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Abstract
Speech recognition has seen dramatic improvements in the last decade, though those improvements have focused primarily on adult
speech. In this paper, we assess child-directed speech recognition and leverage a transfer learning approach to improve child-directed
speech recognition by training the recent DeepSpeech2 model on adult data, then apply additional tuning to varied amounts of child
speech data. We evaluate our model using the CMU Kids dataset as well as our own recordings of child-directed prompts. The results
from our experiment show that even a small amount of child audio data improves significantly over a baseline of adult-only or child-only
trained models. We report a final general Word-Error-Rate of 29% over a baseline of 62% that uses the adult-trained model. Our
analyses show that our model adapts quickly using a small amount of data and that the general child model works better than school

grade-specific models. We make available our trained model and our data collection tool.
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1. Introduction

Adult automatic speech recognition (ASR) systems have
rapidly improved over the last decade, with modern systems
approaching recognition rates comparable to human-levels
in controlled environments (Shu, 2017} |Li, 2019)), yet the
accuracy of child speech recognition systems is lagging far
behind (Kennedy et al., 2017). Some reasons may include
the fact that children’s vocal tracts are much smaller than
those of adults, the vocal tracts of children change rapidly
as they mature so the acoustic properties of speech vary be-
tween children much more than adults, and speech produc-
tion is a complex motor activity that children are still learn-
ing to master, so the variation in speech production from the
same speaker is much higher in children than in adults. For
example, Figure [T] shows how the word error rate (WER)
of a recent English ASR system, adapted specifically for
children, declines significantly with the grade level (i.e., a
proxy for age) of the speaker (Yeung and Alwan, 2018§)).
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Figure 1: Word Error Rate (WER) by grade level.

Figure [T shows that researchers cannot fully claim human-
level recognition capabilities when the ASR system in ques-
tion can only recognize adult speech, whereas humans are
able to recognize adults and children. Moreover, speech
disorders affect 8% of children (Black et al., 2015) in the

United States (particularly for younger children ages 3-6,
where the WER is the highest in Figure [I), yet only about
half of those children receive timely intervention, and the
frequency of that intervention is often not enough (Nama-
sivayam et al., 2015). Computer based speech therapy is
a promising approach to increase the effectiveness and ac-
cessibility of speech therapy for children, and research has
shown that computer based speech therapy can be effec-
tive, especially when used in conjunction with traditional
therapy (Chen et al., 2016} |Furlong et al., 2017). However,
this can only happen if child-directed ASR is reliable and
useful to researchers and therapists.

There have been attempts to apply systematic pitch
changes to adult data to improve child-directed ASR
without marked improvements (Liao et al., 2015). As with
adult ASR, more data will result in better models, yet one
of the key challenges of developing ASR for children is
collecting large data sets containing error free samples of
child speech, in part because child speech data is protected
by the Children’s Online Privacy Protection Act (COPPA).
For ongoing research, it is important that a child-directed
ASR be usable offline in a COPPA-compliant environment.

In this paper, we offer a streamlined solution to collecting
child speech samples to improve ASR, and show in an ex-
periment how transfer learning can be used to train child
directed ASR models using only a small amount of child
speech. In our specific use of transfer learning, a deep neu-
ral network which has been previously trained on a large
data set is adapted to work better for a different popula-
tion on the same task; i.e., ASR. This is an appealing ap-
proach to create models directed towards child speech, in-
cluding disordered speech, where large data sets are dif-
ficult to obtain. transfer learning has been used success-
fully in many deep learning applications, including image
classification and natural language processing. For exam-
ple, (Chen et al., 2018)) showed how cross-language trans-
fer learning (though in some cases arguably transfer learn-
ing) showed promising results for low resourced languages
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(where the language is extinct or there are very few native
speakers).

In the following section we describe our data — adult and
child data — then explain our model, DeepSpeech2, and
how we applied transfer learning to improve the WER in
an evaluation set of child data. Our results show that the
accuracy of models generated using transfer learning can
approach the accuracy of state of the art cloud-based sys-
tems. We also show that when a small amount of child
speech data is available for transfer learning, a general
child-adapted model is more accurate than grade-specific
models. Our additional analyses show that the model adapts
quickly to a small amount of child speech data, though the
adapted model, as one might expect, performs poorly on
adult speech.

2. Data

In this section we describe the adult speech data (Lib-
riSpeech) and child data (CMU Kids and our own novel
recordings) that we used for training our initial model and
for transfer learning.

2.1. Adult Data: LibriSpeech

The adult speech data used for this work is from the Lib-
riSpeech corpus (Panayotov et al., 2015), which is com-
monly used for training and benchmarking ASR (Collobert
et al., 2016) and downstream tasks that use ASR (Chung et
al., 2016) applications. It consists of approximately 1000
hours of transcribed adult English speech. Most of the ut-
terances are between 1 and 16 seconds long, with the aver-
age utterance about 12 seconds long. An example is shown

in[(T)] below.

1) AND I WAS BORN THERE YET I DO ASSURE
YOU I OFTEN LOSE MY WAY AMONG THE
VERY PILES OF WAREHOUSES THAT ARE
BUILT UPON MY FATHER’S ORCHARD DO
WE PART HERE

The data is derived from read audio books available in the
public domain. The speech has been carefully segmented
and separated into data sets as shown in Table [T} In this
work, all three of the LibriSpeech training sets (about 960
hours) were used for training.

Table 1: LibriSpeech Data Set

subset hours min/speaker female male
dev-clean 54 8 20 20
test-clean 5.4 8 20 20
dev-other 53 10 16 17
test-other 5.1 10 17 16
train-clean-100  100.6 25 125 126
train-clean-360 363.6 25 439 482
train-other-500 496.7 30 564 602

2.2. Child Data: CMU Kids Dataset

The child speech data we used for our experiments is the
CMU Kids Dataset (Eskenazi and Graff, 1997) which con-
tains 5180 total North American English utterances. The

corpus consists of 76 children ranging in age from six to
eight (1st through 3rd grade at the time of recording) with
the exception of one child who was 11 and in the 6th grade
at the time of recording. There were 24 male and 52 fe-
male speakers. Each utterance is a short phrase, averaging
6 seconds in duration, resulting in a total of about 9 hours
of child speech. We reserved 300 of those utterances for
development and an additional 300 for testing (i.e., 4580
for training). An example utterance is shown in[(2)]

2) A BLUE BUTTERFLY FLEW BY

Many of the utterances have small pronunciation errors
which are typical of young children. For example, in
one case when a child was prompted to give the example
utterance shown in the actual utterance was A blue
butterfly /s/flew by”, where the child added the phoneme
/s/ to the beginning of the word “flew”. The transcripts
used for training and testing were not modified to account
for these small errors in speech production.

Besides differences in acoustic qualities, Examples [(T)] and
[@)]illustrate another important challenge: adult utterances
tend to be longer and contain more complicated syntax and
vocabulary than the child data.

2.3. Child Data: Novel Recordings

3 Record

v Join aRoom
Enter & room to join

» Provide an ID
dentify the recorder

Record prompt readings

& Recording Prompts In Room" 1234 "as Recorder" 1"
Please Read:

This is a test prompt 3.

Stop Recording [ ]

Volume: 10/10

= 18

0:00 / 0:01

Figure 2: Interface used by children to recording prompt
readings generated by the administration tool

Due to restrictions surrounding privacy and collection of
child data, publicly available child speech data sets are
scarce and difficult to obtain. The CMU Kids data set
described above gives us a starting point. For a more
rigorous evaluation, we collected new recordings from
additional children while they read prompts selected from
the CMU Kids data set. To streamline this process for
this work and future work, we developed a web-based,
audio recording tool. The tool is designed to easily
administer prompt reading tasks to groups of speakers
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via a child-friendly interface (as shown in Figure [2), and
exports audio data packaged into user-defined groupings
that can be downloaded in a zip file for external usell]
The collected audio data is stored in 16k sample rate,
uncompressed, wav files, which work for the DeepSpeech2
training requirements and match the sample rate of the
previous data set. We recognize that text prompts bring
an additional layer of complexity as it requires children
to have learned how to read certain words. This makes
our evaluation more robust as pronunciation errors due to
misreading a word are recorded, giving the ASR model
examples of those kinds of errors. We leave the ability to
prompt children with pre-recorded audio (i.e., instead of
text) for future work.

Using this tool, we collected novel data from 20 children, 9
male and 11 female, between grades 1 and 5. Each child
read approximately 20 prompts, randomly selected from
the CMU Kids Dataset, for a total of 454 recorded utter-
ances. Most of the children were able to use the tool after a
brief demonstration without any help. A touch screen lap-
top was provided for them as the user interface, and an ex-
ternal USB microphone was used for the recording. Per our
observations, even the youngest of the children were able to
navigate the user interface easily and appeared to find the
tool and touch screen interface intuitive to use.

3. Model: DeepSpeech2

We used the DeepSpeech2 model described in |Amodei et
al. (2015}, which has been shown to produce state-of-the-
art results on adult speech when trained on sufficiently large
data sets] The model consists of two convolutional neural
(CNN) network layers, followed by five bidirectional gated
recurrent unit layers (GRU), and finally, a fully connected
output layer. The total number of model parameters is 41.2
million. The input to the model is a spectrogram generated
from the raw audio signal using a hamming window with a
size of 20ms and a stride of 10ms. The number of frequency
bands in the spectrogram is 160 and is computed as shown
in equation |1} where the sample rate for all audio files in
this experiment is 16k samples/second.

n_spectrums = sample_rate x window_stride (1)

Irec

Each CNN layer uses a two-dimensional filter. The first CNN
layer uses a filter size of 41x11 (stride of 2x2) and the sec-
ond CNN layer uses a filter size of 21x11 (stride of 2x1).
Each of the bidirecitonal GRU layers have an input size of
800. The GRU is a type of recurrent neural network (RNN)
with a gating function which aides in convergence during
training (Cho et al., 2014). The output of the model is de-
coded using Connectionist Temporal Classification (CTC)
(Graves et al., 2006)) loss function during training. The
model has 29 output classes {A, B, C, ..., Z, apostrophe,
space, blank}. The blank character is a special character

'Our prompt recording tool is freely available: https://
github.com/bsu-slim/prompt—-recorder
“https://github.com/SeanNaren/deepspeech.pytorch

used for the CTC decoding. In this work, an additional lan-
guage model is not used since the size of the adult training
set (1000 hours) is sufficiently large to enable the GRU lay-
ers to learn a reasonably accurate language model directly.
The goal of the model in this work is to output a tran-
scription — a sequence of graphemes — directly. However,
RNN-CTC based models have also been shown to work well
for phoneme production (Miao et al., 2016)), provided that
phonemic transcriptions are available for training. There-
fore, this model could potentially be used for future work
related to child speech development such as pronunciation
verification and language learning, where phoneme output
is required. Importantly, this model can be used offline
for child-directed ASR without worry that a cloud-based
provider is collecting protected child data. Our trained
models are available for download’|

4. Baseline Evaluations on Child Speech
Data

In this section, we evaluate our child test set against exist-
ing models to establish a baseline for the experiment in the
following section.

4.1. Task, Metrics, & Procedure

To establish a baseline of results for this test set, we evalu-
ated the 300 test utterances from the CMU Kids Dataset on
three different models (one with two settings)ﬂ

e Sphinx4 with the most recent pre-trained English
model (Walker et al., 2004)]

e DeepSpeech? trained on the LibriSpeech adult speech
training data set as described above

e DeepSpeech? trained on the CMU Kids training data
described above

e Google Speech API version 1E]

Our target metric is WER; i.e., lower scores denote better
results.

4.2. Baseline Results

Table 2: Baseline results on the child speech test set (WER)

Sphinx4 - Adult Model 100%
DeepSpeech2 - Adult Model 62%
DeepSpeech?2 - Child Model 60%

Google Speech-to-Text Versionl  24%

The results are summarized in Table [2| Though the Google
Speech API results are encouraging, a WER of 24% still
means that one in every four words is misrecognized;

30ur trained models are available for download:https://
bitbucket.org/bsu-slim/child-speech-models/

*We followed the approach taken by (Baumann et al., 2016) to
systematically evaluate against Sphinx4 and the Google Speech
APL

Shttps://github.com/cmusphinx/sphinx4

®https://cloud.google.com/speech-to-text/
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clearly there is room for improvement — current adult ASR
systems yield less than 5% WER. Moreover, the Google
Speech API is cloud-based and protected child data may be
compromised. The Sphinx4 system did not perform well
with this particular dataset, we assume due to the modeling
approach (i.e., Gaussian mixture model) and the domain-
specific data that did not include child data. The Deep-
Speech2 model performed better than Sphinx4, though with
a correct recognition rate of one in three words using either
the adult data or the child data for training. There is clearly
room for improvement, which we explore in the experiment
below. As DeepSpeech2 performed better than Sphinx4, we
build on that model.

5. Experiment: Transfer Learning using
DeepSpeech2

In this section, we explain the task, metrics, procedure, and
results of our transfer learning experiment. We then offer
some analyses of our model.

5.1. Task & Procedure

We task our model with transcribing from an audio input
to a string output. For this experiment, we applied transfer
learning to the DeepSpeech? trained adult model using the
CMU Kids training data. In our approach, we used the
DeepSpeech2 model trained on the LibriSpeech adult data
as a starting point without modification of the layers or
re-initialization of the learned parameters. That model was
trained for 20 epochs on the adult training data with a batch
size of 16 and learning rate of 0.0003. The training regime
included a learning rate annealing factor of 1.1 so that the
learning rate decreased slightly with each epoch, a weight
decay factor of 0.5 for regularization, and a momentum
of 0.9 to aid in convergence. Following |Amodei et al.
(2015)), we also applied Batch Normalization to all layers.
This resulted in the DeepSpeech adult baseline model that
yielded 62% WER, as reported in the baseline results.

After the model was initially trained on the adult data, the
learning rate was reset to the original value, and we further
trained an additional 20 epochs with the child speech data
using the same hyper-parameters as in the initial training
steps. We varied the amount of training data to show how
much added child data is required for the model to improve,
and we isolated grades 1, 2, and 3 to determine how well
the model performs on specific age levels.

5.2. Metrics

As with the baselines above, we evaluate on the test set of
300 child utterances from the CMU Kids dataset to arrive at
a WER score. In addition, we further evaluated our models
against 454 utterances from our novel dataset.

5.3. Results

Table [3| shows the WER versus the amount of child speech
data (random mix of all age groups) that was used for trans-
fer learning. The results show that even with a very small
amount of child speech data (25% of the available data, or
just over 2 hours), transfer learning can be effective. The
model which applied transfer learning using all of the data

resulted in a WER of 29%, a significant improvement over
either the adult-specific or child-specific models. Although
the final results using all of the available data do not quite
achieve the accuracy of a state-of-the art commercial sys-
tem like Google’s Speech API, the trend of continuously
improving accuracy with more data shows that it may be
possible to approach or exceed this accuracy by leveraging
more data. As the CMU Kids data only contained roughly
9 hours of speech, we predict that an additional 4 hours of
data would put this method on par with the Google Speech
API with the added benefit of being usable offline.

Table 3: Transfer learning results on child speech test set
(WER)

Training Data Used WER
Adult data only 62%
Child data only 60%
Adult + 25% child data ~ 47%
Adult + 50% child data ~ 40%

Adult + 75% child data ~ 34%
Adult + 100% child data  29%

5.4. Analyses

5.4.1. Checking for Generalizability

InLiao et al. (2015)), Google researchers discuss techniques
for training a general purpose model that could work well
for both child and adult speech. In their approach, the
primary focus was towards training on a massive data set
containing millions of utterances of both child and adult
speech. It should be noted that in our approach, a gen-
eral purpose model is not the goal. When we tested our
model on adult speech after transfer learning was applied,
the accuracy on adult speech had degraded to 47.1%. The
primary goal in our approach is to enable accurate child
speech models to be created using as little child speech data
as possible to serve specific use cases such as very young
children, or children with speech, language or hearing dis-
orders. We leave for future work developing a model that
can be used generally for both child and adult speech.

70% 35
60%

|||::.fl.
eaming Rats
40%

0%
et e s e st ens,

Figure 3: Validation results per epoch during the transfer
learning training process. Epoch O corresponds to the adult
model before transfer learning is applied. WER is reported
for the development data set.
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5.4.2. Model Learning

Here we explore and report what our model is learning. Fig-
ure [3] shows the WER of the validation data set and learn-
ing rate (which adaptively decreases) for each epoch of the
transfer learning training process using all of the child data.
This figure tells us that the model is indeed quickly learning
to adapt the adult model to the child data; in fact, by as few
as 6 epochs, the model has largely made the proper adjust-
ments to improve results with the child data. We conjecture
that the rapid adaptation—despite the small amount of child
data—is due to the similarity of the task and domain; i.e.,
both are speech data and the model is learning a functional
mapping from the pre-processed audio (as explained above)
to the graphemes.

5.4.3. Transfer Learning by Grade Level

Table [] shows the WER results on the test data set by
grade level after transfer learning has been applied using
all of the available training data. Google Speech API
results are also provided as a reference. The WER of the
1st grade test set are significantly worse than the 2nd and
3rd grade sets. This is consistent with prior results from
(Yeung and Alwan, 2018) and others which demonstrates
that ASR systems typically perform worse for younger
children. Although the accuracy of our transfer learning
model on the 1st grade data set leaves significant room for
improvement, it is on par with Google Speech to Text. This
is encouraging, especially given that such a small amount
of child speech data was required to train the model.

To address the high WER of the st grade test set, we at-
tempted to generate a 1st grade specific model by perform-
ing transfer learning on the adult trained model using only
the 1st grade training data (about 987 out of the total 4580
training utterances), but this yielded a WER of 42.0% on
the 1st grade test set, even worse than the WER of 39.4%
that was achieved when training data from all age groups
was used for transfer learning. In this case, the general pur-
pose child speech model trained on a larger data set outper-
formed the age specific model trained on less data.

Table 4: Transfer learning WER results on the child speech
by age group. For these results, all age groups were used
during transfer learning, but the test set was separated into

age groups.
Test Set Utterances This Work Google
Ist Grade 61 39.4% 39.9%
2nd Grade 139 24.8% 18.0%
3rd Grade 90 26.9% 20.9%

5.4.4. Evaluation of Novel Data

Table 5| compares the WER performance on the novel data
described above with the CMU Kids test set. The results
show that the transfer learning model performs significantly
better on the novel data than either the adult or child only
models. This experiment also shows that the transfer learn-
ing model generalizes much better to a novel data set, as the
WER using the transfer learning model increased by only
6% on the novel data when compared to the CMU Kids

test set, while the child only model showed a 26% WER
increase.

Table 5: Results on novel data set compared to CMU Kids
test set (WER)

Training Data Used CMU Kids Novel data
Adult data only 62% 59%
Child data only 60% 86%
Adult + child data 29% 35%

5.4.5. Analysis of Mistakes

Using the best performing child model (i.e., trained on the
adult data, then adapted using all of the child data), the three
examples in show some of the common mistakes
(each has a Ref and a Hyp, the latter being what the model
produced):

(3) Ref: the scientist was surprised
Hyp: a scientist was surprised

(4) Ref: some people recycle food garbage
Hyp: some people recycled food garbage

(5) Ref: they jump from one tree to another looking for

fruit
Hyp: they jim from one tree to a nother lokin for fruit

The mistakes in [(3)]and [(4)] show that some of the mistakes
are common mistakes that, we assume, adults make when
listening to children speech: the swapped with a in[(3)]or an
added past tense in For[(5)on the other hand, another
is split, and lokin is not even an English word in either of
the datasets. These kinds of mistakes are a byproduct of
the model which maps directly from audio to graphemes:
it stays true to the actual utterance rather than attempt to
match it to the closest word as done in other ASR mod-
els. This is desired behavior for future work as we want the
model to produce transcriptions of what is actually uttered;
i.e., not fitted to a pre-defined vocabulary.

5.5. Discussion

The results and analyses above show that further research
into transfer learning for child directed speech recogni-
tion systems is promising and merits additional explo-
ration. Specifically, our transfer learning approach ex-
plained above works well when transferring from adult to
child speech with only 9 hours of child speech. This could
be extended to improve ASR for children with speech dis-
orders, non-native speech, or domains with very technical
vocabularies (e.g., health care or law). Moreover, the model
adapts quickly to the child data (i.e., with a small amount
of data in only 8 epochs) as shown in Figure 3] Though
when we evaluated the final model (i.e., trained on adult
speech and adapted to child speech) and evaluated on the
adult test set, the results were substantially worse, meaning
our model is not completely generalizable, but as our re-
sults show in Table[d our model does work as a generalized
model for children roughly in grades 1-3.

6. Conclusion & Future Work

We conclude that transfer learning using an adult-trained
deep learning model with CNN and GRU layers on a small
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amount of child data works well and is a robust approach
to the challenging problem of recognizing child speech, as
explained in Section

Next steps include collecting more child speech data to im-
prove the model for effective use in real applications. We
also plan to evaluate this approach on models trained for
phoneme production. We will also explore more sophisti-
cated approaches to transfer learning with DeepSpeech? by
freezing subsets of the CNN and/or GRU layers using an
approach similar to |Gale et al. (2019). Additionally, we
would like to explore the impact of adding additional un-
trained layers.
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