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Abstract
Clinical trials often require that patients meet eligibility criteria (e.g., have specific conditions) to ensure the safety and the effectiveness
of studies. However, retrieving eligible patients for a trial from the electronic health record (EHR) database remains a challenging task
for clinicians since it requires not only medical knowledge about eligibility criteria, but also an adequate understanding of structured
query language (SQL). In this paper, we introduce a new dataset that includes the first-of-its-kind eligibility-criteria corpus and the
corresponding queries for criteria-to-sql (Criteria2SQL), a task translating the eligibility criteria to executable SQL queries. Compared
to existing datasets, the queries in the dataset here are derived from the eligibility criteria of clinical trials and include Order-sensitive,
Counting-based, and Boolean-type cases which are not seen before. In addition to the dataset, we propose a novel neural semantic parser
as a strong baseline model. Extensive experiments show that the proposed parser outperforms existing state-of-the-art general-purpose
text-to-sql models while highlighting the challenges presented by the new dataset. The uniqueness and the diversity of the dataset leave
a lot of research opportunities for future improvement.
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1. Introduction
In a clinical trial, eligibility criteria are guidelines for en-
rolling patients for a specific study. These guidelines de-
cide whether a patient is eligible to participate in the study.
Cohort definition, i.e., retrieving patients from an Elec-
tronic Health Records (EHR) database based on the eligi-
bility criteria manually is a very time-consuming process
for the clinical research. Semantically parsing eligibility
criteria and translating them to a structured query language
(i.e., criteria-to-sql) automatically can accelerate the co-
hort definition process significantly. However, the task is
highly challenging and requires substantial domain-specific
knowledge. Given an EHR database of patients and the eli-
gibility criteria for a specific clinical trial, it aims at gener-
ating the corresponding SQL statements and retrieving eli-
gible patients from the EHR database effectively.
Although there have been many works on generating
SQL queries from unstructured texts (i.e., text-to-sql) that
achieve nice performance on large-scale datasets such as
WikiSQL (Zhong et al., 2017) and Spider (Yu et al., 2018b),
it remains difficult to learn a semantic parser directly from
medical eligibility criteria for the criteria-to-sql task. First,
to the best of our knowledge, there is currently no med-
ical eligibility-criteria dataset publicly available for di-
rectly training an end-to-end semantic parser. Furthermore,
the techniques derived from general natural-language-to-
sql (NL2SQL) datasets such as WikiSQL do not transfer
well to medical eligibility criteria due to the specific re-
quirements in the medical domain. Sketch-based text-to-
sql models have been widely studied in recent years. They
take SQL structural information as prior knowledge to de-
sign slots for condition parts in SQL statements. Then they
build neural semantic parsers to predict the value for each
pre-defined slot. However, the sketch-based models built
for existing NL2SQL datasets are not suitable for parsing

Patient	Record	Table

Eligibility	Criteria

SQL

SELECT	id	FROM	table	WHERE 
hypoperfusion	=	1	and	(	sepsis	=	1	or	(	case	when
sBP <	90	then	1	else	0	end	+	case	when	lactate_level
>	4	then	1	else	0	end	)	>=	1	)

Evidence	of	refractory	hypoperfusion	attributed
to	sepsis	(	one	or	more	of	the	following	)	:	Systolic

blood	pressure	less	than	90	mmHg	despite	an
intravenous	fluid	challenge	of	at	least	30	ml/kg	(a
portion	of	this	may	be	albumin	equivalent	)	;	Blood

lactate	level	at	least	4	mmol/L.

id age hypoperfusion sBP ... lactate_level

1 12 0 92 ... 1.8

2 32 1 97 ... 2.7

3 70 0 100 ... 4.0

Figure 1: An illustrative example from the Criteria2SQL dataset.
In eligibility criteria, the concepts in red are column names in
database tables. The values in blue are condition values. The
phrase in green indicates a counting-based condition. In SQL, the
conditions in the yellow background are Boolean-type conditions
for which the condition value cannot be found in eligibility crite-
ria, and the conditions in the blue background are position-type
conditions for which the condition value can be found in eligibil-
ity criteria. Nested brackets are used to generate order-sensitive
conditions from the eligibility criteria.

medical eligibility criteria in the following cases:

• Order-sensitive eligibility criteria: Eligibility cri-
teria can include multiple conditions with mixed
AND/OR operators. In this case, the existing mod-
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els can fail to predict the precedence of operators on
conditions, and lead to semantic ambiguities. For in-
stance, given an eligibility criterion “Patients have a
known or suspected infection and meet criteria for se-
vere sepsis or septic shock”, two possible SQL queries
“infection = 1 and sepsis = 1 or septic shock = 1” and
“infection = 1 and ( sepsis = 1 or septic shock = 1
)” return different results. Therefore, grouping condi-
tions with brackets in the correct order is important for
guaranteeing the precedence of AND/OR operators in
SQL queries.

• Counting-based eligibility criteria: Eligibility cri-
teria are often long free texts with multiple condi-
tions but require patients to satisfy only a part of
them. The existing text-to-sql models have ignored
this case. However, it is a common situation for el-
igibility criteria in clinical trials, such as “The pres-
ence of at least two of the following criteria: (a) body
temperature >38; (b) pulse rate >90/ min; (c) breath
rate >20/min;”. The correct SQL query is “(case
when temperature >38 then 1 else 0 end + case when
heart rate >90 then 1 else 0 end + case when respira-
tory rate >20 then 1 else 0 end) >= 2 ”.

• Boolean-type eligibility criteria: A widely adopted
assumption in existing table-aware semantic parsing
algorithms is that every condition value should ap-
pear in the input utterance. Therefore the models are
supposed to generate the condition value by predict-
ing its position index and extracting it from the utter-
ance. However, this assumption often does not hold in
medical eligibility criteria. When a criterion requires
a true-or-false statement for disease diagnosis, the cor-
responding condition value is Boolean and is often im-
plicitly stated in the criterion. An example is the SQL
query “bleeding = 1” for the corresponding eligibility
criterion “active bleeding”.

We illustrate the above three cases with an example in Fig-
ure 1. Such examples are very common in clinical trials, but
are rarely studied in the NL2SQL domain. In this paper, we
address these challenging cases.
To fill the gap between open-domain text-to-sql tasks and
the clinical criteria-to-sql tasks, we collect and annotate the
first-of-its-kind eligibility-criteria dataset (Criteria2SQL)
for learning semantic parsing of eligibility criteria. The cri-
teria in the dataset are collected from clinical trials for Sep-
sis, Heart attack, Diabetes and Alzheimer’s diseases. The
dataset contains 2003 eligibility criteria with corresponding
SQL queries, and covers 984 concepts. The criteria have
different levels of complexity, and cover (but are not lim-
ited to) the three cases mentioned above.
To translate criterion to SQL, we design a context-free
grammar for generating SQL statements. We also present a
strong model based on the grammar. The contributions of
the paper include:

• We present a first-of-its-kind dataset for clinical
eligibility-criteria-to-sql tasks, which covers (but is
not limited to) Order-sensitive, Counting-based, and

Boolean-type criteria. The complexity of the eligibil-
ity criteria and the corresponding SQL annotations re-
flect the real challenges for NL2SQL tasks in the clin-
ical domain.

• To handle the three challenging cases, we propose a
new context-free grammar for generating SQL queries
for the eligibility criteria. Moreover, new types of slots
for the sketch-based semantic parsing are designed
based on the grammar.

• We design a strong baseline model to semantically
parse eligibility criteria. Extensive experiments show
the model’s superior performance compared to exist-
ing general-purpose models.

2. Related Work
Our study is closely related to two research areas: semantic
parsing and formalization of eligibility criteria.
Semantic parsing: Semantic parsing maps a natural lan-
guage to its structured meaning representation, such as log-
ical forms (Dong and Lapata, 2016; Reddy et al., 2016; Le
and Zuidema, 2012), executable programs (Hayati et al.,
2018; Iyer et al., 2018), arithmetic equations (Kushman et
al., 2014; Mehta et al., 2017) and database queries (Pasupat
and Liang, 2015; Yin et al., 2016). There has been study
on semantic parsing for generating structured query lan-
guage (SQL) from unstructured questions (Iyer et al., 2017;
Xu et al., 2017; Yu et al., 2018a; Dong and Lapata, 2018;
Hwang et al., 2019; Lin et al., 2019; Guo et al., 2019),
which has achieved nice performance on WikiSQL (Zhong
et al., 2017) and Spider (Yu et al., 2018b). However, ex-
isting works mostly did not handle complex combinations
of conditions in SQL’s ubiquitous WHERE clause, includ-
ing the order-sensitive, counting-based and Boolean-type
cases discussed above. Handling such complex criteria and
queries is important for clinical trials.
Formalization of eligibility criteria: Extensive study has
focused on turning eligibility criteria to structured repre-
sentations such as SQL. (Lonsdale et al., 2008; Ross et al.,
2010; Tu et al., 2011; Luo et al., 2011; Milian and ten Teije,
2013). The work (Wang et al., 2019) proposes the first text-
to-SQL based medical QA dataset, while the synthesized
questions are very different from clinical eligibility crite-
ria in both the sequence lengths and their content. Some
studies(Levy-fix et al., 2015; Kang et al., 2017; Yuan et
al., 2019) extract information or structure eligibility criteria
into other intermediate representation based on the OMOP
Common Data Model(Hripcsak et al., 2015). Most exist-
ing eligibility-criteria filters use relatively simple templates
to generate SQL queries, which often cannot handle nested
conditions or complex combinations of conditions.

3. SQL Generation from Criteria
The Criteria2SQL dataset we present contains EHR tables,
eligibility criteria and their SQL annotations. In this sec-
tion, we first use a specific example to illustrate these com-
ponents and our task in detail. Then, we describe the dataset
collection process. Finally, we analyze the collected dataset
and provide its statistical properties.
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Property Example Annotation stats.

Position-Type Condition Query: At least 18 years of age 52.3 %SQL: age >= 18

Boolean-Type Condition Query: Pregnancy 52.4 %SQL: pregnancy or lactation = 1
Order-Insensitive Condition (Multi-
Condition without Brackets)

Query: Patients fulfilling the criteria of severe sepsis or
septic shock 38.1 %

SQL: severe sepsis = 1 or septic shock = 1
Order-Sensitive Condition (Nested
Condition with Brackets)

Query: baseline hgb <11.7 g / dl in female , or <13 g /
dl in male 13.9 %

SQL: ( hgb <11.7 and gender = ‘female’ ) or ( hgb <13
and gender = ‘male’ )

Counting-based Condition Query: At least two of the following: low blood pressure
prior to volume expansion ( sbp <100 ) ; glasgow coma
scale <13 ; skin mottling score >2

1.2 %

SQL: ( case when sbp <100 then 1 else 0 end + case when
glasgow come scale <13 then 1 else 0 end + case when
skin mottling score >2 then 1 else 0 end ) >= 2

Table 1: Properties of eligibility criteria and their pairing SQL annotations in our dataset. Here ‘position-type conditions’
and ‘multi-conditions without brackets’ are common conditions that also exist in other open-domain datasets, while the
other three types of conditions are unique properties only considered in our dataset.

3.1. Task Description
For the eligibility criteria given in Figure 1:
”Evidence of refractory hypoperfusion attributed to sepsis
(one or more of the following): systolic blood pressure less
than 90 mmHg despite an intravenous fluid challenge of at
least 30 ml/kg (a portion of this may be albumin equiva-
lent); Blood lactate level at least 4 mmol/L. ”
we want to select eligible patients from an EHR table
(which table structure is as shown in Figure 1) using a
model-generated SQL query as follows:
“SELECT id FROM table WHERE hypoperfusion = 1 and
( sepsis = 1 or ( case when sBP <90 then 1 else 0 end +
case when lactate level>= 4 then 1 else 0 end ) >= 1 )”.
The task we study is to train a model and use it to generate
the SQL query for each given eligibility criteria. We will
present a model that firstly predicts the column names (fol-
lowing the example above) by matching medical concepts
hypoperfusion, sepsis, systolic blood pressure and lactate
level in the eligibility criteria with the corresponding col-
umn names in the table, then determines the correspond-
ing condition operator and the condition value. The tu-
ple (column name, condition operator, condition value) is
treated as a single condition. The model will concatenate
conditions with AND/OR operators in a correct execution
order by adding nested brackets. Counting-based eligibility
criteria form a special family of conditions, which require
a ‘case when’ statement with the summation operator to
count the number of satisfied conditions.

3.2. Dataset Collection
In order to train the model, i.e., a semantic parser to perform
the task described above, we need to create a dataset that
includes patient EHR tables, eligibility criteria, and corre-
sponding SQL queries. The data collection process is as
follows:
Data source. To collect a large number of eligibility cri-
teria, we have used the clinical trials registered in Clini-
caltrials.gov, and crawled eligibility criteria from the web-

site with the keywords Sepsis, Heart attack, Diabetes and
Alzheimer’s. After obtaining the raw eligibility criteria, we
have performed preprocessing steps to make the data suit-
able for training a neural semantic parser. We have re-
moved incomplete and ambiguous sentences to make the
criteria logically explicit. Then we have removed sentences
containing only temporal information, time-dependent at-
tributes or subjective judgments of physicians to make sure
the processed criteria are compatible with EHR tables. We
have obtained 1983 qualified criteria for SQL annotation.
The dataset also includes 20 additional very long eligibil-
ity criteria from other clinical trials to increase the coverage
on counting-based cases. In total, our dataset includes 2003
criteria and their corresponding SQL annotations.
Concept set. A concept set has been extracted from eli-
gibility criteria and used for generating column names for
synthetic patient-record tables. The concept set is also used
for SQL annotations. In order to obtain a high-quality con-
cept set, a medical expert has labeled medical concepts and
demographics for each eligibility criterion, and collected
the concepts to form an initial concept set. Since abbrevi-
ations and synonyms of medical concepts are widely used,
similar concepts have been merged. The finalized concept
set includes 984 concepts. The value types (i.e., bool, int,
float, and string) and the valid range of values for each con-
cept have been recorded for the synthesis of EHR tables.
SQL annotation. The SQL annotations have been created
by three SQL experts. Because these SQL annotations are
used to select patients who meet the eligibility criteria, they
all share the same structure:
SELECT patient id FROM table id WHERE condition.
Annotators have been required to fill in the condition part
of the WHERE clause. In order to reduce the annota-
tors’ workload, the column names remained the same as
the terms used in the eligibility criteria instead of selecting
them from the concept set. After the manual labeling phase
finished, the column names were replaced by the concepts
from the concept set by using a lookup table created by the
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(a).	Number	of	column	name	occurrences (b).	Number	of	Top-10	column	name	occurrences (c).	Distribution	of	condition	number

Figure 2: Statistics of the Criteria2SQL dataset.

concept-set construction phase.
Conditions and consistency. The annotated SQL queries
include the following cases: single condition, conditions
combined by AND/OR operators without brackets, nested
conditions combine by AND/OR operators and brackets,
and counting-based conditions. Table 1 shows examples
of the eligibility criteria and their SQL annotations. When
an eligibility criterion includes multiple conditions, it may
have multiple valid SQL queries. We require the order
of the conditions in the SQL query to be consistent with
the order of the corresponding concepts in the criterion.
Each generated SQL annotation has been verified by the
two other annotators to ensure the meaning of SQL query
is consistent with the text. Then we double-checked the an-
notation by executing the SQL query on the synthetic EHR
table.
EHR database synthesis. Since real EHR data are pro-
tected by law due to privacy concerns, we have synthe-
sized the EHR tables for the collected eligibility criteria
and stored them in the database. We first shuffle all the
SQL queries, and then use every 5 queries as a group to
generate a table. The column names from the SQL-query
group are used as the column names of the generated table.

3.3. Dataset Analysis
To illustrate the properties of the Criteria2SQL dataset, we
analyze the distribution of concepts in the dataset, the com-
plexity of SQL queries, and compare our dataset with the
existing text-to-sql datasets.
Concept distribution analysis. The dataset contains 984
concepts in 2003 queries, which shows the diversity of the
medical concepts. The number of occurrences of each con-
cept in the SQL queries is illustrated in Figure 2 (a). 64.0%
of the concepts appear only once, indicating the natural
sparsity of concepts from different clinical trials. 29.3% of
the concepts appear 2 to 10 times. 1.4% of the concepts ap-
pear more than 50 times. Figure 2 (b) lists the occurrences
of top-10 concepts. Demographic concepts in the eligibil-
ity criteria such as age and gender appear most frequently.
Based on the statistics as shown in Figure 2, most clini-
cal trials require patients to satisfy a specific range require-
ment for age and have varied requirements (such as systolic
blood pressure and diastolic blood pressure) according to
their genders.
Complexity analysis. The complexity of the generated
SQL queries is analyzed in both quantitative and qualita-
tive ways. We count the number of single conditions in

each SQL query (a.k.a. condition number). Figure 2 (c)
presents the number of SQL queries with different condi-
tion numbers. 56.7% of all queries include at least 2 condi-
tions and the longest query has 20 conditions, which could
be very difficult to parse. We analyzed the distribution
of three unique eligibility criteria (Order-sensitive condi-
tion, Counting-based condition, Boolean-type condition) as
shown in Table 1. 52.4% of all queries include the Boolean-
type condition and 52.3% of them include the position-type
condition. 27% of all queries include at least 3 conditions,
of which 70.2% are nested order-sensitive conditions. 1.2%
of queries include counting-based conditions that usually
exist in very long eligibility criteria. Hence, the specific
design for parsing the three particular types of conditions
and a combination of them are required in the criteria-to-
sql task.

Dataset Criteria2SQL GeoQuery ATIS WikiSQL Spider
# of Queries 2003 877 5280 80654 10181
# of Tables/DB 1 6 32 1 5.1
# of CASE WHEN 24 0 0 0 0
# of Nested Conditions 379 0 0 0 0
# of Implicit Boolean Condition Value 1050 0 0 0 0

Table 2: Comparison of datasets

Comparison with other datasets. We compare our dataset
with the other text-to-sql datasets, and show the results in
Table 3.3. Our dataset is a medium-scale dataset, but it is
the first dataset that considers the execution priority of con-
ditions and includes nested parenthesis in SQL queries. The
newly added SQL patterns enable the learning of predic-
tions based on counting-based conditions, combination of
multiple conditions, and implicit Boolean condition values.
For very popular datasets such as WikiSQL and Spider, the
questions were generated from given tables. In our dataset,
we focus on parsing the distinct expressions of the eligibil-
ity criteria from real clinical trials and the SQL generation
over multiple tables is not our concern.

4. Grammar-based Baseline Model
Sketch-based semantic parsers adopt SQL structures as
prior knowledge to design slots for different SQL compo-
nents, and convert a text-to-sql task to a slot-filling task
(Dong and Lapata, 2018; Xu et al., 2017). Grammar-based
neural models have shown their effectiveness in complex
SQL generation (Guo et al., 2019; Lin et al., 2019). We ap-
ply a sketch-based neural approach to generate the compo-
nents in SQL queries. To utilize the grammar-based method
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in our task, we define a context-free grammar for SQL gen-
eration in the criteria-to-sql task, and design slots under the
constraints of the new grammar rules.

4.1. SQL Grammar
We summarize the SQL queries in our dataset, and derive
context-free grammar rules from them as follows:
(1) SQL→ A S
(2) A→ SELECT id FROM table WHERE
(3) S → B | C | S o1 S | (S o1 S)
(4) B → (a T b o2 Cv)
(5) C → Cn o2 Cv

(6) T → S b o3 a S | T b o3 a S
(7) o1 → AND | OR
(8) o2 →= | <> | > | >= | < | <=
(9) o3 → +
(10) a→ (CASE WHEN
(11) b→ THEN 1 ELSE 0 END)

Here S denotes conditions in the WHERE clause. C and
B represent the single conditions and the counting-based
conditions, respectively. Cn denotes the column names and
Cv denotes the condition values. o1 denotes the combina-
tion operators AND/OR, o2 denotes the comparison opera-
tors, and o3 denotes the summation operator. An illustrative
parse tree is shown in Figure 3(b).
Rule (1) generates a complete SQL query. Rule (2) is used
for the SELECT statement. In rule (3), by using (So1S),
we can generate the SQL components recursively by com-
bining multiple conditions with the brackets. Rule (5) gen-
erates single conditions to compare the columns with the
condition values. Rules (4,6,9-11) are designed for gen-
erating counting-based conditions, which are used for the
comparison of the number of satisfied conditions with an
integer Cv . In rules (4,10-11), aTb converts the True/False
statement of the conditions to binary digits by using ‘CASE
WHEN’ and ‘IF ELSE’ patterns, with ‘1’ representing True
and ‘0’ representing False. In rule (6), the summation op-
erator o3 is used to sum up binary digits. Using the above
grammar rules, we can generate SQL queries for very com-
plex eligibility criteria with mixed counting-based condi-
tions and order-sensitive conditions. For example, we can
generate SQL queries with parts such as ‘at least 3 of the
following conditions should be satisfied: ...’.

4.2. Slot Design
With the proposed grammar, our neural semantic parser
predicts the structure of the WHERE clause and the value
of slots C#, Cn, Co, Cc, Cp, Cv to generate the query. The
slots are explained as follows:

• Condition number C# slot: the number of single con-
ditions in SQL query. The parser needs to decide how
many single conditions exist in the query.

• Column name slots Cn: the column names in all single
conditions. The parser needs to decide which columns
to include in the WHERE clause.

• Comparison operator slots Co: the comparison op-
erators in all single conditions. The parser needs to

SQL

A S

S o1 S

Cn Co Cv

a T b o2 Cv

S b o3 a S

S o1 S

Cn Co Cv

Cn Co Cv Cn Co Cv

hypoperfusion = 1 

sepsis = 1

sBP < 90 lactate_level >= 4

1( CASE WHEN THEN 1 ELSE 0 END )

+

SELECT id From table WHERE

AND

OR

( CASE WHENTHEN 1 ELSE 0 END )

>=

( )

SELECT id From table WHERE

hypoperfusion = 1 AND ( sepsis = 1OR( CASE WHEN sBP < 90 THEN 1 ELSE 0 END )+( CASE WHENlactate_level >= 4THEN 1 ELSE 0 END )>= 1 )

BERT

C# Decoder
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Cv Slot

5

C# Slot

[ hypoperfusion, sepsis, sBP, lactate_level, age ]

Cn Slot

[ =, =, <, >=, = ]

Co Slot

[ AND, OR, +, >= ]

Cc Slot

[ 0, 1, 2, 1 ]

Cp Slot

(a). Model framework.

(b). The parse tree of SQL query in Figure 1.

SQL Generation in 
Bottom-up direction 

SQL: 

Figure 3: Framework of the proposed neural parser. We feed the
embeddings into separate bi-directional LSTM decoders to predict
the values for each slot. Then values of the slots are used to gen-
erate the SQL query based on the proposed context-free grammar.
Part (b) shows an example for generating the SQL query from the
slots. Note that when the combination operator in Cc is ‘>=’,
based on rule (4), we only use Cv to generate SQL component;
thus the corresponding Cn(‘age’) and Co(‘=’) values are ignored.

choose the operator from the comparison-operator list
{=, <>,>,>=, <,<=} .

• Combination operator slots Cc: the extended operators
in conditions. The parser needs to choose the operator
from {AND,OR,+,=, <>,>,>=, <,<=}.

• Combination priority slots Cp: the priority levels of
all operators. The parser needs to decide the order to
execute the operators.

• Condition value slots Cv: condition values in all single
conditions. The parser needs to decide the values in
the comparison conditions.

Similar concepts for C#, Cn, Co, Cv are proposed in SQL-
Net (Xu et al., 2017) to construct simple SQL conditions.
We propose additional operators to create the extended
combination operator slots Cc and the priority slots Cp for
generating complex SQL conditions. First, the parser pre-
dicts the value for C# to decide the number of conditions in
the query. Then the parser predicts Cn, Co, Cv to generate
simple conditions. The parser further combines the condi-
tions by predicting the combination operators Cc and their
corresponding priority value (i.e., Cp slots) to generate the
final query.

4.3. Model
Given a table with N column names and the eligibility cri-
teria as a text of length M , the input sequence for our model
is defined as

x = [xn
1 ;x

n
2 ;x

n
3 ; ...;x

n
N |x

q
1;x

q
2;x

q
3; ...;x

q
M ]
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where xn
i is the i-th column name and xq

j is the j-th word
in the eligibility criteria. We use the technique in (Zhong et
al., 2017) to process the column names of the table. Then
we employ the pre-trained BERT model to encode the N
column names and the M words in the eligibility criteria
into word embedding. The output embedding sequence is
denoted by

y = [yn1 ; y
n
2 ; y

n
3 ; ...; y

n
N |y

q
1; y

q
2; y

q
3; ...; y

q
M ]

where yni and yqj are 1×512 embedding vectors. We denote
the embedding of the column-name list [yn1 ; y

n
2 ; y

n
3 ; ...; y

n
N ]

by yn and the embedding of the eligibility criteria
[yq1; y

q
2; y

q
3; ...; y

q
M ] by yq .

Figure 3 shows an example of the SQL query generated by
the model. The network first adopts the pre-trained BERT
model (Devlin et al., 2018) for the encoding of the one-hot
input sequence into the word embedding sequence. It then
feeds the word sequence to an LSTM Encoder-Decoder
Model for the slot prediction.
With the slots defined above, the criteria-to-sql task is con-
verted to classification tasks for the different slots. In our
dataset, the maximum number of conditions is 20. Thus
the decoder predicts the C# slot value as a 20-way classi-
fication. The class numbers are N for Cn slot, 6 for Co

(i.e., the size of the comparison operator set), and 9 for Cc

(i.e, the size of the combination operator set). We assume
that the depth of the nested condition ranges from 0 to 4,
so the class number for Cp is 5. The class numbers for
the Cv slots, i.e., the position-type condition value and the
Boolean-type condition value, are M and 2 , respectively.
We adopt the column attention mechanism from SQLNet
(Xu et al., 2017) and the NL2SQL decoder from (Hwang
et al., 2019) to build our model. The decoder is a two-
layer bi-directional LSTM (Hochreiter and Schmidhuber,
1997) module without sharing the weights, and is used to
predict the value of each slot separately. The probability
calculation of the C#, Cn, Co slots is the same as in the
SQLNet. And the softmax classifier is used to predict the
output class.
The probabilities of the Cp, Cc slots are calculated as fol-
lows:

Pcp(i|yn) = softmax(W
cp
1 tanh(W

cp
2 yq+W

cp
3 (Hcp

q wcp)))
(1)

Pcc(i|yn) = softmax(W cc
1 tanh(W cc

2 yq+W cc
3 (Hcc

q wcc)))
(2)

where Wi, i ∈ {1, 2, 3} are the trainable weight matrices
for the different decoders, Hq is the 512 ×M matrix with
the i-th column representing the hidden-state output of the
LSTM that has the i-th word in the eligibility-criteria text
as the current input, and w is the M × 1 attention weight
vector of the criteria.
For Cv slots, since there are two types of condition values
(the position-type and the Boolean-type), we construct de-
coders for both types. During training, the selection of the
Cv decoder for generating the condition values depends on
the value type of the predicted condition name. The infer-

Model Dev SQL(%) Dev X(%) Test SQL(%) Test X(%)

SQLNet(Xu et al., 2017) 9.33 10.33 13.20 13.86
SQLova(Hwang et al., 2019) 6.00 6.60 11.88 12.87
Ours 16.67 20.67 14.20 15.84

Table 3: Overall accuracy results. Here Dev SQL, Dev X, Test
SQL and Test X stand for the SQL accuracy for development set,
execution accuracy for development set, SQL accuracy for test set
and execution accuracy for test set, respectively.

Model Set C# Cn Co Cv(Boolean/Pos) Cc Cp

SQLNet Dev 58.7 21.2 46.6 18.8/0.3 - -
Test 63.0 20.1 55.7 18.8/0 - -

SQLova* Dev 74.6 25.5 44.3 36.5/- - -
Test 66.4 47.5 77.5 76.7/- - -

Ours Dev 60.3 35.9 54.3 89.1/16.8 35.0 25.4
Test 67.3 21.8 65.7 40.9/62.1 35.1 26.4

Table 4: Sub-module accuracy results for all methods. Here the
sub-module accuracy of SQLova* is calculated as the accuracy for
SQLova after first removing eligibility criteria with Boolean-type
conditions.

ence of the condition value is as follows

Pcv (i|yn) = 1Ct=boolPbool(i|yn)+(1−1Ct=bool)Ppos(i|yn)
(3)

Pbool(i|yn) = softmax(b(i|yn))
b(i|yn) = W bl

1 tanh(W bl
2 yq +W bl

3 (Hbool
q ))

(4)

Ppos(i|yn) = softmax(p(i|yn))
p(i|yn) = W pos

1 tanh(W pos
2 yq +W ps

3 (Hps
q +W ps

3 h))
(5)

where 1Ct=bool is an indicator function that returns 1 when
the value type of the predicted column name is Boolean,
and returns 0 otherwise. Pbool and Ppos denote the prob-
abilities of the Boolean-type decoder for the Cv slot and
the position-type decoder for the Cv slot. Since the
position-type decoder needs to predict the start index and
the end index of the value in the eligibility-criteria text,
Ppos(i|yn) is a 2 × 1 vector with elements Ppos(i|yn)start
and Ppos(i|yn)end.

5. Performance Evaluation
We have conducted extensive experiments on the Cri-
teria2SQL dataset, and compared the performance of
two advanced and general text-to-sql models in the
literature to our baseline model. Code implemen-
tation and Criteria2SQL dataset can be found at:
github.com/xiaojingyu92/Criteria2SQL

5.1. Experimental Setup
We partition the Criteria2SQL dataset into a training set
(70%), a development set (15%) and a test set (15%) uni-
formly randomly. SQLNet (Xu et al., 2017) and SQLova
(Hwang et al., 2019) with the NL2SQL decoder are used for
comparison. Two metrics are used to evaluate the generated
SQL queries, including SQL accuracy and execution accu-
racy. The SQL accuracy requires exact matching between
the generated SQL queries and the ground truth. The execu-
tion accuracy compares the query results (i.e., selected pa-
tients) of running the generated SQL queries to the ground
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Type Set # Query # Conditions/Query SQL ACC X ACC

Boolean-Type Dev 48 [1,7] 35.42 35.42
Test 71 [1,13] 11.27 11.27

Order-Sensitive Dev 138 [3,16] 0.73 2.17
Test 53 [3,17] 0 3.77

Counting-Based Dev 4 [6,16] 0 0
Test 4 [8,9] 0 0

Table 5: Statistics on unique conditions in Dev/Test Set. (‘SQL
ACC’ and ‘X ACC’ mean SQL accuracy and execution accuracy.)

Type Set C# Cn Co Cv Cc Cp

Boolean-Type Dev 56.3 33.7 75.0 65.2 21.7 16.3
Test 70.4 10.7 82.1 61.9 35.7 25.6

Order-Sensitive Dev 43.5 28.2 46.4 19.5 35.3 27.0
Test 24.5 13.8 60.3 39.02 43.6 27.2

Counting-Based Dev 0 7.5 27.5 12.5 22.5 10.0
Test 0 8.6 60.0 48.6 8.6 40.0

Table 6: Sub-module accuracy results on unique conditions. It
matches each predicted slot value from sub-modules with the cor-
responding value in the ground truth.

truth over EHR tables. Since the BERT model and the word
embedding layers in SQLNet are pre-trained on an open-
domain corpus with substantial difference from a clinical
corpus, we have fine-tuned the embedding modules in all
models during training.

5.2. Experimental Results
We compare our model to both SQLNet and SQLova.
Their performance is presented in Table 4.3. Our model
shows a significant improvement for the development set
by 7.34% (for SQL accuracy) and 10.34% (for execution
accuracy) compared to SQLNet, and by 10.67% (for SQL
accuracy) and 14.07% (for execution accuracy) compared
to SQLova. Similarly, the accuracy for the test set is also
higher than both other models. Since SQLova relies on
position-based conditions and cannot handle Boolean-type
conditions, eligibility criteria with Boolean-type conditions
are removed before feeding to the SQLova model. Only
134 (respectively, 89) eligibility criteria for the develop-
ment set (respectively, test set) can generate SQL queries
for the SQLova model, which results in the lowest overall
accuracy.
To analyze the performance for each slot, we calculate
the prediction accuracy for each slot category (called sub-
module accuracy). See Table 4.3. Same as before, the sub-
module accuracy for SQLova is calculated based on the
134(dev)/89(test) position-based eligibility criteria. Since
SQLNet and SQLova do not have decoders for Cc and Cp

slots, they cannot parse counting-based or order-sensitive
conditions. Our model achieves higher accuracy in predict-
ing condition values (including Boolean-type conditions
and position-type conditions) on both dev set and test set.
As shown in Table 5.1, 48(dev)/71(test) eligibility criteria
include only Boolean-type conditions. The high accuracy
in predicting Boolean-type conditions is one main reason
for our model to achieve the highest overall accuracy.

5.3. Error Analysis
As shown in Table 4.3, the predictions for slots Cn and Cp

are the bottleneck for the performance of our model. To
investigate the model’s performance for the three unique

Table 7: Strict slot accuracy on unique conditions. It matches the
list of predicted slot value from sub-modules with corresponding
list in ground truth. Since the output C# is a number, the strict
slot accuracy for slot C# is same as sub-module accuracy.

Type Set C# Cn Co Cv Cc Cp

Boolean-Type Dev 56.3 35.4 50.0 56.3 54.2 52.1
Test 70.4 15.5 53.5 70.4 67.6 64.8

Order-Sensitive Dev 43.5 6.5 0.7 43.5 7.3 2.2
Test 24.5 1.9 0 24.5 7.5 1.9

Counting-Based Dev 0 0 0 0 0 0
Test 0 0 0 0 0 0

types of eligibility criteria, we analyze the distribution
and accuracy for the Boolean-type, order-sensitive and
counting-based conditions separately. Table 5.1 reveals
that although our model can predict Boolean-type condi-
tions relatively well, it fails to parse most order-sensitive
conditions and all counting-based conditions. Most order-
sensitive conditions and counting-based conditions have
a long sequence of conditions, especially for counting-
based conditions (at least 6/8 conditions in dev/test set).
They make slot prediction very challenging for two rea-
sons. First, it is difficult to predict the correct C# for long
sequences, as shown in Table 5.1. Second, although the
prediction of each slot for a single condition could have
high accuracy, it is very hard to predict all conditions cor-
rectly in a long sequence. Table 5.1 shows the accuracy
of matching each predicted value with the corresponding
value in ground truth for different slots (i.e., sub-module
matching). Table 7 shows the accuracy of matching the list
of predicted values in a SQL query with the list of values
in ground truth SQL (i.e., strict slot matching). It is obvi-
ous that the current decoders lack the ability in parsing a
long sequence of conditions. A stronger decoder needs to
be designed for this task.

6. Conclusion
In this paper, we present a new dataset for the eligibility
criteria-to-sql task named Criteria2SQL and a strong base-
line model for the task. The eligibility criteria are col-
lected from real clinical trials, which makes the dataset
represent real-world challenges for criteria-to-sql problems.
A context-free grammar and corresponding slots are de-
signed for our new sketch-based neural semantic parser
to predict and generate complex conditions for the order-
sensitive, counting-based, and Boolean-type eligibility cri-
teria. A baseline model is proposed for the criteria-to-sql
task that outperforms state-of-art-models. The experiment
results show the task is very challenging especially the col-
umn name prediction, priority prediction and prediction of
a long sequence of conditions, and leaves a lot of research
opportunities for the researchers to investigate and improve.
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