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Abstract
In this paper, we investigate the effectiveness of using rich annotations in deep neural network (DNN)-based statistical speech synthesis.
DNN-based frameworks typically use linguistic information as input features called context instead of directly using text. In such
frameworks, we can synthesize not only reading-style speech but also speech with paralinguistic and nonlinguistic features by adding
such information to the context. However, it is not clear what kind of information is crucial for reproducing paralinguistic and
nonlinguistic features. Therefore, we investigate the effectiveness of rich tags in DNN-based speech synthesis according to the Corpus
of Spontaneous Japanese (CSJ), which has a large amount of annotations on paralinguistic features such as prosody, disfluency, and
morphological features. Experimental evaluation results shows that the reproducibility of paralinguistic features of synthetic speech was
enhanced by adding such information as context.
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1. Introduction
Speech synthesis is used in various applications such as
smart speakers and robots, and situations such as announce-
ments in public transportation and voice-overs of videos. A
widely-studied speech synthesis is DNN-based one (Zen et
al., 2013) in which the relationship between a text and an
acoustic feature sequence is modeled by DNN. However, if
we directly use text as an input of DNN, the training tends
to be difficult. Instead, context is widely used as a model in-
put. Context is defined as a variation factor of phonetic and
prosodic features, and there are various contextual factors
such as adjacent phones and stress in syllables. We encode
contextual factors into a real-valued vector to enable DNN
training.
In this study, we focus on the construction of context. Al-
though general reading-style speech synthesis only uses lin-
guistic information as a context, context is more flexible,
namely, it is easy to feed various information into the input
of DNN. For example, inputting a speaker vector is suc-
cessful in multi-speaker modeling (Wu et al., 2015; Hojo
et al., 2018). The emotion control of synthetic speech was
achieved by using the degree of expressiveness as a contex-
tual factor (An et al., 2017; Lorenzo-Trueba et al., 2018). It
is also reported that local features such as emphasis can be
used as the input of DNN (Wang et al., 2018).
In order to synthetize speech with a wide variety of paralin-
guistic features, adding such features as context is promis-
ing. However, too many input features often makes training
difficult and causes overfitting problem. Therefore, in this
paper, we investigate the effectiveness of rich tags in DNN-
based speech synthesis according to the Corpus of Spon-
taneous Japanese (CSJ) (Maekawa et al., 2000). CSJ has a
large amount of tags, which can be used as additional infor-
mation for speech synthesis. Specifically, we choose con-
textual factors, such as tone, word, and disfluency, from the

tags in XML files of CSJ core data, and encoded such fac-
tors into the input vectors of DNN-based speech synthesis
system. By subjective evaluations, we show that it is im-
portant to use a detailed annotation in spontaneous speech
synthesis.

2. Related Work
A similar study to this paper was performed for an hidden
Markov model (HMM)-based speech synthesis (Koriyama
et al., 2011). In this study, the tags in CSJ were used as
context of HMMs. The context of HMM-based speech syn-
thesis is a factor to construct a decision tree. Although ex-
perimental results show that tone information and phone
prolongation were effective to enhance the naturalness of
synthetic speech, others did not affect the performance. A
possible reason is that decision trees cannot deal with com-
plicated combination of contextual factors. Furthermore,
since the size of decision tree is determined by the amount
of training data, some contextual factors were scarcely used
for the construction of a decision tree. We can expect to
overcome this problem because DNN has an advantage to
utilize complicated input features.

3. DNN-based Speech Synthesis
We describe the basics of DNN-based speech synthesis.
There are two popular approaches, namely, the pipeline and
end-to-end approaches. The pipeline approach consists of
the models of text analysis and duration and acoustic fea-
ture models (Zen et al., 2013), whereas the end-to-end ap-
proach uses a single model, which generally predicts an
acoustic feature sequence from a character sequence of text
(Sotelo et al., 2017; Wang et al., 2017). In this study, we
adopt the pipeline framework because the end-to-end model
is difficult to train and the pipeline model still outperformed
the end-to-end model in recent study (Yasuda et al., 2019).
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The input features of duration and acoustic feature mod-
els are derived from contexts. Contexts represent linguistic
information of the input text and are defined as the set of
contextual factors that determine spectral and prosodic fea-
tures of synthetic speech. For example, even for frames
having the same phones, stress and unstressed phones have
different sounds, and pronunciation depends on the preced-
ing and succeeding phones. Contexts include not only cat-
egorical factors such as phone names and part-of-speech
(POS) information but also numerical factors such as the
length of phrases and the relative position from accented
units. An example of contextual factors is shown in Sect.
4.
To utilize the contextual factors as the input of DNNs, the
factors are converted into differentiable continuous values.
Specifically, categorical contextual factors such as phone
names are encoded to one-hot vectors. Moreover, we know
that specific contextual factors are related. In such cases,
we use a question, e.g., “Is a current phone a vowel?”, and
obtain binary values of 1 for “yes” and 0 for “no.”
Numerical factors such as length and position can be di-
rectly used as the inputs of DNNs. However, it is reported
that encoding such factors into binary vectors using ques-
tions is more effective than using the numerical factors as
inputs directly (Dall et al., 2016). The questions for en-
coding numerical factors generally include inequality ques-
tions, e.g., “Is the factor more/less than a specific value?”
Moreover, frame position information is used to distinguish
a frame from other frames that are in the same speech unit.
Specifically, the time scale of the phone is normalized to
[0, 1] and the relative position of the frame is used as an
input feature.

4. Contextual Factors for Japanese
Reading-style Speech

Since the contextual factors depend on the languages and
we use Japanese speech data for experiments, we ex-
plain the Japanese context set used in the demo script of
HMM/DNN-based Speech Synthesis System (HTS) (Zen
et al., 2007).
The Japanese context set uses five hierarchical speech units:
utterance, breath group, accent phrase, mora, and phone as
follows:

Utterance: The top layer, which is equivalent to a sentence
in reading-style speech synthesis. Utterance includes
duration information such as the numbers of breath
groups, accent phrases, and moras.

Breath group: A speech unit defined by dividing an utter-
ance by pauses. Intonation reset often occurs between
breath groups. The contextual factors of breath groups
are the position of the unit and the numbers of accent
phrases and moras.

Accent phrase: Japanese is a pitch accent language, in
which each mora is represented by a high/low pitch. A
high-pitch mora that has a low pitch in the next mora
is called an accent nucleus, which is important for the
perception of Japanese words. One accent phrase has
either one or no accent nucleus and the position of

the accent nucleus mora determines the accent type.
The contextual factors of the accent phrase include not
only position information and the number of moras but
also the accent type. The context of the accent phrase
also contains information about the preceding and fol-
lowing pauses.

Mora: The mora is a commonly-used unit of Japanese,
in which a word duration is controlled by the num-
ber of moras in the word. The contextual factors of a
mora are composed of position information in an ac-
cent phrase and relative position information from ac-
cent nucleus moras.

Phone: The basic unit of speech. The identity of a phone
is used as a contextual factor of the phone. Since some
phones share features, such as voiced, vocalic, plosive,
and nasal sounds, such features are used as questions.

To take the effect of adjacent units into account, we use the
contextual factors of the previous and next speech units as
well as those of current units. We refer to this context set
as the baseline context.

5. Extended Context for Spontaneous
Speech

To model spontaneous speech, which has much greater
variation in utterances than reading-style speech, we ex-
tended the context set on the basis of the tags of CSJ
(Maekawa et al., 2000). CSJ is designed for various pur-
poses such as the analysis and modeling of spontaneous
speech, and the core data in CSJ has a huge amount of man-
ual annotation. In this section, we describe how to convert
the tags into contextual factors, and we propose an extended
context set derived from the tags of CSJ.

5.1. Tags included in XML files of CSJ
The XML files in CSJ includes detail tags (Maekawa et
al., 2004) as shown in Fig. 1. The hierarchical structure
of XML for the core CSJ is as follows:

<talk>
<IPU>

<LUW>
<SUW>
<TransSUW>
<Mora> or <NonLinguisticSound>
<Phoneme>

<Phone>
<XJToBILabelTone>
<XJToBILabelWord>
<XJToBILabelBreak>
<XJToBILabelPrm>

Here, we describe how to use the elements of XML for the
context set.

Talk: In CSJ, speech data is stored as a set of utterance
sequences referred to as a “talk.” Talks include aca-
demic presentation speech, simulated public speaking,
and dialogs. The dialogs are interviews, free dialogs,
and task-oriented conversations. The types of talk and
speaker information can be obtained from this tag.
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Figure 1: Example of XML in CSJ.

Inter-pause unit (IPU): For reading-style speech, in gen-
eral, sentences are used as a unit of utterance. How-
ever, this is not appropriate for spontaneous speech be-
cause the end of the sentence is not always uttered. In
CSJ, IPU is used as an utterance unit of transcriptions,
in which 200 ms pauses are regarded as the boundaries
of utterances.

Long-unit word (LUW), Short-unit word (SUW):
Since Japanese is an agglutinative language, there
is a high degree of freedom in the definition of
“word” (Maekawa et al., 2014). Therefore, CSJ takes
two types of unit in words: LUW and SUW. An
SUW is the shortest unit defined by the dictionary
UniDic (Den et al., 2008). An LUW is a longer unit
representing compound words.

TransSUW: This tag is used to indicate disfluent utter-
ances such as fillers, word fragments, and restate-
ments.

Mora: A <Mora> tag has kana information. Mora tag can
be used to count the number of moras in phrases.

NonLingisticSound: Nonlinguistic information such as
breaths and laughing is labeled in this tag. This tag
also includes a vowel-nasal filler denoted by “VN,”
which appears in the response utterances in dialogs.

Phoneme, Phone: <Phone> tags have phone-related an-
notation in detail, e.g., the beginning and end times
and devoiced vowels. The number of phone entities
used in this study is 58. The <Phoneme> tag is
a group of <Phone> tags, which we ignore in this
study.

XJToBILabel*: These tags are annotated at the times
when X-JToBI (Maekawa et al., 2002) events appear.
The tag <XJToBILabelTone> includes tone labels

of accent (A), initial boundary tone (%L, %H), bound-
ary pitch movement (L%, HL%, LH%, HLH%), other
tags (LTBPM, PT, pointer, extender, filler).

<XJToBILabelWord> presents intonation infor-
mation associated with words. Specifically, the per-
ceived position of accent nucleus is annotated in this
tag.

<XJToBILabelBreak> is used to indicate break
index (BI) labels. The labels “1”, “2”, and “3” cor-
respond to the boundaries of words, accent phrases,
and intonation phrases, respectively. The hierarchi-
cal structure of XML is different from that of the
context set described in Sect. 4. Hence, we recon-
struct the structure using the break index labels of
<XJToBILabelBreak>. Specifically, we use la-
bels 2 and 3 as the boundaries of the accent phrase
and breath group, respectively.

<XJToBILabelPrm> is a specific intonation label
for X-JToBI. This tag is used to represent lexically ir-
regular prominences.

5.2. Extended context
We propose the use of additional contextual factors that
can be obtained from the tags of XML files based on ear-
lier work on HMM-based speech synthesis (Koriyama et
al., 2011). The tags used in this study are shown in Ap-
pendix A. Most of the tags are categorical information, we
encode such tags into one-hot features. Note that we do not
use all tags included in the database of CSJ because some
tags appear very rarely.

5.2.1. Phone prolongation
When a speaker is thinking, surprised, or emphasizing,
phones are often pronounced for longer than in ordinary
situations. Since this prolongation is not lexical, additional
annotation is required. The labels about phone prolongation
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can be obtained from the attributes TagVLong and TagC-
Long in the tag <Mora>, which denote the prolongation of
vowels and consonants, respectively.

5.2.2. Speaking style
When speakers utter with expressiveness such as when
laughing and whispering, the speech waveform changes de-
pending on the speaking style. This information is in the
attributes of Tag{Whisper—Laughing—Uncertain—...}
in the <Mora> and <NonLinguisticSound> tags.

5.2.3. Tone label
It is difficult to model pitch movements in spontaneous
speech using only accent-type information because they are
much more complicated than those in reading-style speech.
For example, a rise-fall type of boundary pitch movement
is observed in utterances including dialog acts such as turn-
keeping and requesting an agreement. We utilize the labels
of low, high, high-low, low-high, and high-low-high bound-
ary pitch movements for the additional contextual factors
based on the tag <XJToBILabelTone>. Moreover, we
use other tone labels including “A”, “pH”, and “pL”, and
add contextual factors about these labels to not only ac-
cent phrases but also phones, because the position of tone
labels is critical information for pitch contours. Irregular
pitch movements annotated in <XJToBILabelPrm> are
also used. In addition, we use detail boundary information
of <XJToBILabelBreak>, such as “2+p”, which repre-
sents the existence of pause after the phrase.

5.2.4. Disfluency
Spontaneous speech include many disfluent utterances.
CSJ includes filled pauses, word fragments, and restate-
ments as the labels of disfluency in the tag <TransSUW>.
The use of these labels is expected to distinguish such dis-
fluent utterances from normal utterances.

5.2.5. Word
In the reading-style speech synthesis described in Sect. 4.,
word-unit features are omitted from contextual factors be-
cause they are not important in practice (Yokomizo et al.,
2010). In this study, we incorporate word-unit features into
the extended context to examine the effectiveness of such
features for spontaneous speech. As the contextual fac-
tors of the word unit, we use the information of the part
of speech and the conjugate type and form included in the
tags <LUW> and <SUW>.

5.2.6. Clause
Although an IPU is a useful unit for spontaneous speech in
which the end of a sentence does not often appear explicitly,
it is often too short to model sequential information. As a
grammatical unit related to a sentence, we can use clauses
automatically determined by the transcription texts. At-
tributes ClauseBoundaryLabel and CU OperationSign
in the tag <SUW> is related to the strength of the bound-
ary classified into weak, strong, or absolute. The absolute
boundary is equivalent to the sentence boundary of reading-
style speech and it frequently becomes the utterance bound-
ary. On the other hand, the weak boundary rarely becomes
the utterance boundary. The types of clause boundary are
determined according to the final word of the phrase.

Table 1: Amounts of speech data used for experiments.
Speaker # of Talks # of IPUs Duration [s]

F1 (female, ID=19) 6 2144 3727
F2 (female, ID=514) 6 2231 4857
M1 (male, ID=685) 6 2213 3825
M2 (male, ID=471) 6 1650 3004

6. Experiments
6.1. Experimental conditions
We used the speech data of two males and two females in-
cluded in the CSJ database. The speech data consisted of
dialogs, lectures, and simulated lectures. The amounts of
training data are shown in Table 1. The training data was
segmented into IPUs. The context labels were created for
each IPU using XML files in CSJ. We individually trained
phone duration and acoustic feature models. The phone du-
ration model used phone-level context as an input feature
vector and predicted phone durations, whereas the acoustic
feature model predicted frame-level acoustic features from
corresponding input features.
We extracted the spectrum envelope, aperiodicity, and
fo using WORLD (Morise et al., 2016) from 16 kHz
waveforms. We converted the WORLD features into
187-dimensional acoustic features, which consisted of
the 0–59th mel-cepstrum, log fo, one-dimensional code
aperiodicity, their delta and delta-delta features, and
voiced/unvoiced flags. For the baseline context, the di-
mensions of input feature vectors were 317 and 321 for
the duration and acoustic feature models, respectively. For
the extended context, the dimensions of input feature vec-
tors were 730 and 734 for the duration and acoustic feature
models, respectively.
The architecture of the DNN was a basic feedforward neu-
ral network. The number of hidden layers was five and each
layer had 1024 hidden nodes. We used the ReLU activa-
tion functions and Adam optimizer (Kingma and Ba, 2015)
with a learning rate of 0.001. To avoid the overfitting prob-
lem, we used weight decay with a coefficient of 10−6 and
a dropout rate of 0.5. The minibatch size was 1024 and we
ran 20 epochs.
For a subjective evaluation test, we merged multiple syn-
thetic IPUs into the speech samples whose durations are
approximately 5 s because some of the IPUs were too short
to evaluate. The test speech samples were not included in
the training data.

6.2. Subjective evaluation results
To evaluate the perceptual quality of synthetic speech, we
performed subjective evaluation based on XAB tests, which
are generally used to evaluate two samples and find the sub-
tle difference of their quality. The participants on crowd-
sourcing service first listened to the original reference (X),
and chose whether of synthetic samples A and B was sim-
ilar to the reference. For each test, the number of partici-
pants was 30, and each participant evaluated randomly cho-
sen 10 speech segments.
Table 2 shows the result where baseline and extended con-
texts are compared. Except for the speaker M2, it is seen
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Table 2: XAB test comparing baseline context with ex-
tended one.

Speaker Baseline Extended p-value
F1 44.3 % 55.7 % < 0.01
F2 43.0 % 57.0 % < 10−3

M1 43.6 % 56.4 % < 0.01
M2 46.6 % 53.4 % 0.097

Table 3: XAB test on modified extended context. The
speaker was F2 (ID=514).

Removed context Removed Extended p-value
−Tone label 52.0 % 48.0 % 0.33
−Disfluency 49.3 % 50.7 % 0.74
−Word 47.7 % 52.3 % 0.25

that the extended context gave significantly higher scores
than the baseline context.
To examine the detail of extended context, we modified ex-
tended context by removing categories in Sect. 5.2. one by
one. Specifically, we removed tone label, disfluency, and
word, respectively, whose tags are frequently observed in
the data set. We used the data speaker F2, which has a
largest amount of training data among the speakers. The
result is shown in Table 3. There were no significant differ-
ences between extended and modified contexts. A possible
reason is that since spontaneous speech has a large variety
in paralinguistic features, removing only one category from
the extended context did not affect the perceptual quality of
synthetic speech.

7. Conclusions
In this paper, we investigated the effectiveness of rich tags
for speech synthesis using the CSJ. We extended input fea-
ture vector by using the context according to the tags of
CSJ, which includes tone label and disfluency informa-
tion. Subjective evaluation shows that the use of extended
context improved that the reproducibility of spontaneous
speech compared with the baseline context. In future work,
we should examine the combination of the categories in de-
tail. Furthermore, we will train a multi-speaker model in
order to use the tags which are rarely observed for one-
speaker’s data.
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A Tags and Attributes Used in This Study
We show tags and attributes of XML files in CSJ used in
this study in Tables 4 & 5 Category means the categories
used for extended context 5.2..

Table 4: Tags and attributes (Talk to TransSUW).
Tag / attribute Category
<Talk>
TalkID Baseline
<IPU> Baseline
Channel Baseline
IPUStartTime Baseline
IPUEndTime Baseline
<LUW>
LUWPOS Word
LUWConjugateForm Word
LUWConjugateType Word
LUWMiscPOSInfo1 Word
LUWMiscPOSInfo2 Word
LUWMiscPOSInfo3 Word
<SUW>
SUWPOS Word
SUWConjugateForm Word
SUWConjugateType Word
SUWMiscPOSInfo1 Word
SUWMiscPOSInfo2 Word
SUWMiscPOSInfo3 Word
ClauseBoundaryLabel Clause
CU OperationSign Clause
<TransSUW>
TagDisfluencyStart Disfluency
TagDisfluencyEnd Disfluency
TagDisfluency2Start Disfluency
TagDisfluency2End Disfluency
TagFillerStart Disfluency
TagFillerEnd Disfluency
TagFillerMidst Disfluency
TagIncorrectStart Disfluency
TagIncorrectEnd Disfluency
TagIncorrectMidst Disfluency

Table 5: Tags and attributes (Mora to XJToBILabel*).
Tag / attribute Category
<Mora>
MoraID Baseline
TagVLong Phone prolongation
TagCLong Phone prolongation
TagWhisperStart Speaking style
TagWhisperEnd Speaking style
TagWhisperMidst Speaking style
TagLaughingStart Speaking style
TagLaughingEn Speaking style
TagLaughingMidst Speaking style
TagUncertainStart Speaking style
TagUncertainEnd Speaking style
TagUncertainMidst Speaking style
<NonLinguisticSound>
TagBreath Speaking style
TagLaugh Speaking style
TagVN Speaking style
TagWhisperStart Speaking style
TagWhisperEnd Speaking style
TagWhisperMidst Speaking style
TagLaughingStart Speaking style
TagLaughingEnd Speaking style
TagLaughingMidst Speaking style
TagUncertainStart Speaking style
TagUncertainEnd Speaking style
TagUncertainMidst Speaking style
<Phone>
PhoneEntity Baseline
Devoiced Baseline
PhoneStartTime Baseline
PhoneEndTime Baseline
<XJToBILabelTone> Tone label
ToneClass Tone label
Divided Tone label
<XJToBILabelWord>
PerceivedAccPos Baseline
<XJToBILabelBreak> Baseline
<XJToBILabelPrm> Tone label
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