
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 7003–7008
Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

7003

KonText: Advanced and Flexible Corpus Query Interface

Tomáš Machálek
Institute of the Czech National Corpus, Faculty of Arts - Charles University

nám. Jana Palacha 1/2, 116 38 Praha 1, Czech Republic
tomas.machalek@ff.cuni.cz

Abstract
We present an advanced, highly customizable corpus query interface KonText built on top of core libraries of the open-source corpus
search engine NoSketch Engine (NoSkE). The aim is to overcome some limitations of the original NoSkE user interface and provide
integration capabilities allowing connection of the basic search service with other language resources (LRs). The introduced features are
based on long-term feedback given by the users and researchers of the Czech National Corpus (CNC) along with other LRs providers
running KonText as a part of their services. KonText is a fully operational and mature software deployed at the CNC since 2014 that
currently handles thousands user queries per day.

Keywords: corpus query interface, open-source, web application, distributed application, corpus linguistics

1. General overview and motivation
Creating a fully featured corpus search engine with a pow-
erful query language, analytical functions, user-friendly in-
terface, performance scalable to billion tokens corpora and
tens or more concurrent users is a tremendous task which
takes many years to accomplish. Only a limited number
of projects have been able to reach production-ready sta-
tus and general awareness in linguistic community. Among
them, Corpus Workbench (Hardie, 2012), SketchEngine
(Kilgarriff et al., 2014), BlackLab (Does et al., 2017) or Ko-
rAP (Diewald and Margaretha, 2017) should be mentioned.
Looking for a suitable corpus search system, our experi-
ence shows that there is simply not a clear winner espe-
cially when considering both supported features and scal-
ability (in terms of corpus size and number of users). A
good example of this performance-feature dilemma can
be seen on two systems we have experience with - Annis
(Krause and Zeldes, 2016) and NoSketch Engine (NoSkE)
(Rychlý, 2007). While the former system provides rich,
multi-layered annotation capabilities at the cost of limited
usability for large corpora (Krause, 2019), the latter system
is able to handle billion token corpora reasonably fast but
only for simple, single-layer token and span annotations.
Instead of trying to build another search engine fully com-
pliant with our needs, we took a pragmatic approach by
choosing a simple, scalable search engine and building a
new interface and auxiliary services integrating the search
engine with other data resources and providing many fea-
tures missing in the original software.
KonText builds on our long-term experience with NoSkE
which is an open-source version of a commercial corpus
search software Sketch Engine (SkE) by Lexical Comput-
ing Ltd. During our initial attempts to enhance the orig-
inal user interface (Machálek and Křen, 2013), we were
faced by increasing number of requested features. As we
also had a different approach to the application architecture,
we have gradually rewritten the original interface under the
new name of KonText. The only remaining parts now are
core data retrieval and indexing libraries of NoSkE includ-
ing its core library Manatee-open, which also means that

KonText supports the same query language as NoSkE and
SkE - the CQL 1.
Another strong motivation to develop KonText came from
the need for a truly open-source project, in contrast with
NoSkE which is controlled solely by its authors and tied
to the more feature-rich and commercial SkE. This means
that KonText is able not only to keep pace with the current
state-of-the-art in corpus indexing and searching software,
but also to integrate the code from other developers and to
reflect user feedback in short update cycles.
KonText is endowed with the following key features:

• support for spoken (audio playback, visual representa-
tion of dialogues) and parallel corpora,

• rendering of dependency syntax trees,

• advanced creation of subcorpora

– based on user-defined ratios of different text
types,

– based on the corpora alignment,

• helper tools for query creation (Figures 1 and 2) and
exploring of corpora structure,

• integration with other services that can provide addi-
tional information about searched terms.

2. End user features
In addition to the features inherited from NoSkE (concor-
dance sorting and filtering, frequency distribution, colloca-
tion analysis), KonText provides a rich set of new, original
features, some of which (e.g. 2.2.2., 2.2.3., 2.3.3.) can be
rarely seen in other corpus search interfaces. But even with
the more common features on mind, it is their presence and

1CQL is a variant of the query language developed at the
Corpora and Lexicons group, IMS, University of Stuttgart. See
https://www.sketchengine.eu/documentation/
corpus-querying/ for more information.

https://www.sketchengine.eu/documentation/corpus-querying/
https://www.sketchengine.eu/documentation/corpus-querying/


7004

Figure 1: CQL query editor with syntax highlighting and
interactive widget for entering PoS tags

mutual complementation within a single application which
gives KonText its value.
In this section, we will discuss in more detail features
that have been implemented beyond those inherited from
NoSkE. They can be divided into the following categories:

• query construction,

• data selection,

• result presentation and manipulation.

2.1. Query Construction
Modern corpora are accompanied by rich metadata sets and
Manatee-open supports a powerful query language CQL.
This poses a challenge not only for users who want to learn
CQL, especially when their background is in the humani-
ties, but also for experienced users. For this reason, Kon-
Text helps users in CQL query construction by introducing
extensions of the basic query form that allow for interac-
tive selection of parameters as well as for easy re-use of the
individual items stored in a query history database.

2.1.1. Query syntax highlighting
KonText includes its own custom CQL parser which pro-
vides syntax highlighting and basic validation of corpus-
specific values of both positional and structural attributes
(Figure 2).

2.1.2. Tag builder
As a part of the CQL editor, KonText offers an interactive
tag builder widget for user-friendly selection of individual
categories within a given tagset. The tag builder can be con-
figured to support any positional and attribute-value tagset,
including Universal Dependencies (UD).

2.1.3. Query history and persistence
Query history is stored by KonText on the server on a per-
user basis that makes it available regardless of the device a
user may use. The query history includes also additional
information, e.g. date and time, queried corpus, query
type and parameters. Furthermore, KonText includes an
overview screen for easy searching and filtering the user

Figure 2: A widget for interactive text type selection by
gradual application of data filtering

query history. There is also an option to archive individ-
ual items under a custom name for later reuse. To support
reproducibility, the archiving of a query includes also se-
lected subcorpora and all other options.

2.2. Data Selection
We believe that corpus query engines should provide users
with the possibility to easily examine the actual contents of
a corpus, as well as to define subcorpora based on various
user-selected criteria.

2.2.1. Finding a corpus based on different criteria
Out of the box, KonText provides two principally differ-
ent modules for organizing and searching for corpora. One
is based on a tree hierarchy, the other uses multiple key-
words (tags) attachment to individual corpora for more flex-
ible categorization. It is also possible to use different data
backends for the modules. The core KonText installation
offers either a variant based on an XML file (best suited for
smaller installations with only a few corpora) or a backend
operating on top of a relational database.

2.2.2. Interactive text selection
A module for interactive text selection (based on a com-
bination of criteria) facilitates user creation of tailor-made
subcorpora by ”zooming into” the selected parts of a cor-
pus (Figure 2). The selection can be made also on the level
of individual documents. For parallel corpora, there is a
possibility to define also alignment-based subcorpora.

2.2.3. Proportion-based text selection
KonText also supports automatic text selection based on
custom proportions of individual attributes (typically text
registers). As a result, the created subcorpus can keep the
user-specified proportion of the main registers without the
need to specify individual texts.

2.2.4. Public subcorpora
All the subcorpora created by an individual user (using any
of the methods above) can be named and shared with other



7005

Figure 3: 2-dimensional frequency distribution

users, which helps cooperation and research reproducibil-
ity.

2.3. Result presentation and manipulation
As for the concordances and results of analytic functions,
KonText builds above the output provided by the core
Manatee-open library and extends it by additional data or
rearranges it for better readability and interpretability. As
examples of such additional data we can mention exter-
nal dictionary entries for individual concordance tokens or
syntax information for sentences loaded from an external
database (more on this can be found in 3.1.).

2.3.1. Reproducibility and control
After a query is executed, there are numerous operations
that can be performed on a resulting concordance: filtering,
sorting, random sampling, frequency distribution, colloca-
tion analysis etc. As these operations can be chained, the
KonText breadcrumb navigation keeps track of all the con-
secutive steps, so that it is easy to control them. Further-
more, the individual processing steps are editable, which
means it is possible only to change parameters of a sin-
gle operation and then to re-run the whole operation chain
while keeping the other operations intact.
In addition, each operation sequence gets its unique ID
which is stored in the URL, so that sharing the URL (in
a paper, with a colleague etc.) leads to reproducible results.

2.3.2. Adequate frequency characteristics
KonText supports more advanced frequency characteristics
next to regular frequency: i.p.m. & dispersion-based ARF
(Savický and Hlaváčová, 2002), including their use only in
well-defined situations.

2.3.3. 2-dimensional frequency distribution
As shown in Figure 3, KonText allows for analysis of fre-
quency interrelationship between two attributes (both posi-
tional and structural ones).

2.3.4. Manual categorization of concordance lines
It is possible to manually select concordance lines and at-
tach custom numerical labels to them. This is useful for any
manual categorization, e.g. for classification of the individ-
ual word senses of a searched term. Such a selection can be

Figure 4: A dependency syntax tree example

Figure 5: A dialog visualization example

further filtered, exported or passed to other users via a URL
address.

2.3.5. Rendering of dependency syntax trees
KonText is currently able to render PDT-like dependency
syntax trees (Figure 4), support for UD (Nivre et al., 2016)
is in progress. This functionality is managed by plug-ins
(see 3.1.), so that other research groups can make KonText
support syntax in their own formalism.

2.3.6. Support for spoken corpora
In spite of the underlying Manatee-open data model that is
scalable, but rather simple, KonText features a support for
querying spoken conversational corpora:

• text regions can be accompanied by audio chunks for
direct playback,

• concordance detail views can be rendered as dialogues
with a clear indication of speaker turns and overlaps
(Figure 5).



7006

3. Provider-oriented features
KonText focuses not only on user features but also on issues
regarding its adaptability by providers besides CNC and on
performance improvements when facing large number of
users requesting computationally demanding tasks.

3.1. System Integrability and extensibility
One of the key goals right from the start was to prevent
KonText from being locked to the environment and spe-
cific CNC infrastructure. Seeing other individuals and in-
stitutions facing similar problems to ours, we believed that
KonText could provide a solution for them too, but only as
long as we were able to develop it in a way general and
flexible enough to avoid a need for rewriting the same code
each time someone needs a specific feature or customiza-
tion. This is addressed via the concept of plug-ins.
The goal of the plug-in architecture is not just to extend
the functionality of KonText in different ways but also to
make core parts of the application replaceable with alterna-
tive implementations. This allows other providers to inte-
grate KonText into their existing information systems with-
out the need to interfere with the KonText core source code.
For example it is very common that each organization has
its own authentication method along with a custom user
database or that the organization uses one of the widely
adopted authentication methods/services (e.g. Shibboleth
in academia). For KonText, this means just a custom im-
plementation of its auth plug-in.
The plug-ins are developed in Python on the server-side and
JavaScript/TypeScript on the client-side (if needed).

Listing 1: An example of a plug-in set-up in the main con-
figuration file. Here we specify a plug-in used to connect
individual tokens to external services.
<plug ins>

. . .
<token connect>

<module>d e f a u l t t o k e n c o n n e c t </module>
<js module>defaultTokenConnect </ j s module>
<p r o v i d e r s c o n f e x t e n s i o n−by=” d e f a u l t ”>

/ o p t / k o n t e x t / token−d e t a i l −p r o v i d e r s . j s o n
</ p r o v i d e r s c o n f>
<cache db path e x t e n s i o n−by=” d e f a u l t ”>

/ v a r / o p t / k o n t e x t / t d c a c h e . db
</ cache db path>
<c a c h e t t l d a y s e x t e n s i o n−by=” d e f a u l t ”>

7
</ c a c h e t t l d a y s>
<c a c h e r o w s l i m i t e x t e n s i o n−by=” d e f a u l t ”>

100000
</ c a c h e r o w s l i m i t>

</ t o k e n c o n n e c t>
. . .

</ p l u g i n s>

In KonText, plug-ins can be divided into two groups:

• required plug-ins which are necessary for KonText to
run (e.g. plug-ins for authentication and database ac-
cess),

• optional plug-ins which extend core functionality in
different ways (e.g. by adding an interactive tag
builder widget or a module for syntax dependency tree
rendering).

For plug-in developers, KonText defines a set of abstract
classes prescribing behavior a custom plug-in implementa-

Figure 6: A data integration example - Wiktionary.org

tion must implement. KonText configuration file then spec-
ifies which concrete implementations are used for all the
enabled/required functions (Listing 1). The required plug-
ins used by KonText include:

• db plugin for unified access to a key-value stor-
age used across the application (Figure 8); currently
available implementations are for Redis and SQLite3
databases,

• sessions for handling HTTP user sessions,

• auth for custom authentication methods (including re-
mote authentication),

• conc cache for storing calculated concordance results
for later reuse.

3.2. Integrability with other LRs
One of the ways how to extend the functionality provided
by KonText lies in integrating it with other LRs. Most
progress has been reached in connecting individual tokens
or aggregated results from concordances. The results are
now available as token connect and kwic connect plug-ins
(Figures 6 and 7).
The token connect plug-in allows connecting any position
in the text (along with available meta-data) with an exter-
nal service. Such a solution allows e.g. an integration with
dictionaries or providing an alternative view on a respec-
tive part of the concordance (e.g. a different annotation/to-
kenization level).
The kwic connect plug-in obtains the most frequent KWIC
matches from a concordance and searches for each of them
individually using an external service.
Among examples of LR integration, we can mention the
CNC translation service Treq (Škrabal and Vavřı́n, 2017)
(Figure 7), integration with Vallex (Urešová et al., 2014)
provided by LINDAT/CLARIAH-CZ and also an integra-
tion of KonText and TEITOK (Janssen, 2015) which is cur-
rently in development by the author of TEITOK.
We have been also experimenting with using whole concor-
dances as sources of data processed by a 3rd party collo-
cation analysis library (Belica, 1995), yet this will require
further analysis and testing as the performance penalty is
much higher due to the need to encode and transfer large
amounts of data proportional to a respective concordance
size (which can be many gigabytes in size).



7007

Figure 7: A data integration example - translation database
Treq

3.3. Performance optimizations
As for the performance optimizations, the possibilities are
rather limited as most of the search and data aggregation
performance is determined by the Manatee-open search en-
gine. However even in this case we have been able to reach
some progress by involving a distributed asynchronous task
queue for computationally demanding jobs.
Even though NoSkE supports asynchronous calculation of
concordances, it is only able to run the calculation on the
same computer via spawning of operating system processes
and only for certain types of queries. In contrast, KonText
delegates such computations to one or more worker servers
allowing horizontal scaling of the application performance
by engaging more physical computers. The web and worker
server decoupling has its limits in a way that the servers
must share a file system allowing the web server to access
calculated results. But such a requirement can be met via
standard GNU/Linux server set-up (e.g. by involving a net-
work or a distributed file systems).
The aforementioned optimization is suitable to tackle in-
creasing number of concurrent users but it cannot be eas-
ily used to distribute/optimize a single concordance search
as this would require a low-level support on the search
engine side to get a reasonable operational efficiency. In
terms of single query parallelization in (No)SkE, there was
a promissing progress presented in (Rábara and Rychlý,
2015).

4. Architecture
KonText is a client-server web application developed to
run on a regular GNU/Linux server (tested on Ubuntu and
CentOS) along with a few common dependencies (HTTP
proxy server, Python runtime, Node.JS). The essential com-
ponents of a running KonText installation are:

• Manatee-open library as a search and analytics engine,

• WSGI application written in Python (a part of Kon-
Text),

• dynamic HTML user interface generated by a client-
side application written in TypeScript language (a part
of KonText),

• key-value database Redis for storing auxiliary data,

Figure 8: a communication and data exchange structure
within KonText

Figure 9: A layer view of the server-side application

• asynchronous task queue server Celery,

• task scheduler Celery Beat for regular automatic
maintenance.

A raw scheme depicting how these components pass com-
mands and exchange data can be seen in Figure 8.

4.1. Server-side part
Server-side code comprises of two parts - a web server and
a worker server for asynchronous tasks.

4.1.1. WSGI web server
WSGI 2 application is implemented on top of the Werkzeug
WSGI web application library. Rather than a strict frame-
work, Werkzeug provides a set of libraries for flexible web
application development. Its design allowed for gradual re-
placement of the original NoSkE server-side components
with Werkzeug-based ones. A layered view of KonText
server-side application structure is depicted in Figure 9.
The WSGI application can be run in any compatible envi-
ronment, though we can recommend Gunicorn or uWSGI
HTTP servers for production installations.

4.1.2. Asynchronous task queue
Some KonText operations (e.g. creating large concor-
dances, creating subcorpora with respect to a translation
alignment or with custom text type proportions) are com-
putationally/data intensive with typical waiting times from

2Web Server Gateway Interface - a widely used interface for
forwarding HTTP requests to Python applications



7008

tens of seconds to minutes. To avoid blocking user inter-
face for the time of the calculation, KonText processes such
actions in an asynchronous way. When a user initiates an
action, KonText puts the action to a task queue allowing the
user to interact with the interface in a normal way. Once the
task is finished, the user is notified that the result is avail-
able. To implement the task queue, KonText uses a Python
application Celery which provides a complete environment
for asynchronous distributed task processing.

4.2. Client-side part
Client-side part of KonText is run in a web browser as an
interactive web application. KonText relies on modern, yet
still proven libraries based on the state-of-the-art paradigms
for developing user interfaces:

• React user interface framework,

• custom state management library inspired by Flux pat-
tern and Redux library built on top of reactive pro-
gramming library RxJS,

• immutable data structures,

• TypeScript language.

5. Summary and Outlook
KonText has been actively developed since 2013 with more
than 6700 commits in its Git repository and hundreds of re-
solved issues and topics discussed on CNC’s public support
website.
A long-term cooperation on development of KonText ex-
ists with the Institute of Formal and Applied Linguistics
(Faculty of Mathematics and Physics at Charles University)
and KonText has been adopted as the query interface at the
LINDAT/CLARIAH-CZ repository.
KonText is deployed or actively tested by CLARIN centres
in the Czech Republic, Poland and Slovenia, as well as by
other institutions (mova.institute, Serbski institut).
The development takes place on GitHub (https://
github.com/czcorpus/kontext) where develop-
ers and users are welcome to contribute in different ways
– fixing/improving code, reporting bugs or discussing new
features. The production version is available at https:
//kontext.korpus.cz.
As for the features planned for the near future we have put
focus on the problem of recognizing statistical significance
of results, improved support for UD tokenized and tagged
texts and also on improved support for presenting of time-
based data.

6. Acknowledgements
This paper resulted from the implementation of the Czech
National Corpus project (LM2018137) funded by the Min-
istry of Education, Youth and Sports of the Czech Republic
within the framework of Large Research, Development and
Innovation Infrastructures.
The author would also like to thank Michal Křen for valu-
able comments on this article.

7. Bibliographical References
Belica, C. (1995). Collocation analysis and clustering.

Corpus Analysis Module.
Diewald, N. and Margaretha, E. (2017). Krill: Korap

search and analysis engine. Journal for Language Tech-
nology and Computational Linguistics (JLCL), 31 (1),
pages 63–80.

Does, J. D., Niestadt, J., and Depuydt, K. (2017). Creating
research environments with blacklab. In J. Odijk, editor,
CLARIN in the Low Countries, pages 245–257. Ubiquity
Press, Utrecht.

Hardie, A. (2012). Cqpweb - combining power, flexibil-
ity and usability in a corpus analysis tool. International
Journal of Corpus Linguistics, 17(3):380–409.

Janssen, M. (2015). Multi-level manuscript transcription:
Teitok. Congresso de Humanidades Digitais em Portu-
gal, Lisboa.

Kilgarriff, A., Baisa, V., Bušta, J., Jakubı́ček, M., Kovář,
V., Michelfeit, J., Rychlý, P., and Suchomel, V. (2014).
The sketch engine: Ten years on. Lexicography.

Krause, T. and Zeldes, A. (2016). Annis3: A new architec-
ture for generic corpus query and visualization. Digital
Scholarship in the Humanities.

Krause, T. (2019). ANNIS: A graph-based query system
for deeply annotated text corpora. Ph.D. thesis.

Machálek, T. and Křen, M. (2013). Query interface for di-
verse corpus types. Natural language processing, corpus
linguistics, e-learning.

Nivre, J., de Marneffe, M.-C., Ginter, F., Goldberg, Y.,
Hajic, J., Manning, C. D., McDonald, R., Petrov, S.,
Pyysalo, S., Silveira, N., Tsarfaty, R., and Zeman,
D. (2016). Universal dependencies v1: A multilingual
treebank collection. In Nicoletta Calzolari (Conference
Chair), et al., editors, Proceedings of the Tenth Interna-
tional Conference on Language Resources and Evalu-
ation (LREC 2016), Paris, France. European Language
Resources Association (ELRA).

Rychlý, P. (2007). Manatee/bonito - a modular corpus
manager. 1st Workshop on Recent Advances in Slavonic
Natural Language Processing., pages 65–70.

Rábara, J. and Rychlý, P. (2015). Concurrent processing of
text corpus queries. Ninth Workshop on Recent Advances
in Slavonic Natural Language Processing, pages 49–58.

Savický, P. and Hlaváčová, J. (2002). Measures of
word commonness. Journal of Quantitative Linguistics,
9(3):215–231.

Urešová, Z., Štěpánek, J., Hajič, J., Panevová, J., and
Mikulová, M. (2014). Pdt-vallex: Czech valency lex-
icon linked to treebanks. LINDAT/CLARIN digital li-
brary at Institute of Formal and Applied Linguistics,
Charles University in Prague.

Škrabal, M. and Vavřı́n, M. (2017). The translation equiv-
alents database (treq) as a lexicographer’s aid. In Iztok
Kosem, editor, Electronic lexicography in the 21st cen-
tury. Proceedings of eLex 2017 conference, pages 124–
137. Lexical Computing.

https://github.com/czcorpus/kontext
https://github.com/czcorpus/kontext
https://kontext.korpus.cz
https://kontext.korpus.cz

	General overview and motivation
	End user features
	Query Construction
	Query syntax highlighting
	Tag builder
	Query history and persistence

	Data Selection
	Finding a corpus based on different criteria
	Interactive text selection
	Proportion-based text selection
	Public subcorpora

	Result presentation and manipulation
	Reproducibility and control
	Adequate frequency characteristics
	2-dimensional frequency distribution
	Manual categorization of concordance lines
	Rendering of dependency syntax trees
	Support for spoken corpora


	Provider-oriented features
	System Integrability and extensibility
	Integrability with other LRs
	Performance optimizations

	Architecture
	Server-side part
	WSGI web server
	Asynchronous task queue

	Client-side part

	Summary and Outlook
	Acknowledgements
	Bibliographical References

