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Abstract
In the last years, the state of the art of NLP research has made a huge step forward. Since the release of ELMo (Peters et al., 2018), a
new race for the leading scoreboards of all the main linguistic tasks has begun. Several models have been published achieving promising
results in all the major NLP applications, from question answering to text classification, passing through named entity recognition.
These great research discoveries coincide with an increasing trend for voice-based technologies in the customer care market. One of
the next biggest challenges in this scenario will be the handling of multi-turn conversations, a type of conversations that differs from
single-turn by the presence of multiple related interactions. The proposed work is an attempt to exploit one of these new milestones to
handle multi-turn conversations. MTSI-BERT is a BERT-based model achieving promising results in intent classification, knowledge
base action prediction and end of dialogue session detection, to determine the right moment to fulfill the user request. The study about
the realization of PuffBot, an intelligent chatbot to support and monitor people suffering from asthma, shows how this type of technique
could be an important piece in the development of future chatbots.
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1. Introduction

Conversational AI is the field of Artificial Intelligence that
investigates the techniques to allow machines to interact
with us using natural language conversations. Such a task is
among the most challenging of the entire NLP field and also
one of the hottest topics in nowadays customer care market.
The possibility to automate customer care process using an
intelligent agent that can understand the user request, assist
him and help him to fulfill the final goal is a great desire of
companies all around the world. Nevertheless, Conversa-
tional AI can also be exploited in medical scenario to help
doctors in monitoring the status of their patients and avoid
the latter to make long lines at the hospital for trivial sick-
nesses that do not require the expert intervention. Today
the big tech players such as Google and Amazon have al-
ready deployed conversational agents capable to assist the
user in the fulfillment of daily tasks through the use of voice
(Tulshan and Dhage, 2019). Such agents can schedule ap-
pointments, control IoT devices in a room, play music and
perform searches on the Web. This type of agents simulates
what a typical assistant can do, thus taking the name of vir-
tual assistants. Virtual assistants like the Google Assistant
and the Amazon Alexa are today widely used in everyday
life in an imperative setup, namely a person asks once and
the assistant replies and acts right after (“turn on the lights
in the kitchen”). Thanks to the increasing demand of IoT
devices, this type of assistants are nowadays present in the
house of million of customers. They exploit an Automatic
Speech Recognition (ASR) module that is able, via Speech-
to-Text (STT) technique, to translate speech audio signal to
written text. Such written text is then processed and ana-
lyzed by a Natural Language Understanding (NLU) mod-
ule responsible for extracting useful information from text
in order to understand what a user asks. All the informa-
tion are then interpreted and passed to a service manager
that dispatches a call to a specific API, in order to perform
the desired action. The results are then presented to the
user in natural language through a Text-to-Speech (TTS)
module that is today able to provide answers in an almost

human-like voice.
The total virtual assistants market size is estimated to be
USD 2.39 billion in 2018 and it is expected to expand of
40.4% over the forecast period (Graham and Jones, 2016).
While the modern technologies seem to push toward a
voice-first scenario, a lot of problems remain still unsolved.
One limitation resides in multi-turn conversation: a con-
versational paradigm composed by multiple related inter-
actions between the user and the agent. Most of the times
the agents are unable to understand a user question that
refers to a previous utterance, thus making impossible to
exchange multiple utterances on the same argument. Ad-
ditionally there is not a mechanism that could allow these
agents to lead the conversation whenever is needed (e.g.
missing information for the goal achievement). One of the
key challenge of a multi-turn technology is the definition
and exploitation of the conversational context. This con-
text is whole or part of the conversational history needed
to resolve the current user utterance. Correctly defining the
context window makes possible to correctly understand the
current user utterance by solving pending references. In re-
cent works, we have seen that the majority of models works
on a fixed-length context (Adiwardana et al., 2020; Sordoni
et al., 2015), which could miss some important pieces of
conversation, or on a potentially infinite conversational his-
tory like with memory networks (Sukhbaatar et al., 2015).
We believe that a reference to a potential infinite context
is unnatural (humans rely mainly on short memory during
a conversation), introduces noise for the classification and
is not scalable for long dialogues (the number of computa-
tions depends on the size of the memory). In this paper, we
propose a modeling for multi-turn that casts the entire dia-
logue in sub-conversations having particular features. The
contributions of this paper are:

1. The proposal of a modeling for a multi-turn goal-
oriented conversation based on single-intent sessions
that allows the creation of a dynamic length context.
Thus can be integrated in multi-turn systems that need
to refer to past utterances. With a dynamic length con-
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text the reference is performed only on a finite set of
utterances highlighted by the algorithm.

2. The development of a classifier based on
BERT(Devlin et al., 2018) to identify and clas-
sify each conversational session.

3. The presentation of a CONVersational ontOLOGY
to store long term information (extra-session) for the
whole dialogue.

The remainder of this paper is structured as follows: in Sec-
tion 2. we report previous research studies that were inspi-
rational for this work. In Section 3. we detail the modeling
of the conversation and our developed classifier and in Sec-
tion 4. we report the results of the classifier when tested
with KVRET dataset (Eric and Manning, 2017). In Sec-
tion 5. we detail the application of such a methodology in
a real case scenario for the classifier utilization and, in Sec-
tion 6. we conclude the paper with discussions and future
work.

2. Related Work
The language model is one of the fundamental tasks of NLP
and it aims to predict the next word in a sentence given all
(or part of) the preceding ones. While since 2018 the pre-
ferred way to build such models was the use of RNN (Yao et
al., 2013), recently numerous approaches based on Trans-
former (Vaswani et al., 2017) have been largely used due to
their ability to better capture long-term dependencies. One
of the modern use of language modeling task is to allow
transformer-based architectures to learn a contextual rep-
resentations for the embedding (Peters et al., 2018). Such
representation can be used in almost all NLP tasks by en-
abling a way of doing transfer learning similar to computer
vision field. In the last years, a lot of new contextual em-
bedding corpora have been released achieving surprising
results in various major NLP tasks such as question answer-
ing and named entity recognition. A great breakthrough in
NLP was the presentation of the BERT model (Devlin et
al., 2018) that for the first time proposes a bidirectional
transformer-based masked language model. The use of
pre-trained BERT is today almost a must for a lot of NLP
works and has inspired a lot of even more powerful archi-
tectures (Yang et al., 2019). These new architectures have
also been applied in more difficult scenarios such as the
multi-turn dialogue, where multiple related sentences are
present.
The multi-turn conversational paradigm is a challenging
task deserving the attention of various studies in the past
years. The major problem in multi-turn is how to allow the
agent to correctly reference the past conversational history
whenever is needed. Different studies used memory net-
works to do that (Chen et al., 2016) implementing a way
to have a knowledge carryover among the conversational
turns. Because of the high demanding for such technolo-
gies, the research community organized the Dialogue State
Tracking Challenge (Williams et al., 2013). This challenge
aims to predict what the user wants, at each conversational
turn, in terms of requested slots, search constraint slots and
dialogue acts (the tasks depend on the challenge version,

until now 8 challenges were made). During these years, dif-
ferent works have been presented by using rule-based, gen-
erative or discriminative models (Henderson, 2015). While
this challenge aims to handle a multi-turn conversation us-
ing end-to-end deep learning models, it works only on sin-
gle sub-conversations having a specific domain. So it does
not take care about the possibility that the user can start var-
ious conversations having different domains one after the
other, thus making difficult to correctly reference conversa-
tional history.
An important challenge of a real multi-turn scenario is to
understand for how long the context need to be carried for
referencing operations. One possibility is to study the se-
quence of intents inside a conversation and understanding
when an intent change happens (Mensio et al., 2018), in
this way it is possible to flush the context when a new in-
tent is detected and so a new transaction starts. Anyway
there is a main drawback with this approach, since it can
not handle a scenario in which two separate conversations,
having the same intent, are one after the other such as an
user that want to buy two independent cinema tickets, the
utterances related to the second ticket purchase belong to
a different conversation. In such a scenario the context of
the first conversation is not needed during the analysis of
the second one. To overcome this limitation we decided
to study the discontinuities of acts inside a multi-turn di-
alogue. A single intent conversation has a typical pattern
of acts, it usually starts with information requests and end
with thanks of other related final acts. By studying this pat-
tern is possible to understand when there is a discontinuity
of acts inside a single intent conversation (e.g. a final act
followed by an inform request).

3. Methodology
This section details the methodology proposed in this paper.
We firstly describe the approach followed for the modeling
of a multi-turn conversation toward the achievement of the
user goal. We report the knowledge component that we
called Convology. Then, we describe the task and we illus-
trate the process. We conclude by reporting the used archi-
tecture that we called MTSI-BERT that stands for Multi-
Turn Single-Intent BERT. MTSI-BERT is a joint classi-
fier for intent classification, Knowledge Base action (KB-
action) prediction and End-Of-Session detection.

3.1. Conversational Session
In a multi-turn goal-oriented conversation several related
interactions between a user and an agent are present. The
resulting conversation can be modeled as an ordered se-
quence of question-answer QA pairs, each one falling under
a particular intent that defines the goal. This definition can
be formalized such as in Equation 1, where i represents the
timestep of the pair and Q and A are natural language sen-
tences.

DIALOG = [(Q(i), A(i))+], ∀i ∈ [0, N ] (1)

In order to find a way to classify intents, we adopted the
divide-and-conquer paradigm and divided the entire dia-
logue in sub-sequences having a single intent and a differ-
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ent subject goal. We call these sub-sequences Conversa-
tional Sessions. A Session is an ordered sub-sequence of
a conversation, containing all the interactions to achieve a
desired user goal. An example is presented in Table 1.

Session Turn Actor Sentence
A 1 User I want to

book a flight
from SF to
LA

A 2 Agent For which
days?

A 3 User This Sat-
urday at
9:00am

A 4 Agent Ok!
B 1 User I want to

book a
flight from
Houston to
Berlin

B 2 Agent Which days
do you pre-
fer?

B 3 User Is it possible
on Sunday?

B 4 Agent There are no
flights from
Houston to
Berlin this
Sunday. I
am sorry.

Table 1: An example of conversation having two subse-
quent sessions with the same intent (flight booking) but
with a different final goal (different flights). The context
carried during the first session is not useful for the fulfill-
ment of the second goal. Understanding when a session
ends allow to correctly flush the wrong context and make it
easier to reference the correct one.

These sessions are independent from each other by defi-
nition and so no context has to be carried among them.
This modeling allows simplification of the context refer-
ence problem during the development of a real conversa-
tional AI. The context to be referenced is internal to each
session and so, whenever a session ends, the context can
be flushed. If information from past sessions are needed,
the use of a suitable knowledge base where to store con-
versational knowledge can be adopted. The flushing of the
session permits a simpler reference operation among con-
versational turns. A formalization of the session is possible
as in Equation 2 where A is the identifier of the session. Fi-
nally the entire dialog can be rewritten as compositions of
sessions as in 3.

SESSIONA = [(Q1
A, A

1
A), (Q

2
A, A

2
A), ..., (Q

n
A, A

n
A)]

(2)

DIALOG = [(Q1
A, A

1
A), ..., (Q

n
A, A

n
A), ..., (Q

1
B , A

1
B),

.., (Qm
B , Am

B ), ..., (Q1
F , A

1
F ), ..., (Q

k
F , A

k
F ), ...

]
(3)

3.2. The Knowledge Component: Convology
MTSI-BERT is supported by a knowledge component,
namely Convology (CONVersational ontOLOGY), en-
abling the management of an effective, efficient, and reli-
able management of multi-turn conversational sessions.
Convology is a top-level ontology aiming to model the
conversation scenario for supporting the development of
conversational knowledge-based systems. Convology de-
fines concepts enabling the description of dialog flows,
users’ information, dialogues and user events, and the real-
time statuses of both dialogues and users. Hence, systems
integrating Convology are able to manage multi-turn con-
versations and to decouple the intents recognized within the
input provided by users from conceptual information trig-
gering both reasoning activities and the generation of an-
swers and feedback.
The purpose of Convology is two-fold. On the one hand,
we want to provide a meta-model fully describing the con-
versation domain from the conversational agent perspec-
tive. On the other hand, we want to support the develop-
ment of smart applications for supporting users in accessing
content of knowledge bases by means of a conversational
paradigm.
The ontology contains five top-level concepts: Dialog, Ac-
tor, ConversationItem, Event, and Status.
The Dialog concept represents a multi-turn interaction be-
tween a User and one or more Agent. A new instance of the
Dialog concept is created when a user starts a conversation
with one of the agents available within a specific applica-
tion.
The Actor concept defines the different roles that can take
part into a conversation. Within Convology, we foresee
two main roles represented by the concepts Agent and User.
Instances of the Agent concept are conversational agents
that interact with users. When Convology is deployed into
an application, instances of Agent concept represents the
different agents involved into the conversations with the
users adopting the application. Differently, instances of the
User concept represents the actual users who are dialogu-
ing with the conversational agent. A new instance of the
User concept is created when a new user starts a conversa-
tion within a specific application (e.g. a new user installs
the application for monitoring her asthma conditions).
A ConversationItem is an entity taking part into a con-
versation and that allows to represent relevant knowledge
for supporting each interaction. Within Convology, we
defined four subclasses of the ConversationItem concept:
Question, Intent, Feedback, and DialogAction. An indi-
vidual of type Question represents a possible question that
an instance of type Agent can send to a User. An Intent
represents a relevant information, detected within a natural
language answer provided by a User, that a Natural Lan-
guage Understanding module is able to recognize and that
a reasoner is able to process. Differently from a Question,
a Feedback represents a simple sentence that an Agent can
send to users and for which it does not expect any reply.
Feedback are used for closing a conversation as result of the



720

reasoning process or simply for sending single messages to
users without requiring any further interaction. Instances of
the DialogAction concept describes the next action that an
Agent individual has to perform.
The Event concept describes a single event that can occur
during a conversation. Within Convology, we identified
three kinds of events: EventQuestion, EventAnswer, and
UserEvent. Instances of these concepts enable the storage
of information within the knowledge repository, trigger the
execution of the reasoning process, and allow the retrieval
of information for both analysis and debugging purposes.
An EventQuestion represents the fact that a Question has
been submitted to an Actor. On the contrary, the EventAn-
swer concept represents an Answer provided by an Actor.
A UserEvent represents an Event associated with a specific
user. The purpose of having a specific UserEvent concept
instead of inferring UserEvent objects from the EventQues-
tion and EventAnswer individuals is that a UserEvent does
not refer only to questions and answers but also to other
events that can occur.
The last branch of Convology has the Status concept as
top-level entity. This branch contains concepts describ-
ing the possible statuses of users, through the UserStatus
and StatusItem concepts, or of dialogues, through the Di-
alogStatus concept. Instances of the UserStatus concept
represent which are the relevant statuses of a User that the
conversational agent should discover during the execution
of a Dialog. A UserStatus individual is associated with
a set of StatusItem individuals representing atomic condi-
tions under which a UserStatus can be activated. Different
strategies can be applied at reasoning time, but they are out
of scope of this paper. Finally, a DialogStatus individual
provides a snapshot of a specific Dialog at a certain time.
3.3. The Task
The task we aimed to solve is the classification of a multi-
turn conversational session. To correctly classify the ses-
sion defined in Section 3.1. the intent at first has to be
extracted, allowing the agent to formulate a first answer.
In this setup, the intent is always expressed in the first ut-
terance of each session. This is due to the goal-oriented
structure of the conversations we studied. Each time a new
interaction begins, this has to contain information about a
particular goal, otherwise the agent is not supposed to help
the user (no chit-chat paradigm). Then, in order to iden-
tify the first interaction within a session, the end of the pre-
ceding one has to be detected. We called this the End-Of-
Session classification. This task is also the one empower-
ing the context flushing for the agent. End-of-Session is the
most challenging task in this work, because it is not always
clear when a session ends and another starts.
Another important aspect we cared about is the interfacing
of the classifier with further knowledge base containing all
the knowledge needed to the agent to reach the user goal.
Imagine a conversational agent that aims to recommend
restaurants based on the user requests and preferences. If
the user said ”Please add Abanero to my list of my favourite
Mexican restaurants”, the domain of the request is restau-
rant but it could be useful for the agent to already have the
information about the insert operation, in order to distin-
guish the action from a more common restaurant search. In

order to do that we forced our classifier to classify both the
intent and the action to perform on a hypothetical knowl-
edge base in order to achieve correctly the user goal. The
action could have different values based on the scenario and
can give a different granularity to the single intent, allowing
thus a better covering of the tractable topics.

3.4. MTSI-BERT

A joint architecture is a particular design choice consisting
in training a single model to perform different prediction
tasks together. The main idea behind this architectural deci-
sion is the same of transfer learning: the already computed
latent space representation can be used for solving similar
tasks. Joint NLP models were often used to perform intent
classification and NER (Name Entity Recognition), sharing
the initial layers of the model, and then using individual end
branches. Even BERT was trained as a joint model, aiming
to predict both masked words and next sentence flag.
MTSI-BERT reuses the same idea to perform the three dif-
ferent tasks jointly: intent and action classification, End-
Of-Session prediction. The classifier presents a common
shared basis composed of 12 pre-trained BERT encoders
followed by different branches, one for each task. BERT
encodes each single input token of the sentence in an em-
bedding using self-attention modules that compute how
much a given token relates to all the others inside the sen-
tence. Each single embedding produced by BERT is 768
dimensions. The embedding contains information of the
single word related to the context in which it is, therefore
capturing better its semantic inside that particular sentence
and solving word ambiguity. This concept differs from the
concepts of the original word embedding (Mikolov et al.,
2013; Pennington et al., 2014) and takes the name of con-
textual embedding.
These embeddings are then passed to an upper level com-
posed of two different branches. The branch on the left
(Figure 1) is mounted above the CLS token embedding and
it is trained to predict the End-Of-Session. The branch on
the right (Figure 1) is used for the classification of both
intent and action. The first part of the right branch is a bidi-
rectional LSTM, shared between the two tasks, that takes
as input each word contextual embedding. The decision of
sharing the same LSTM is born observing that action and
intent are often dependent (e.g. a scheduling intent has a
bias toward insert action). The output of the LSTM is a
1536 dimensional vector resulting from the concatenation
of the right hidden state and the left one. This vector rep-
resents the embedding of the entire input sequence and is
then used by two upper branches, one for the intent and one
for the action.
Each individual branch presents a 3-layer FFNN (Feed For-
ward Neural Network) (Fine, 2006) not shared among the
others. This FFNN permits the branch to better specialize
on the single task. The parameters learned during training
are task-oriented, without them it is more difficult for the
output layer to extract the correct features for that particu-
lar task starting from the shared representations.
All the branches contain, at the end, a softmax function to
output the distributional probability of each class. Figure 1
illustrates the entire structure of MTSI-BERT.
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Figure 1: The architecture of MTSI-BERT.

4. Experimental Results
In this section, we report the results and the experimental
setup created for this work. The section is divided in four
parts. The first is an overview of the dataset we used. The
second part contains the metrics used for the model perfor-
mance computation. The third consists of the description
for the optimization process used to train MTSI-BERT and
the fourth part instead contains the performance scores of
the model.

4.1. Dataset
The choice of the dataset was an important step in our work.
To correctly apply MTSI-BERT we need a dataset con-
taining multi-turn single-intent conversations that allow the
adoption of the session. Furthermore the dataset has to
present something close enough to the concepts of action
and knowledge base. The only dataset found fitting the task
is the Key-Value Retrieval (KVRET) by Stanford (Eric and
Manning, 2017). KVRET is a dataset for the training of
multi-turn goal-oriented agents. It contains dialogues be-
tween a driver and an agent about three different topics:
weather (997 dialogues), navigation (1000 dialogues) and
calendar scheduling (1034 dialogues), thus defining the in-
tents. Each dialogue is subdivided in turns that can be
“driver” or “assistant”, defining the author of a particular
utterance. Each turn has also an end of dialogue flag indi-
cating if the current turn is the last one of the dialogue. The
data are divided in three sets: the training contains 2425 di-
alogues, the validation contains 302 dialogues and the test
304 dialogues.
As the name suggests, KVRET main task is about retrieving
information requested by the user through natural language
interactions, from a knowledge base (e.g. the nearest gas

station), for this reason the dataset also contains a fictitious
database from which retrieving information. This database
is represented as key-value pair and is present for each con-
versation that requires the agent to extract some knowledge.
By using this, we have defined two actions to predict on the
knowledge base: insert and fetch. When the knowledge
base is present, the action to predict is ”fetch”, otherwise is
”insert”. The total number of fetch versus insert is 2012 vs
413 in the training set, 242 vs 60 in the validation set and
256 vs 48 in the test set. Finally, the concept of session can
be adopted by concatenating together different dialogues to
form a bigger dialogue where each session is single-intent.
In this way, it is possible to predict the end of session by
concatenating a session with the first utterance of a random
one, which expresses a new user request. The total number
of intra-session versus End-Of-Session is 6406 vs 2415 in
the training set, 748 vs 301 in the validation set and 810 vs
302 in the test set.
The dataset structure is illustrated in Figures 2a and 2b.

4.2. Evaluation Metrics
To evaluate the overall performance of MTSI-BERT we
opted for evaluating the performance of the model on each
single task. As performance score we use the F-Measure
(Van Rijsbergen, 1979) (also referred as F1 score). The F-
Measure is a measure defined as function of precision and
recall, balancing between the two (it weighs the precision
of the model with its recall). In this way, it is possible to
give a meaningful measure with unbalanced classes (which
is the case for KVRET dataset). The formula for F-Measure
is reported in (4).

F1 = 2 · Precision ·Recall

Precision+Recall
(4)

While these metrics are defined for binary classification
problems, the extension to multi-class is trivial by consid-
ering binary problems for each class c of the type: class c
versus not class c. Once all the precision scores for each
class have been computed, an average of them have to be
made. The scores for this work take into consideration the
macro average only for F-Measure, due to presence of un-
balanced classes. With macro average the F1-score for each
class is computed first and then all the scores are averaged.
This type of average is used in case of unbalanced class,
since it penalizes more errors on the minority class. Equa-
tion 5 reports the macro average.

F1macro avg =
F1class1 + F1class2 + F1class3

3
(5)

Regarding the End-Of-Session, the prediction is performed
between the current session and a random one. To correctly
visualize the final accuracy, we compute and report also the
mean value and the standard deviation for the score.

4.3. Optimization
The experiments start with a 20 epochs training to test the
convergence of the model loss, then the epochs were raised
to reach 100.
The loss used for the training of the model is a Cross-
Entropy Loss. This loss penalizes the network to pro-
duce the expected class value maximizing the confidence,
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(a)

(b)

Figure 2: (a) A sample of conversation from KVRET.
(b) The database attached to conversation containing the
knowledge to handle the requested task. (a).

without taking care about how the remaining probabil-
ity is distributed among the other classes. The classes
were weighted in loss computation by a factor of supportC

supportx
,

where x is the class taken in consideration and C the most
frequent one. This in order to avoid bad model behaviours
in unbalanced dataset. In the loss computation also a L2

penalization (weight decay) is introduced with a factor of
0.1, thus penalizing high weight values.
Joint models typically produce more than one probability
distribution. Since a deep neural network can be trained to
optimize one single loss, the three different tasks of MTSI-
BERT must produce, at the end, only one loss to mini-
mize. There are several ways to combine losses together,

in this work we opted for using a sum. The sum ensures to
give, from the loss perspective, the same importance to all
the three tasks. Equation 6 shows the final loss of MTSI-
BERT.

Ljoint = Li + La + Leos (6)

Two different learning rates were chosen, one for BERT and
one for the upper level. The reason behind this decision is
that BERT, since it is pretrained, is in a good local mini-
mum already, thus moving weights too fast could cause to
loose that minimum. On the contrary, the upper level has to
be trained from scratch, thus a bigger learning rate is sug-
gested. The learning rate of BERT was chosen to be 5e−5

(as the paper suggests) and the one for the upper level was
set to 1e−3. The learning rate was then decreased, after
certain milestones, by multiplying it by 0.5, thus helping
the model to converge. The output of BERT was passed
through a dropout layer with probability 0.5. The dropout,
together with the weight decay, was used to avoid over-
fitting phenomenon. The chosen optimization method is
Adam (Kingma and Ba, 2014) with a Mini-batch Gradient
Descent (Ruder, 2016). The mini-batch size was set to 16.
It is important to notice that here the batch size represents
the number of dialogues and not the number of sentences.
MTSI-BERT was developed in PyTorch (Paszke et al.,
2017) deep-learning library together with Transformer
(Wolf et al., 2019) Python package, that provides the pre-
trained BERT. Results of the training phase are shown in
Figures 3a and 3b.
The chart in Figure 3a shows the mean value of Li, La

and Leos (the losses for each single task). From this chart,
it can be noticed how both the training and the validation
losses decrease together toward a lower bound error rate
smaller than 0.01, therefore ensuring the convergence of
the model and the non-presence of overfitting. The chart
in Figure 3b shows each single loss on the validation set.
Both action and intent losses (the green and the blue ones)
converge to a lower error rate compared with the End-Of-
Session loss and become more stable after 60 epochs. The
End-Of-Session instead is more unstable and converges to
a higher error rate, thus confirming to be the most difficult
task among the three.
MTSI-BERT is trained to make it consistent with a multi-
turn conversational scenario. Such scenario requires the
agent to wait for the first user interaction of the session and
understand the intent and the KB-action. It has then to for-
mulate a coherent answer for the user and then come back
to wait for the new user interaction. While the answer gen-
eration is not part of this work, the main focus remains on
the whole session classification. The new user interaction
could be related to the previous question-answer pair or not.
In the first case a dialogue continuation is happening gen-
erating a multi-turn conversation. In the case the new user
interaction is not related with the previous exchanged ut-
terances, then a new session begins, with its intent and its
KB-action. To correctly flush the context of the past con-
versation, the agent has to be aware about the end of the
session. Additionally, it has to trigger the classification of
KB-action and intent for the first utterance of the new ses-
sion.
To correctly adapt the agent to work in this way, the input
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(a)

(b)

Figure 3: (a) Loss trend on validation and training set. No
overfitting is present since we can notice from the plot that
the training and the validation losses decrease together. (b)
Comparison of loss trend among the three tasks on the vali-
dation set. The End-Of-Session (here reported in red) shows
itself as the most difficult one.

was shaped to simulate this type of scenario. MTSI-BERT
was trained with a QAQ triplet as input. Such triplet con-
sists in the concatenation of the last three exchanged utter-
ances, where Q represents the user question and A the agent
answer. MTSI-BERT is able to learn the relations existing
between the new question of the user and the preceding ex-
changed QA pair. This task is possible because it exploits,
for this task, the CLS embedding of BERT. This is the em-
bedding used in the BERT original task to predict the next
sentence flag. It contains information about the similarity
between what comes before the SEP and what comes next.
Figure 4 shows the input for MTSI-BERT at each timestep.
4.4. Results
We developed three models, each performing one of the
tasks for which MTSI-BERT was trained: intent, action
and End-Of-Session. They consist of a bidirectional LSTM
that receives spaCy (Honnibal and Montani, 2017) pre-
trained embedding and output, through a softmax, the dis-
tributional probabilities for the three tasks. These models
are used to better show the performance of MTSI-BERT
versus other non-joint models that perform the same task
and we consider our reference. Table 2 reports the results
of the reference mode, a state of the art intent discriminator,
and our MTSI-BERT.
MTSI-BERT performs better in action and End-Of-
Sessions. The intent discrimination is already solved by the
reference, however this requires further investigation given
the small number of intents in the KVRET dataset. The
most promising results are on the End-Of-Session, whose
improvement is an additional 3% from the reference.

Figure 4: The input of MTSI-BERT. Here the dialogue is
composed of two sessions A and B. The MTSI-BERT re-
ceives the first sentence of the session and then subsequent
triplets of the conversation. When the session end is de-
tected at timestep 4, the triplet is reset and the model is
asked to classify the first sentence of the next session.

Model F1(Intent) F1(Action) F1(EOS)
MTSI-
BERT

1.00 1.00 0.9938 ±
0.0005

(Mensio et
al., 2018)

0.9987 - -

Reference 1.00 0.9937 0.9638 ±
0.0006

Table 2: Results on the test set of KVRET.

Since Table 2 contains results which are very close to the
perfect prediction, we have come to the conclusion that the
task on this particular dataset is fairly easy to be solved and
then even the reference model is good enough to be used.
In particular, we have noticed three following weakness of
KVRET for our tasks. It contains only 3 intents, thus for-
bid a better topics covering, important to simulate a real
conversation. The possible actions we have extracted are
only fetch and insert, as a binary task it is quite trivial to be
solved. Last, the dialogues end very often with the thanks
of the user or the greetings of the assistant, then making
the end of session easy to detect. To really assess the ca-
pabilities of MTSI-BERT, new tests on a more challenging
dataset have to be performed.

5. Real case scenario
In this chapter, we propose a real case scenario of MTSI-
BERT. PuffBot is a chatbot for the support of asthmatic
people. It has two main features: help patients to keep un-
der control their asthma and help doctors to monitor easier
their health status. PuffBot assists patients while convers-
ing and infers their emergency code. The patient tells to
PuffBot the last events related to his asthma. Then it infers
his status with some reasoning processes on the understood
information and on the patient generalities such as prac-
ticed sports, smoker habits and allergies that the patient
lists during the initial registration phase. An emergency
code is a label, defined with the Trentino healthcare depart-
ment, that represents the status of the patient from a medical
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perspective. After the emergency code prediction, PuffBot
suggests a possible advice to the patient. We have defined,
along with the domain experts, 4 different codes. The green
emergency code is associated with a normal patient situa-
tion. Possible events associated with this category are the
absence of cough or cough during sport activities. The typ-
ical suggestion is to continue with the current therapy. The
yellow emergency code is associated with mild cases, for
which a doctor intervention is typically not needed. Events
like cough with rhinitis, cough during night and other types
of coughs belong to this case. The suggestion for a yellow
code is to increase the number of inhaler puffs. PuffBot
comes back to monitor the status after a while and, if it
gets worse, the doctor intervention is suggested. The or-
ange emergency code is the last PuffBot can handle and is
the one that associated to potentially dangerous situations.
Events like persistence cough and sense of chest constric-
tion requires to follow a particular therapy defined with do-
main experts during the development of the chatbot. If the
situation gets worse, doctor intervention is needed. The red
code refers to an a emergency situation for which the doctor
visit is needed. PuffBot suggests the patient to call a doctor
and continue to monitor the patient after the doctor visit.
From a design point of view, PuffBot relies on a multi-turn
conversational paradigm and a knowledge base where all
domains (macro-categories of conversational topics identi-
fied by a set of intents and related slots) and conversational
knowledge are stored. The knowledge base relies on Con-
vology.
In this scenario, the use of MTSI-BERT helps the devel-
opment of the agent. The conversations between the patient
and PuffBot can be divided in sessions, each one regarding a
particular patient intent. For instance a possible session can
be the patient talking about the cough episode of the last
week, or his struggling to breathe of the last night. Then
the information about these sessions have to be correctly
extracted and stored inside the knowledge base, in order
to infer the patient emergency code when the conversation
ends. Thus to correctly store the information of each ses-
sion, the agent needs to be aware when a particular session
ends, allowing then the storing of final understood infor-
mation and the flush of the past context (which resume is
available in the knowledge base).

6. Conclusion and Future Work
In the proposed work, we have introduced a challenge in
the domain of multi-turn conversational agents. Multi-turn
conversational paradigm consists of a simulation of real
conversations between humans, where different utterances
can be exchanged in order to fulfill the desired goal. Such
paradigm has proven to be difficult to manage since it re-
quires to solve a lot of problems in the natural language
understanding field, specifically related the contextual un-
derstanding task. For instance, the co-reference resolution
has to be done easily, together with the carry of the dialogue
context through the conversation.
To analyze this paradigm from a more practical perspec-
tive, some approximations of the real world were done. We
divided the entire dialogue in subsections called sessions.
Each session is characterized by a single intent to be ful-
filled through a single action on a knowledge base, which

is a structured representation for data that enables dialogue
tracking, fast data retrieval and reasoning processes. Then
a model to classify these sessions was proposed. MTSI-
BERT is a joint model, based on BERT, for intent and KB-
action classification within a dialogue session and End-Of-
Session detection. Such model has reached very good re-
sults on KVRET dataset, a dataset containing dialogues be-
tween a driver and an integrated car assistant. Thus pro-
viding a fertile soil for further studies. Anyway the ob-
tained results are influenced by KVRET. Infact, this dataset
contains only 3 intents, 2 KB-actions and a repetitive pat-
tern for the End-Of-Session (the conversations end almost
always with thanks of greetings of one of the two actors).
MTSI-BERT can be improved by training it on a more chal-
lenging dataset and by integrating, together with the other
tasks (e.g. response generation), the Name Entity Recog-
nition. The session classification was done by assuming
correct agent response. Wrong agent replies affect the way
this model performs and this can lead to unexpected sys-
tem behaviour. The agent reply must not only be grammat-
ically correct, but it needs to be also semantically coher-
ent. A way to generate a natural language text given some
constraints (Miao et al., 2019) (e.g. the knowledge base
features extracted after the reasoning process) will require
further studies. A dialogue tracker system has also to be
implemented. Another core problem in such scenario is to
find a way, for the agent, to carry on the conversation dy-
namically if some information is still missing. We believe
this is an important module to design.
Finally an use case was described for which MTSI-BERT is
a useful component for its piloting. PuffBot is a chatbot for
helping and monitoring people suffering from asthma. It is
based on a multi-turn scenario and it has a knowledge base
for saving all the status information about the patient and
the information extracted from the conversation, in order to
infer its emergency code and support him accordingly. We
are also experimenting MTSI-BERT to the deployment of
a conversational agent meant to support migrants by low-
ering the bureaucracy burden when seeking for actionable
information to ask for a residence permit or family reunion,
do tax declarations.
Future studies will cover other related challenges such as
the Dialogue State Tracking Challenge (DSTC), Reinforce-
ment Learning for dialogue policy generation and NLG
(Natural Language Generation).
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