathroom: status is off)
(Washer in kitchen: status is off)
(TV in bedroom: status is on)
U: System, can you please turn on the washer in 20
min?
S: In which room?
U: Bathroom.
S: Sure thing. The washer in the bathroom will be
turned on in 20 min.
(Washer in bathroom: status scheduled to become on
in 20 min)
U: Okay. Turn off the TV in the bedroom.
S: Okey dokey. I’ve turned off the TV in the bedroom.
(TV in bedroom: status is off)
U: Thanks.
S: You’re very welcome.
Full-input SU
System configuration: misunderstandings, direct, im-
plicit
(Washer in bathroom: status is off)
U: Can you please turn on the washer in the bathroom
in 50 min?
S: Your request has been taken care of.
(Washer in bathroom: status scheduled to become on
in 15 min)
U: No. I said turn on the washer in the bathroom in 50
min.
S: Apologies. Done.
(Washer in bathroom: status scheduled to become on
in 50 minutes)
Baseline SU
System configuration: misunderstandings, conversa-
tional, implicit
(TV in bedroom: status is off)
(Speaker in bedroom: status is off)
U: Turn on the TV in the bedroom. Turn on the speaker
in the bedroom.
S: I’m on it. Done.
(TV in bedroom: status is off)
(Speaker in bedroom: status is on)
U: Turn on the TV in the bedroom. Turn on the speaker
in the bedroom.
S: I’m on it. Done. The speaker in the bedroom is al-
ready on.
(TV in bedroom: status is on)

Figure 2: Example simulated dialogues using a partial-
input SU, a full-input SU, and a baseline SU.

The next step was to evaluate our SUs. We collected rat-
ings from MTurk with regard to user rationality, user nat-
uralness, and perceived task completion for both real users
(WOz dialogues) and SUs. User rationality, user natural-
ness, and perceived task completion (whether the MTurkers
thought that the tasks were accomplished) roughly evalu-
ate the logic, natural language component, and persistence
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User Type Ration Natural Perceived
-ality -ness Task

Completion
All SUs 5.72 5.54 97.22%
Full-input SU 5.81 5.69 97.63%
Partial-input SU 5.75 5.63 97.35%
Baseline SU 5.60 5.29 96.70%
Real user 5.54 5.39 92.23%

Table 4: Comparison between real user behavior and sim-
ulated user behavior based on MTurkers’ ratings.

of the SU. For this evaluation we used 24 real dialogues
(3 for each one of the 8 possible system configurations)
and 72 simulated dialogues (3 for each one of the 8 pos-
sible system configurations and 3 SU types). We recruited
100 MTurkers and each MTurker had to rate 15 dialogues
with regard to the rationality and naturalness of the user
on a 7-point Likert scale (1:low, 7:high), and perceived
task completion. Note that we also asked the MTurkers
to evaluate the system in terms of intelligence, naturalness,
personality, friendliness, their enjoyment, overall quality,
and whether they would recommend the system to others.
Again, the MTurkers had no information about the features
that the SU and the system policy were using to generate di-
alogues (misunderstandings vs. no misunderstandings, con-
versational vs. direct system/user behavior, implicit vs. ex-
plicit system behavior). They were just instructed to rate
the dialogues based on their own interpretation of the rated
aspects, and they did not know that these were simulated
dialogues.
The results with regard to user rationality, user naturalness,
and perceived task completion are shown in Table 4. The
difference in terms of naturalness between the full-input
and the baseline model is significant (p=0.0003). Also,
the difference in terms of naturalness between the partial-
input and the baseline model is significant (p=0.0054). Fi-
nally the full-input SU is significantly different from the
real user in terms of rationality (p=0.0412) and natural-
ness (p=0.0099). The rest of the differences are not signif-
icant. For testing statistical significance, we used the two-
tailed unpaired t-test with Holm-Bonferroni correction for
repeated comparisons.
We also calculated pairwise Pearson correlations between
all features in our simulated data and MTurkers’ ratings.
Table 5 shows the correlations of the MTurkers’ ratings
with the conversational and misunderstandings binary fea-
tures in the simulated dialogues. Correlations with the ex-
plicit feature were not significant.

5. Dialogue Quality Evaluation Functions
We performed regression experiments to come up with di-
alogue quality evaluation functions that are predictive of
human ratings. We randomly split our corpus of 186 WOz
dialogues into a training set and a test set (138 dialogues
for training and 48 for testing) making sure that dialogues
from the same real user did not appear in both the train-
ing and the test sets. We applied linear regression to the
training set, calculated our evaluation functions, and then

MTurkers’ Feature Pearson’s r
Rating
Intelligence Misund -0.92***
Naturalness Convers 0.46***
Naturalness Misund -0.58***
Overall quality Misund -0.91***
Recommend Misund -0.88***
Personality Convers 0.72***
Enjoyment Convers 0.48***
Enjoyment Misund -0.60***
Friendliness Convers 0.67***
User rationality Misund -0.65***
User naturalness Convers 0.32**
User naturalness Misund -0.52***
Perceived task completion Misund -0.46***

Table 5: Pearson’s r correlations of MTurkers’ ratings with
dialogue features, simulated dialogues (***: p < 0.001,
**: p < 0.01, *: p < 0.05, with Holm-Bonferroni correc-
tion).

Rating Function RMSE
Intellig 0.1*Conv+0.2*Expl-2.2*Mis+6.4 1.32
Natural 0.8*Conv-0.1*Expl-0.9*Mis+5.8 1.09
Over qual 0.4*Conv+0.3*Expl-2.0*Mis+5.8 1.43
Recomm 0.4*Conv+0.2*Expl-2.1*Mis+5.7 1.94
Personal 1.3*Conv-0.4*Expl-0.5*Mis+5.2 1.19
Enjoym 0.6*Conv+0.1*Expl-1.7*Mis+5.6 1.63
Friendl 0.9*Conv-0.1*Expl-0.6*Mis+5.7 1.10

Table 6: Evaluation functions trained on WOz dialogues
and real users’ ratings and tested on WOz dialogues and
real users’ ratings (Conv: conversational, Expl: explicit,
Mis: misunderstandings binary features).

measured how these evaluation functions performed on the
test set (i.e., how predictive they were of the ratings in the
test set). To do that we calculated the root mean square er-
ror (RMSE) as shown in Equation (1) where n is the num-
ber of dialogues, RatiPredicted is the predicted “Rating”
for dialogue i (calculated by our evaluation function), and
RatiActual is the actual “Rating” for dialogue i. Obviously
the lower the RMSE the better. The RMSE scale is from 0
to 6 because the ratings were on a scale from 1 to 7.

RMSE =

√√√√ 1

n

n∑
i=1

(RatiPredicted −RatiActual)2 (1)

Similarly, we randomly split our corpus of 72 simulated di-
alogues into a training and a test set (48 dialogues for train-
ing and 24 for testing). Then we applied linear regression
to the training set, calculated our evaluation functions, and
then measured how these evaluation functions performed
on the test set using the RMSE.
Table 6 shows the evaluation functions trained on the train-
ing set of WOz dialogues and real users’ ratings, as a func-
tion of the conversational, explicit, and misunderstandings
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Rating Function RMSE
Intellig 0.2*Conv+0.3*Expl-1.0*Mis+4.9 0.90
Natural 1.1*Conv-0.1*Expl-0.1*Mis+3.8 0.97
Over qual 0.5*Conv+0.2*Expl-0.9*Mis+4.8 0.72
Recomm 0.5*Conv+0.3*Expl-1.0*Mis+4.6 0.90
Personal 1.0*Conv+0.1*Expl-0.3*Mis+4.1 0.97
Enjoym 0.6*Conv+0.2*Expl-0.7*Mis+4.2 0.89
Friendl 0.6*Conv-0.1*Expl-0.4*Mis+4.6 0.80

Table 7: Evaluation functions trained on WOz dialogues
and MTurkers’ ratings and tested on WOz dialogues and
MTurkers’ ratings (Conv: conversational, Expl: explicit,
Mis: misunderstandings binary features).

Rating Function RMSE
Intellig 0.2*Conv+0.0*Expl-1.9*Mis+5.8 0.35
Natural 0.5*Conv+0.1*Expl-0.6*Mis+5.2 0.28
Over qual 0.3*Conv+0.0*Expl-2.0*Mis+5.8 0.34
Recomm 0.4*Conv-0.0*Expl-1.8*Mis+5.2 0.34
Personal 1.2*Conv+0.2*Expl-0.1*Mis+3.7 0.55
Enjoym 0.7*Conv+0.1*Expl-0.8*Mis+4.3 0.37
Friendl 1.0*Conv+0.2*Expl-0.3*Mis+4.5 0.55

Table 8: Evaluation functions trained on simulated dia-
logues and MTurkers’ ratings and tested on simulated dia-
logues and MTurkers’ ratings (Conv: conversational, Expl:
explicit, Mis: misunderstandings binary features).

features. It also shows the RMSE values when these eval-
uation functions are applied on the test set of WOz dia-
logues and real users’ ratings. Table 7 shows the evaluation
functions trained on the training set of WOz dialogues and
MTurkers’ ratings, as a function of the conversational, ex-
plicit, and misunderstandings features. It also shows the
RMSE values when these evaluation functions are applied
on the test set of WOz dialogues and MTurkers’ ratings.
Table 8 shows the evaluation functions trained on the train-
ing set of simulated dialogues and MTurkers’ ratings, as a
function of the conversational, explicit, and misunderstand-
ings features. It also shows the RMSE values when these
evaluation functions are applied on the test set of simulated
dialogues and MTurkers’ ratings.
Table 9 shows the results in terms of RMSE values when
we apply on the test set of WOz data and real users’ rat-
ings the evaluation functions that were trained on simu-
lated data and MTurkers’ ratings from Table 8 (SIM col-
umn), the evaluation functions that were trained on WOz
data and MTurkers’ ratings from Table 7 (OBS column),
and the evaluation functions that were trained on WOz data
and real users’ ratings from Table 6 (REAL column). Thus
the fourth column of Table 9 is the same as the RMSE col-
umn of Table 6.
For testing statistical significance, we used the two-
tailed paired t-test with Holm-Bonferroni correction for re-
peated comparisons. It is interesting that the RMSE for
intelligence-SIM is lower than the RMSE for intelligence-
OBS (p < 0.05), and is not significantly different from
the RMSE for intelligence-REAL. Also, the RMSE for

Rating SIM OBS REAL
Intelligence 1.35 1.56 1.32
Naturalness 1.23 1.86 1.09
Overall quality 1.45 1.64 1.43
Recommend 1.98 2.06 1.94
Personality 1.61 1.50 1.19
Enjoyment 1.77 1.77 1.63
Friendliness 1.45 1.66 1.10

Table 9: RMSE values for different evaluation functions
when all are tested on the WOz data and real users’ rat-
ings. SIM: means trained on simulated data and MTurkers’
ratings, OBS: means trained on WOz data and MTurkers’
ratings, and REAL: means trained on WOz data and real
users’ ratings.

Comparison Statistical
Signific

Intelligence-SIM vs. Intelligence-OBS p < 0.05
Intelligence-SIM vs. Intelligence-REAL NS
Intelligence-OBS vs. Intelligence-REAL p < 0.05
Naturalness-SIM vs. Naturalness-OBS p < 0.001
Naturalness-SIM vs. Naturalness-REAL NS
Naturalness-OBS vs. Naturalness-REAL p < 0.001
Overall-SIM vs. Overall-OBS NS
Overall-SIM vs. Overall-REAL NS
Overall-OBS vs. Overall-REAL NS
Recommend-SIM vs. Recommend-OBS NS
Recommend-SIM vs. Recommend-REAL NS
Recommend-OBS vs. Recommend-REAL NS
Personality-SIM vs. Personality-OBS NS
Personality-SIM vs. Personality-REAL NS
Personality-OBS vs. Personality-REAL NS
Enjoyment-SIM vs. Enjoyment-OBS NS
Enjoyment-SIM vs. Enjoyment-REAL NS
Enjoyment-OBS vs. Enjoyment-REAL NS
Friendliness-SIM vs. Friendliness-OBS NS
Friendliness-SIM vs. Friendliness-REAL p < 0.05
Friendliness-OBS vs. Friendliness-REAL p < 0.05

Table 10: Comparisons (regarding statistical significance)
between RMSE values for different evaluation functions
when all are tested on the WOz data and real users’ rat-
ings; two-tailed paired t-test with Holm-Bonferroni correc-
tion. SIM: means trained on simulated data and MTurkers’
ratings, OBS: means trained on WOz data and MTurkers’
ratings, REAL: means trained on WOz data and real users’
ratings, and NS: means no significant difference.

intelligence-OBS is significantly different from the RMSE
for intelligence-REAL (p < 0.05). The RMSE for
naturalness-SIM is lower than the RMSE for naturalness-
OBS (p < 0.001), and is not significantly different
from the RMSE for naturalness-REAL. The RMSE for
naturalness-OBS is significantly different from the RMSE
for naturalness-REAL (p < 0.001). For intelligence and
naturalness the predicted ratings that we get by training on
simulated data and MTurkers’ ratings are quite close to the
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predicted ratings we get by training on WOz data and real
users’ ratings, which is very encouraging. For recommend
the system to others and enjoyment none of the models does
well, which is not surprising given that these are hard to
capture aspects of the interaction. In terms of personality,
the OBS evaluation function is doing better than the SIM
evaluation function and they are both worse than the REAL
evaluation function. With regard to friendliness the SIM
model performs worse than the REAL model (p < 0.05),
and the OBS model also performs worse than the REAL
model (p < 0.05). Finally, with regard to overall qual-
ity the performance of the SIM model is quite close to the
performance of the REAL model, but overall there are no
significant differences among the RMSE values of all mod-
els. Table 10 summarizes the statistical significance of all
pairwise comparisons.

6. Conclusion
We collected WOz dialogues in the IoT domain. We asked
the users participating in these dialogues to rate the sys-
tem regarding intelligence, naturalness, personality, friend-
liness, their enjoyment, overall quality, and whether they
would recommend the system to others. Then we asked
MTurkers to rate these dialogues on the same aspects. We
also generated simulated dialogues between dialogue poli-
cies and simulated users and asked MTurkers to rate them
again on the same aspects. We developed evaluation func-
tions based on features from the simulated dialogues and
the MTurkers’ ratings, the WOz dialogues and the MTurk-
ers’ ratings, and the WOz dialogues and the WOz partici-
pants’ ratings. We applied all these evaluation functions to
a held-out portion of our WOz dialogues. For intelligence
and naturalness the evaluation functions trained on simu-
lated data and MTurkers’ ratings performed significantly
better than the evaluation functions trained on WOz data
and MTurkers’ ratings, and similarly to the evaluation func-
tions trained on WOz data and real users’ ratings. Also,
for overall quality the evaluation functions trained on simu-
lated data and MTurkers’ ratings performed similarly to the
evaluation functions trained on WOz data and real users’
ratings. This is encouraging because it shows that at least
for these three conversational aspects just training evalua-
tion functions on simulated data could be sufficient. Rec-
ommend the system and enjoyment were hard to predict for
all evaluation functions. For personality and friendliness
the evaluation functions trained on the WOz data and the
real users’ ratings did much better than the other evaluation
functions.
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