
Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), pages 5569–5578
Marseille, 11–16 May 2020

c© European Language Resources Association (ELRA), licensed under CC-BY-NC

5569

Reproducing Neural Ensemble Classifier for Semantic Relation Extraction in
Scientific Papers

Kyeongmin Rim, Jingxuan Tu, Kelley Lynch, James Pustejovsky
Brandeis University, Department of Computer Science

{krim,jxtu,kmlynch,jamesp}@brandeis.edu

Abstract
Within the natural language processing (NLP) community, shared tasks play an important role. They define common goals and allow the
comparison of different methods on the shared problems and data. SemEval-2018 Task 7: Semantic Relation Extraction and Classification
in Scientific Papers (SE18T7) involves the identification and classification of relations in abstracts from computational linguistics (CL)
publications. In this paper we describe an attempt to reproduce the methods and results from the top performing system at for SE18T7.
We describe challenges we encountered in the process, report on the results of our system, and discuss the ways that our attempt at
reproduction can inform best practices.
Keywords: REPROLANG, Reproducibility, Semantic Relation Extraction, Scientific Information Extraction

1. Introduction
Replicability and reproducibility are core ideas of modern
scientific methods (Ivie and Thain, 2018), and thus repro-
ducibility of scientific research results is an important topic
in many research areas. Particularly over the last decade,
terms such as “reproducibility crisis” or “p-hacking” have
gained attention from different scientific communities, es-
pecially after studies showed failure in reproduction of re-
searches in life and medicine science (Begley and Ellis,
2012), psychology ans behavioral science (Anderson et al.,
2015), as well as astrophysics (Collaboration and others,
2015). The same studies also showed that a complete and
successful replication of experiments and results in some
published articles with huge findings and impact is ex-
tremely difficult or nearly impossible because of the lack
of model details and experiment settings .
The field of natural language processing (NLP) and com-
putational linguistics (CL) hasn’t been an exception. The
questions surrounding reproducibility of published work
have been getting researchers attention over the last decade.
(Fokkens et al., 2013; Hagen et al., 2015). More recently,
Language Resource and Evaluation initiated a proposal to
establish a venue for publications on the topic of replicabil-
ity and reproducibility to encourage researchers to actively
investigate existing methods and experiments, and discuss
the positive or negative results (Branco et al., 2017). Work-
shops dedicated to these topics include

• RRNLP 2015 - Workshop on Replicability and
Reusability in Natural Language Processing1

• 4REAL Workshop - Workshop on Research Results Re-
producibility and Resources Citation in Science and
Technology of Language2 (Branco et al., 2016)

• 4REAL 2018 - Workshop on Research Results Repro-
ducibility and Resources Citation in Science and Tech-
nology of Language3 (Branco et al., 2018)

, that aimed to address the need for replication of published
results and push the discussion of this topic much further. A

1
http://nl.ijs.si/rrnlp2015/

2
http://4real.di.fc.ul.pt/

3
http://4real2018.di.fc.ul.pt/

recent study (Mieskes et al., 2019) showed, by conducting
a survey, the significance of reproducibility to a scientific
community as well as the importance of having a common
model to share replicable research artifacts. Most recently,
the Shared Task on the Reproduction of Research Results
in Science and Technology of Language (REPROLANG
2020)4 is dedicated to motivating the spread of scientific
work on reproduction as a type of a collaborative shared
task. The selected tasks for REPROLANG are about re-
producing results of a set of published articles that focus
on different language technologies, including lexical pro-
cessing, sentence processing, text processing, applications
and language resources. Our work targets Task C.1 of RE-
PROLANG 2020, Relation extraction and classification.
In this paper, we aim to reproduce an automatic scien-
tific relation extraction and classification system (hence-
forth ETH-DS3Lab system) described in Rotsztejn et al.
(2018) (henceforth RHZ). The ETH-DS3Lab system was
originally submitted to SemEval-2018 Task 7: Semantic
Relation Extraction and Classification in Scientific Papers
(SE18T7) (Gábor et al., 2018) and the reported results
ranked first place for 3 subtasks out of 4. Throughout this
paper, we will describe our steps of re-implementing the
system and replicating the experiments and results in the
most detailed manner. In doing so, we will also show dif-
ficulties we faced partly due to the nature of the task itself,
and partly due to the under-specified or missing details in
the RHZ And finally, we’ll end with our suggestions to the
community for better practice in writing and reporting sta-
tistically driven CL researches for reproducibility and trans-
parency.
The rest of the paper is structured as follows. In the next
section (sec 2.) we review some related work and moti-
vation for this type of relation extraction and classifica-
tion task. Then section 3. fills in the technicality on how
SE18T7 formalized and how dataset look like. In section
4., we describe in detail the ETH-DS3Lab system we repli-
cated. Then in following section 5., the replicated system
and challenges we faced as well as adjustments we made
are described at component-level. In section 6., we present
the results from our replica system and draw comparison

4
https://lrec2020.lrec-conf.org/en/reprolang2020/



5570

with the results from the ETH-DS3Lab system. In section
7., we continue discussion on reproducibility of the ETH-
DS3Lab system and our suggestions for more reproducible
scientific reporting. And finally in section 8., we end with
a conclusion of this work. Our replica system is available
on a public code repository5

2. Prior study: Relation Extraction and
Classification

As the academic community evolves and thrives, scientific
literature and publications are also growing at an unprece-
dented rate (Johnson et al., 2018). Thus easy accessibility
and efficient retrieval of in-domain scientific knowledge are
becoming one of the most benefiting goals in all scientific
and academic fields. Consequently, with the advancement
of Information Retrieval (IR) techniques and Human Lan-
guage Technology (HLT), text-based search engines have
played a major role in research, communication, and pub-
lication in many academic fields. More recently, using ad-
vanced semantically-driven NLP technologies to solve vari-
ous problems in science as well as the humanities is becom-
ing more and more popular (Gábor et al., 2018). Relation
extraction and classification allows for enhanced discover-
abilty of scientific literature.
The results from traditional web search engines are too
broad. The limited power of the standard search engine
makes it difficult for researchers to acquire high quality
information. Various approaches have been applied to
extract fine-grained semantic information from scientific
text to meet different needs. (Ronzano et al., 2016)
initialized the Scientific Knowledge Miner Project that
focuses on citation characterization and scientific article
recommendation. Summarization of scientific papers has
also been well studied. The information from citations
plays an important role in the summarization task. (Mei
and Zhai, 2008) made use of citation context to generate
impact-based summaries. (Klampfl et al., 2016) aimed
to summarize the relevant text from a reference paper
based on another document that cites this reference paper.
Abstracts also encode critical information about a paper.
(Jin and Szolovits, 2018) presented a new neural approach
to sentence classification in medical scientific abstracts
utilizing context information. SemEval-2017 Task 10
(Augenstein et al., 2017) called for papers to work on
the extraction of keyphrases and relations from scientific
papers, which is closely related to our reproduction work.
Recent study also shows the effectiveness to use neural
approaches for relation extraction. Convolutional Neural
Network (CNN) and Recurrent Neural Network (RNN) are
commonly used neural architectures for the task (Lee et al.,
2017; Li and Mao, 2019; Zhang et al., 2018).

3. Task and Data Description
The goal of SE18T7 was to extract and classify seman-
tic relations from the abstracts of scientific publications

5
https://gitlab.com/brandeis-llc/

reprolang2020-relation-extr.

from the CL community (Gábor et al., 2018). The chal-
lenges of this task are about semantic relations extraction
from a specific domain. Overall, the relations instances
in the data we will be working on were annotated with
one of six relations, namely USAGE, RESULT, MODEL,
PART WHOLE, TOPIC, or COMPARISON. All of the rela-
tions except COMPARISON were asymmetric, so those in-
stances could additionally be designated as X-REVERSE,
forming 11 classes in total. The datasets for the task were
downloaded from the official SE18T7 web page 6. The data
was provided with inline XML annotations.
Based on the subtasks (described later in this section), two
training sets are provided separately, namely D1.1 and
D1.2 where relations are annotated on clean and noisy en-
tity annotations, respectively. Figure 1 shows the class fre-
quency distribution of those two datasets. And here is an
example of a training instance from D1.1.

<text id="H01-1058"> ... <abstract> ...
The oracle knows the reference
word string and selects the word
string with the best performance (
typically, word or semantic error
rate) from a list of word strings

, where each <entity id="H01-1058.13">
word string</entity> has been
obtained by using a different <
entity id="H01-1058.14">LM</entity>
... </abstract></text>

RESULT(H01-1058.13,H01-1058.14,REVERSE)

Listing 1: An example relation from the training data

Dataset

Relation Type
D1.1

(“clean” entities)
D1.2

(“noisy” entities)
Total

USAGE 296 323 619
MODEL-FEATURE 226 123 349
USAGE-R 187 147 334
PART WHOLE 158 117 275
TOPIC 8 230 238
PART WHOLE-R 76 79 155
MODEL-FEATURE-R 100 52 152
RESULT 52 85 137
COMPARE 95 41 136
RESULT-R 20 38 58
TOPIC-R 10 13 23

Total 1228 1248 2476

Table 1: Label distribution in the provided training data,
sorted by total number of occurrences

Three subtasks are introduced to focus on different aspects
of relation extraction. Subtask 1.1 (T1.1) is relation classi-
fication on clean data. Both in the training and testing data,
entity mentions are manually annotated (D1.1). Then fur-
ther in the training data, valid semantic relations between

6
https://lipn.univ-paris13.fr/˜gabor/

semeval2018task7/



5571

two entity mentions are also manually annotated. The goal
of T1.1is to predict the correct semantic relations between
the pre-annotated entity pairs in the test data.
Subtask 1.2 (T1.2) is relation classification on noisy
data. The data and the goal of this subtask is similar to
T1.1except that both in the training and testing data the
entity mentions are automatically annotated (D1.2). The
data is noisy in the sense that the boundaries of the entity
mentions might be incorrect. In the training data, the valid
semantic relations are still annotated manually with no re-
gard to the potential boundary errors of entity mentions.
Subtask 2 (T2) is relation extraction and classification. The
training data for this T2is identical to T1.1with both entity
mentions and relations manually annotated (D1.1). How-
ever, the test data only contains entity mentions without re-
lations between them. T2is in fact a two-phased process
and the goals are to predict valid entity pairs first (T2.E)
and then and the relation type of each pair (T2.C).

4. Original Work Summary
The ETH-DS3Lab system which we reproduce here opted
a deep neural network method based on two widely-
used neural network architectures – CNN and RNN (more
specifically, Bidirectional Long Short-Term Memory (BiL-
STM)) for all three subtasks in which their results ranked
first. Concretely, they proposed an approach to combine the
predictions from CNNs and RNNs as an ensemble model
to perform relation classification and extraction simultane-
ously. They also chose the weighted cross-entropy as the
objective function and upsampling strategy (for T2only) to
alleviate the negative effect from the class unbalance.
In addition to the model architecture presented in paper,
the authors describe various components for preprocess-
ing and postprocessing steps taken in the development of
the system that effectively raise the system performance.
Specifically, in the preprocessing steps, they cropped the
sentences to only keep the entity pairs and tokens in be-
tween, and cleaned the sentences by flattening nested en-
tities and removing all tokens between parentheses and
brackets ((, ), [, ]). Moreover they inserted entity
tags to mark entity boundaries within a sentence, and added
part-of-speech (POS) tags to provide extra syntactic infor-
mation. Finally before feeding into the networks for train-
ing, all long sentences were dropped from the training data
(because their experiments showed that long-distance rela-
tions introduced noise and only reduced the performance of
the system), and synthesized training instances were added.
Annotated labels were re-organized and transformed for
training 6-way and 12-way supervised classifiers for two
subtasks. For vector representation, ETH-DS3Lab system
used pre-trained word2vec embedding as well as dense em-
beddings for POS and token orders trained on-the-fly. In
the postprocessing steps, several rules such as no reversed
relation of COMPARE, and each entity mention can only be-
long to one relation, are applied to ensure the validity of
predictions.
To pre-train word2vec embedding, ETH-DS3Lab system
also made use of external knowledge by collecting supple-
mentary datasets for the training of word embeddings and

a language model which is used to select more valid sen-
tences as training samples.
Unfortunately, authors of RHZ didn’t publish the codebase
along with the paper. Thus we re-implemented the classi-
fication system following description from the paper as a
blueprrint.

5. System Re-implementation
Figure 1 shows the overall architecture of our replicated
relation extraction and classification system. The pipeline
starts from downloading task data which represented as the
grey box on top of the figure. Going from the left blue
boxes, we use the provided training data as well as exter-
nal corpora to train gensim word2vec (Řehůřek and Sojka,
2010) and Fasttext embeddings (Bojanowski et al., 2016)
that can be seen as a part of the data vectorization process.
Going from the right blue boxes is the beginning of the data
preprocessing pipeline. It includes basic NLP such as sen-
tence splitting and POS tagging. Then text manipulation
and relation directionality strategy are applied to get clean
version of data and reduce the output categories. Right be-
fore the vectorization, we augment the training data by up-
sampling and generating reliable synthetic data using lan-
guage model. After the data is converted to vectors, we
train multiple CNNs and RNNs to use ensemble method
for getting the final classification results. In the rest of this
sections we will discuss each replication step in detail and
report various challenges.

5.1. Hardware and Software Specification
We used a single workstation equipped with 36-core Intel
Xeon CPU (2.10GHz), 128GB RAM, and 4 × Geforce TI-
TAN Xp (12 GB VRAM) GPUs, running Redhat Linux 7.4.
The system was developed on python 3.6 and tensorflow
2.0. All software dependencies and external libraries are
listed in the code repository.

5.2. Data Collection
In addition to the datasets provided as a part of the shared
task (D1.1, D1.2), in the RHZ paper, the authors com-
bined the ACL Anthology Reference Corpus (ACL-ARC)
(Bird et al., 2008) with abstracts from papers posted on
arXiv 7 cs.CL papers to train word embeddings (later used
for vector representation of text data) and to train a lan-
guage model (later used for validating synthetically gener-
ated data). When attempting to recreate the data set that the
authors described, we encountered some challenges.
First off, there are multiple versions of the ACL-ARC and
the RHZ does not specify which version was used for train-
ing or from which source the data was gathered. Instead,
the paper reported an approximate number of tokens ob-
tained from the ACL-ARC to be 90 million. The ACL-
ARC homepage 8 lists three versions of the corpus with
various formats available. Additionally, a cleaned version
of the corpus is available for download from a third-part

7
https://arxiv.org/

8
https://acl-arc.comp.nus.edu.sg/, accessed at 2019-11-

29



5572

Figure 1: The overall architecture of the replicated relation extraction and classification system. Grey box on the top is the
entry point of the pipeline. Pre-processing pipeline is finished at the vectorization component, and the resulting vectors are
fed to neural classifiers to train or test.

website9, that was used in Lahiri (2014). We downloaded
multiple versions of the corpus and tokenized them us-
ing a simple whitespace tokenizer (using unix wc com-
mand). Due to potential differences in tokenization, we
did not expect the token count to match exactly that which
was reported in the RHZ, so we chose the version of the
ACL-ARC that was closest to the token count reported
in the paper. This was Version 20080325 downloaded
from https://acl-arc.comp.nus.edu.sg/ and
had 87,176,836 tokens. . Also in the RHZ paper, the au-
thors describe collecting all arXiv cs.CL abstracts since
2010, that resulted in approximately 1 million tokens.
When we collected and tokenized abstracts fitting this
description the resulting dataset contained approximately
twice as many tokens as reported. We believe that is be-
cause of explosive increase in the number of CL publica-
tions in the open-access archive. We experimented with
various cutoff dates in an attempt to replicate the data that
would have been available at the time of publication of the
ETH-DS3Lab system, and picked December 31, 2017 (the
deadline of the SE18T7 was January 22). Our final arXiv
data had 811,617 token.

9
https://web.eecs.umich.edu/˜lahiri/acl_arc.html, ac-

cessed at 2019-10-24

5.3. Pre- and Post-processing Procedures
5.3.1. Basic NLP
Because a relation is confined in the shared task between
two entities within a single sentence, it is very crucial
step to split sentences from the provided XML annotation
data before perform relation extraction (for T2). Fail-
ing to correctly segment sentences by over-segmenting
results in some training instances being ill-formed due
to the relation being split across separate instances. If
the sentence splitter misses a split between sentences,
spurious negative relation instances will be introduced.
Unfortunately because the RHZ didn’t reveal any details on
how sentence segmentation is conducted, we experiment
with different sentence segmentation pipelines as follows.
In the first place, the relation-annotated dataset (D1.1,
D1.2) was release in in-line XML format, so the first
step was to convert the in-line annotation into character
offset based standalone data structure for further cleaning
and processing. Then, next step is to split sentences.
We first experimented with the spaCy (Honnibal and
Montani, 2017)10 sentence segmenter, but found that
many sentences were being erroneously split on periods
and commas found in abbreviations such as ”e.g.” and
”et al.” These errors persisted across experiments with
different spaCy pre-trained neural models11 including
en core web lg, en trf bertbaseuncased lg,

10
https://spacy.io/

11
https://spacy.io/models/en-starters



5573

and en trf xlnetbasecased lg. Next we tried us-
ing the CoreNLP (Manning et al., 2014) 12 sentence splitter
module, and found that it performed too conservatively
for our data. Ultimately, we chose to use the CoreNLP
sentence splitter module configured with a additional regex
to split some sentences that were missed by the segmenter.
There were at least three instances in which a sentence was
incorrectly segmented due to the presence of punctuation
within words. We suspect that these errors are present due
to errors in original typing or errors from digitization old
publications.
As POS tags used as features in the neural model, we also
run the input data through the CoreNLP POS tagger to get
text tagged, as reported in the RHZ paper.

5.3.2. Text Manipulation
Once the basic NLP modules processed the input data, next
is to manipulate the text to fit more to the task-specific re-
quirements. First described in the RHZ was removing text
within parenthesis. The authors do not specify how they
handle instances in which either entity is contained within
parenthesis or situations where an entity contains an open-
ing or closing parenthesis. We decided to remove parenthe-
ses that don’t cross entity boundaries. Next, dummy tokens
are used to indicate entity boundaries. A special “<e>”
token is attached to before and after all entities in the an-
notation data. Additionally, number tokens (tagged as CD
by the POS tagger) that were not part of proper nouns are
replaced with a single wildcard token, “###”.
Then each sentence is processed to generate training in-
stances by flattening entities. As a result, an instance is a
sentence that has only two entities annotated. For example,
if the original sentence has three entities annotations (e1,
e2, e3), three training instances are generated by choos-
ing two out of three (<e1, e2>, <e1, e3>, <e2,
e3>). Then, for T1, we only take entity pairs that explicitly
annotated with labels in the training data. For T2, all en-
tity pairs that are not annotated are taken as NONE-labeled
negative training instances. The RHZ describe dealing with
nested entities by flattening them, however it is unclear how
the authors dealt with relations involving the inner entity of
a nested entity. We simply consider all nested entities as
independent entities, not differently from others.
Next is cropping and truncation. By cropping an instance,
we remove all tokens before the first entity and after the
second entity. Truncation is done only for relation extrac-
tion task (T2). As shown in the RHZ that long-distance
relations are very seldom, all instances that have more than
19 tokens between two entities (excluding entity tokens)
are treated as negative samples. There were a few places in
the RHZ that were indicating 19 as “maximum sentences
length”, which can be interpreted as the count includes to-
kens from entities. However we decided to count excluding
the entity tokens as described in the section 2.3 of the RHZ
paper.

5.3.3. Label Transformation
The provided datasets are annotated with 11 classes (ta-
ble 1). We followed the exact same steps described

12
https://stanfordnlp.github.io/CoreNLP/, version 3.9.2

in the RHZ paper to transform class space to perform
6-way classification (for T1) and 12-way classification
(for T2). Namely, for T1, we invert the order of to-
kens between two entities of REVERSE instances and
treated the resulting token sequences as non-REVERSE
instances. ([<e1> w1 w2 w3 <e2>, USAGE-R] →
[<e1> w3 w2 w1 <e2>, USAGE], not inverting in-
entity tokens). The RHZ states that having a full inverted
text of those REVERSE relations can yield better perfor-
mance, although the new generated “sentences” are not
grammatical. This was also made possible only because
the test instances were tagged as REVERSE if the relation
goes from later entity to earlier entity, although they were
not tagged with the actual relation labels. Eventually, by
merging all REVERSE labels, T1became a 6-way classifi-
cation task. For T2, because extracting related entity pairs
was part of the task, test data didn’t have such entity pair in-
stances as in T1. Thus we could not apply the same token
inversion. To solve extraction and classification simultane-
ously, we simply treated all entity pairs that are not anno-
tated (and “long” instances) as having an additional NONE
class. As a result, T2became a 12-way classification task.
Using truncation (by length) previously described, NONE
instances we obtained were 39, 077, different from 34, 824
as reported in the RHZ.

5.3.4. Data Augmentation
In training ETH-DS3Lab system, RHZ exploited
provided data by 1) feeding D1.1+D1.2to
both T1.1and T1.2classifiers, and 2) feeding
D1.1+D1.2+“predictions of the system for T1.1and
T1.2” to T2classifier. It is not so clear what exactly pre-
dictions of the system are from the description in the paper,
however we interpreted it to be automatic labeling on test
sets. Test sets for T1.1and T1.2both have 355 relation
instances. We used our ensemble classifiers for T1.1and
T1.2that showed the best performance to automatically
label two test sets, and added the result (Dpred) to the
training data for T2. Negative instances (non-relations)
from T1test sets were not added to T2training set, as that
would only worsen the class imbalance in training data.
We also synthesized additional training data (Dsyn) using
the strategy described in the RHZ, and used them for both
T1and T2tranining. That is, by combining entities from
test data and tokens-between from training data. Gold-
standard labels were also taken from training data. Then
we filtered the synthetic sentences using a language model
trained with the text data obtained in section 5.2. in training
word embeddings, using the KenLM language modeling
toolkit13 (Heafield, 2011) (5-gram and the default smooth-
ing options). We found that using the threshold in the RHZ
paper (−21 log probability) resulted in far more synthetic
instances (∼33,000) than those reported by the RHZ (61).
Thus, instead of using a threshold, we chose to rank the re-
sulting instances based on language model probability and
keep the top N instances to match the number of synthetic
instances in the RHZ (N = 61).
For T2, because, after generating negative instances, the
class distribution is largely skewed toward NONE, ETH-

13
https://github.com/kpu/kenlm, version 96d303c



5574

DS3Lab system used upsampling to balance out the distri-
bution. In the process of replicating, we implemented up-
sampling as simply duplicating positive instances keeping
the class distribution ratio, but to match the sum of positive
instances with the number of negative instances.
Label distributions during preprocessing are presented in
table 2.

5.3.5. Post-processing
The ETH-DS3Lab system implements two post-processor.
First one is only for T1, and the procedure is masking
the only symmetrical class (COMPARE) for test instances
already marked as REVERSE, which we successfully re-
implemented. Second procedure is to discard additional
predictions when two or more predictions put on a single
entity, under the assumption that each entity could only be
part of one relation. However, we could not find any justi-
fication for the assumption either in the RHZ or in the re-
lation annotation process presented in Gábor et al. (2018).
We also thought that, given imbalance in the class distri-
bution, taking only one positive prediction and treating the
rest as negative instances can affect the evaluation metrics
(concretely, macro-F1 score) in an unexpected way. In the
end, we decided not to implement such a component.

5.4. Neural Network Architecture
The main architecture of the system presented by RHZ is
an ensemble of CNNs and Bidirectional RNNs. The input
is a concatenation of dense representations of word tokens,
POS and positional indices (forward and backward). The
output probability distribution vectors after softmax layer
from each neural model will be averaged using a weight-
ing schema that puts more weights on RNN predictions for
longer sentences before the final predictions are made.
Embeddings Our embedding settings strictly follows the
RHZ paper. We trained word2Vec embeddings using the
training data for the original task as well as external data
source from arXiv and ACL-ARC. The total number of
tokens as reported in RHZ for training embeddings is
91,304,581 . However, it is difficult for us to replicate the
exact number count due the challenges we mentioned in
section 5.2.. The size of our text corpus for word embed-
ding training is 88,070,855 tokens.
In addition to using pre-trained word embeddings, we also
created dense representations for POS tags and relative po-
sitions of each token in a sequence. The initial values for all
the embeddings except pre-trained word2vec are randomly
initialized from a uniform distribution ranging from -1.0 to
1.0. In practice, word tokens that cannot be looked up in
the pre-trained embedding table will also be randomly ini-
tialized.
CNN Classifier The RHZ stated that the structure of
their CNN model follows Kim (2014) and Collobert et al.
(2011), hence we decided to reproduce the multichannel
CNN model by Kim (2014) that was originally for sen-
tence classification, which improved on the state-of-the-art
of several text classification tasks. It composed of multiple
embedding layers, which is followed by multiple concur-
rent convolutional layers with different kernel sizes, and
max-over-time pooling layers. The intermediate output

from pooling layers is concatenated and flattened before fed
into a fully connected layer with dropout and softmax layer.
Kim (2014) also experimented with different variants of the
CNN model by using static embeddings, non-static embed-
dings or the combinations of both. Which setting yields
better performance is not conclusive and depends on char-
acteristics of data. However, this detail was not mentioned
by RHZ. In the end, we decided to use non-static embed-
dings only given that, except word embeddings, POS em-
bedding and relative position embeddings are all randomly
initialized at the first place. We needed to set them train-
able and made the embeddings more domain-specific to our
task.
RNN Classifier The RNN model presented in RHZ is also
composed of multiple embedding layers that are followed
by a forward LSTM layer and a backward LSTM layer.
Both LSTM layers are dynamic and can mask reserved
padding tokens, which works well on sequences with vari-
ant lengths. The intermediate output from the final hidden
states of LSTM layers is concatenated and fed into a fully
connected dense layer with dropout and softmax layer.
Ensemble of CNN and RNN We also followed the ensem-
ble system of CNN and RNN classifiers proposed by RHZ.
Essentially, each classifier will be trained multiple times.
Then we compute the average of the probability distribu-
tion from each output to reduce the variance of the results
from a single run. On top of this, we also combined the pre-
dictions from CNN and RNN by assigning different weight
to them using the sin-based weighting formula proposed by
RHZ. The intuition is based on the observation that RNN
classifier tends to outperform CNN classifier on longer se-
quences, while CNN classifier has the ability to capture lo-
cal context information within a shorter sequence. Thus, for
longer sequences we will assign higher weight to the pre-
dictions from RNN. Similarly we also adopted the weighted
cross-entropy as the loss function for our models since the
training data of each category is highly unbalanced. Specif-
ically in our reproduction work, at each run we set the ran-
dom state by selecting the number of the random seed from
a range of 0 to 10000 to ensure the train and validation data
is split without being introduced too much human bias.

5.4.1. Model Configurations and Hyperparameters
As a reproduction work, our goal was to follow the original
settings and see if that produces the same results. However,
we were facing a fair number of challenges from the change
of data source, lack of details and the non-deterministic na-
ture of deep learning approaches.
In our experiments, we followed values from the final con-
figuration in the Table 2 of the RHZ paper. Many of the
parameters we adopted are the same with them, including
the size of different embeddings and parameters of neu-
ral model architecture. We additionally made the follow-
ing assumptions and changes to our best knowledge. Table
3 shows the difference between our parameter values and
theirs.

• Initial learning rate Original learning rate was 0.01
across all classifiers. In our experiments, the value was
too high for the model to converge (even with Adam
optimization), and it caused F1 score to be ill-defined



5575

Relation Type D1.1+D1.2 RHZ +Dsyn +invert
+invert
+Dsyn +truncate

+Dsyn
+truncate

+Dsyn
+Dpred
+truncate

+Dsyn
+Dpred

+truncate
+upsample(1.0)

USAGE 619 619 634 953 979 614 629 826 10005
MODEL-FEATURE 349 349 365 501 518 349 365 466 5611
USAGE-R 334 334 345 330 341 457 5535
PART WHOLE 275 275 282 430 438 275 275 361 4372
TOPIC 238 238 238 261 261 238 238 304 3682
PART WHOLE-R 155 155 156 155 155 210 2543
MODEL-FEATURE-R 152 152 153 152 152 177 2144
RESULT 137 137 141 195 199 133 133 173 2095
COMPARE 136 136 142 136 142 133 133 165 1998
RESULT-R 58 58 58 58 58 61 738
TOPIC-R 23 23 23 23 23 26 314
NONE 47998 34824 39077 39077 39077 39077

Total 2476 37300 2537 2476 2537 41537 41579 42303 78147

Table 2: Label distribution after each preprocessing step. Bold-faced columns are data used for training for T1and T2.

Parameter Final value Original Value
Word embedding dimension 200 200
POS embedding dimension 30 30
Positional embeddings dimension 20 20
Number of CNN filters 192 192
Size of CNN filters 2-7 2-7
Regularization parameter (λ) 0.01 0.01
Number of LSTM units (RNN) 600 600
Dropout ratio (CNN and RNN) 0.5 0.5
Ensemble size 20 20
Training batch size 64 64
CNN Initial learning rate 0.001 0.01
RNN Initial learning rate 0.005 0.01
Number of epochs (T1.1) ∼9.9 200
Number of epochs (T1.2) ∼7.6 200
Number of epochs (T2) ∼2.7 10
Upsampling ratio (T2) 1.0 1.0

Table 3: The comparison of our final parameter values and
the values from original paper. Values in bold means ours
are different from original values.

during the training. With our implementation of grid
search (described below), we found that optimal learn-
ing rates are much lower to 0.005 for RNN classifiers
and 0.001 for CNN classifiers.

• Number of epochs Original number of epochs are
fixed (200 for T1and 20 for T2). It wasn’t clear
enough for us that the number of epochs was for a sin-
gle run or for the ensemble classifiers. Instead, as we
used mini-batch gradient descent, we counted batches
rather than epochs during the training. At each batch
the model will consume fixed number (64) of train-
ing instances from the data pipeline that infinitely pulls
batches by repeating input dataset until the model con-
verges. We also adopted the early stopping approach,
meaning that our model will stop training if the macro
F1 score on the validation set did not improve over 100
steps reducing the training time. In this way it is guar-
anteed to train the model well and leave less carbon
footprint. The numbers presented in table 3 are con-
version from average number of batches consumed by

each network in the ensemble multiplied by the batch
size and divided by the size of the input dataset.

• Padded sequence length Before the data is ready to
be passed into the model, it needs to padded to the
same length. It isn’t difficult to implement but non-
trivial nevertheless. If the padded length is too long,
shorter sequences will become very sparse. While if it
is too short, some essential information will be cut off
for longer sequence. Although RHZ paper didn’t pro-
vide any details of padding size, to replicate the exper-
iments as closely as possible, we stick to the strategy
to pad all the sequences to the length of the longest se-
quence in the training data, which is 58 for T1and 35
for T2in the end.

• Grid search for hyperparameters RHZ also stated
about performing grid search but presented parameter
search space without much detail. We estimated per-
forming full grid search with given parameter space
requires 36,720,000,000 iterations of training cycles,
in each of which the system requires multiple net-
works trained for ensemble voting. Although training
a single network given the size of data (2537 instances
for T1, ∼78k instances for T2) didn’t take very long
time in our experiments (11.7 seconds for CNN and
24.1 seconds for RNN with T1setting under single
GPU configuration, and 103.2 and 311.5 seconds with
T2setting), 36 trillion iterations do not sound prac-
tical. We implemented grid search, but experiments
only with varying · L2 regularization λ [0.01, 0.1],
· CNN and RNN learning rates [0.001, 0.005, 0.01,
0.05, 0.1], · word embedding dimensions [100, 200,
300], and and found optimal hyperparameters listed in
table 3

6. Results
In this section, we presents our experiments results. Ta-
ble 4 reports the overall results for each Subtask along with
the original F1-score which corresponds to the Table 3 in



5576

Subtask (word2vec) P R F1
1.1 80.94 81.55 80.67 (81.7)
1.2 83.07 86.37 83.81 (90.4)
2.E 30.21 58.04 39.74 (48.8)
2.C 35.11 64.11 43.13 (49.3)

Table 4: The overall Precision (P), recall (R) and F1-score
(F1) on the test set (in %) for each Subtask. This is the re-
produced results of the Table 3 in the original paper. The
F1-score from the original paper is reported in the paren-
thesis for easy comparison

the original paper. For T1.1, we achieved F1-score 80.67
compared with 81.7 reported originally. The experiment
setting for T1is relatively simple and clear among all four
tasks. Thus the reproduction work can be proceeded with-
out being introduced much bias by us, and the results are
the closest to original ones.
For T1.2and T2, our F1-scores are lower than the origi-
nal ones by about 7%. This discrepancy might be resulted
from multiple factors. Apart from the difference in text pre-
processing and model hyperparameter tweaking, we believe
the most different part is from the use of external data re-
sources and synthetic data samples. First the corpora we
collected for training embeddings might be of different ver-
sion, since the there are more CL publications being added
into the corpora. We cannot be sure about the exact publica-
tion date before when we should stop the data collection, so
instead we have to resort to our best guess. The upsampling
schema proposed in the original paper also didn’t work as
well as expected. We think the performance boost from
repeated data is limited. The original paper authors also
mentioned that they added the predictions for Subtasks 1.1
and 1.2 as external training data for T2. However, since
our performance for T1is lower than the original ones, the
additional predication errors might also propagate.
Table 5 reports the detail scores for each relation type for
T1.1. This is corresponded to the Table 4 in the original
paper. Although our overall result for T1.1is similar to
theirs, the distributions over some relation types is different.
In the orginal paper, the recall for TOPIC is only 0.50 while

Relation type P R F1
COMPARE 80.95 80.95 80.95 (97.56)
MODEL-FEATURE 71.27 71.21 71.21 (72.59)
PART-WHOLE 78.57 78.57 78.57 (79.43)
RESULT 93.33 70.00 80.00 (77.78)
TOPIC 75.00 1.000 85.71 (66.67)
USAGE 86.59 88.57 87.57 (87.36)
Micro-averaged total 81.97 81.97 81.97 (82.82)
Macro-averaged total 80.94 81.55 80.67 (81.72)

Table 5: The Precision (P), recall (R) and F1-score (F1) on
the test set (in %) for each relation type for Subtask 1.1.
This is the reproduced results of the Table 4 in the original
paper. The F1-score from the original paper is reported in
the parenthesis for easy comparison

we are having 0.75. They also reached the 1.0 precison for
COMPARE, but ours is around 0.8.
Considering various of randomness factored in the neural
pipeline, we think the difference of scores here is reason-
able.
Due to the time limit, we are more focused on mimick-
ing the original experiments as closely as possible. Dur-
ing the study, we found training word2vec word embedding
from fairly large corpus (∼88 million tokens) is quite time-
consuming (48 - 51 minutes without using GPU). Alter-
natively, we experimented with training word embeddings
using FastText, which is much faster (12-18 minutes under
identical configuration) and able to compute word repre-
sentations for rare words or words that did not appear in
the training data (Bojanowski et al., 2016). This might be
helpful in scientific fields where many technical terms ex-
ist. In table 6, we reported the results for each Subtask.
We followed the same settings except using FastText em-
beddings instead of word2vec. The macro F1-score is 0.79,
which is slightly lower than using word2vec. We trained
our FastText with the default setting. In the future, we will
try to fine-tune it and see if we can make use of other em-
beddings.

7. Lessons Learned
The various challenges we encountered made it difficult
to determine the source of problems in our system that
caused it to fail to exactly replicate the RHZ results. We
were grateful that the original authors reported token counts
for their data collection procedure as this allowed us to be
more confident that our collected data resembled the origi-
nal data. It may be impossible to reproduce identically the
collected data. Abstracts on arXiv that were available at
the time the original authors collected their supplementary
data, could have been deleted or modified in the years since.
The system described in the original paper relies on multi-
ple NLP tools for sentence segmentation, POS tagging, and
language modeling. In section 4., we discuss challenges re-
lated to sentence segmentation. For POS tagging, we used
Stanford CoreNLP version 3.9.2, which included among
other updates, new POS models for English. This version
was released 2018-10-05, which is after the publication of
the original paper. We can safely assume that the original
authors were using a prior version of Stanford CoreNLP,
but cannot specify which version was used.
Our reproduction effort would have been made easier by
more specificity with respect to the data collection proce-
dures, or alternatively, if the original supplementary dataset
were available for download. In addition, preprocessing
and cleaning the data would be facilitated with instructions
or examples for how to handle edge cases.

8. Conclusion
In this paper, we reported our replication study on seman-
tic relation extraction and classification task on science pa-
pers originally published in Rotsztejn et al. (2018). By re-
implementing the data pipeline and classifier system, and
by comparing experiment results under similarly (if not ex-
actly) configured experiments, we showed some important
implementational details were left unknown or ambiguous



5577

Subtask (FastText) P R F1
1.1 79.16 81.34 79.16
1.2 75.93 78.52 76.58
2.E 27.19 68.39 38.91
2.C 28.03 57.25 33.75

Table 6: The overall Precision (P), recall (R) and F1-score
(F1) on the test set (in %) for each subtask using pretrained
FastText embeddings

in the RHZ paper. Although we have achieved fairly close
results for some subtasks, others showed significant dispar-
ity that cannot be explained only with statistical perturba-
tion in the algorithms. Throughout the discussion in the pa-
per, we also showed specifics of challenges we faced partly
due to those under-specified technicality, and decisions we
made on our own with every detail. We believe that this
and other replication study help promoting better practice
in reporting scientific experiments in the CL and NLP com-
munity.

Acknowledgment
This research was funded in part by DTRA grant HDTRA1-
16-1-0002, and a contract with the US Defense Ad-
vanced Research Projects Agency (DARPA), Contract
CwC-W911NF-15-C-0238.

References
Anderson, J. E., Aarts, A. A., Anderson, C. J., Attridge,

P. R., Attwood, A., Axt, J., Babel, M., Bahnı́k, Š., Baran-
ski, E., Barnett-Cowan, M., et al. (2015). Estimating
the reproducibility of psychological science. Science,
349(6251).

Augenstein, I., Das, M., Riedel, S., Vikraman, L., and
McCallum, A. (2017). SemEval 2017 task 10: Sci-
enceIE - extracting keyphrases and relations from sci-
entific publications. In Proceedings of the 11th Inter-
national Workshop on Semantic Evaluation (SemEval-
2017), pages 546–555, Vancouver, Canada, August. As-
sociation for Computational Linguistics.

Begley, C. G. and Ellis, L. M. (2012). Raise standards for
preclinical cancer research. Nature, 483(7391):531–533.

Bird, S., Dale, R., Dorr, B., Gibson, B., Joseph, M., Kan,
M.-Y., Lee, D., Powley, B., Radev, D., and Tan, Y. F.
(2008). The ACL anthology reference corpus: A ref-
erence dataset for bibliographic research in computa-
tional linguistics. In Proceedings of the Sixth Interna-
tional Conference on Language Resources and Evalua-
tion (LREC’08), Marrakech, Morocco, May. European
Language Resources Association (ELRA).

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T.
(2016). Enriching word vectors with subword informa-
tion. arXiv preprint arXiv:1607.04606.

Branco, A., Calzolari, N., and Choukri, K. (2016).
4REAL Workshop: Workshop on Research Results Re-
producibility and Resources Citation in Science and
Technology of Language.

Branco, A., Cohen, K. B., Vossen, P., Ide, N., and Calzolari,
N. (2017). Replicability and reproducibility of research
results for human language technology: Introducing an
LRE special section.

Branco, A., Calzolari, N., and Choukri, K. (2018). 4REAL
2018 Workshop on Replicability and Reproducibility of
Research Results in Science and Technology of Lan-
guage.

Collaboration, O. S. et al. (2015). Estimating the
reproducibility of psychological science. Science,
349(6251):aac4716.

Collobert, R., Weston, J., Bottou, L., Karlen, M.,
Kavukcuoglu, K., and Kuksa, P. (2011). Natural lan-
guage processing (almost) from scratch. Journal of ma-
chine learning research, 12(Aug):2493–2537.

Fokkens, A., van Erp, M., Postma, M., Pedersen, T.,
Vossen, P., and Freire, N. (2013). Offspring from repro-
duction problems: What replication failure teaches us.
In Proceedings of the 51st Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long
Papers), pages 1691–1701, Sofia, Bulgaria, August. As-
sociation for Computational Linguistics.

Gábor, K., Buscaldi, D., Schumann, A.-K., QasemiZadeh,
B., Zargayouna, H., and Charnois, T. (2018). SemEval-
2018 task 7: Semantic relation extraction and classifi-
cation in scientific papers. In Proceedings of The 12th
International Workshop on Semantic Evaluation, pages
679–688, New Orleans, Louisiana, June. Association for
Computational Linguistics.

Hagen, M., Potthast, M., Büchner, M., and Stein, B.
(2015). Webis: An ensemble for twitter sentiment detec-
tion. In Proceedings of the 9th international workshop
on semantic evaluation (SemEval 2015), pages 582–589.

Heafield, K. (2011). KenLM: Faster and smaller language
model queries. In Proceedings of the Sixth Workshop
on Statistical Machine Translation, pages 187–197, Ed-
inburgh, Scotland, July. Association for Computational
Linguistics.

Honnibal, M. and Montani, I. (2017). spaCy 2: Natural
language understanding with Bloom embeddings, con-
volutional neural networks and incremental parsing. To
appear.

Ivie, P. and Thain, D. (2018). Reproducibility in scientific
computing. ACM Computing Surveys, 51:63:1–63:36.

Jin, D. and Szolovits, P. (2018). Hierarchical neural net-
works for sequential sentence classification in medical
scientific abstracts. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 3100–3109, Brussels, Belgium, October-
November. Association for Computational Linguistics.

Johnson, R., Watkinson, A., and Mabe, M. (2018). The
STM report. International Association of Scientific,
Technical and Medical Publishers.

Kim, Y. (2014). Convolutional neural networks for sen-
tence classification. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1746–1751, Doha, Qatar, Oc-
tober. Association for Computational Linguistics.

Klampfl, S., Rexha, A., and Kern, R. (2016). Identifying



5578

referenced text in scientific publications by summarisa-
tion and classification techniques. In BIRNDL@JCDL.

Lahiri, S. (2014). ACL ARC Style Browser. http://
ec2-54-186-204-149.us-west-2.compute.
amazonaws.com/acl_arc_style_browser/.

Lee, J. Y., Dernoncourt, F., and Szolovits, P. (2017).
MIT at SemEval-2017 task 10: Relation extraction
with convolutional neural networks. arXiv preprint
arXiv:1704.01523.

Li, P. and Mao, K. (2019). Knowledge-oriented convolu-
tional neural network for causal relation extraction from
natural language texts. Expert Systems with Applica-
tions, 115:512–523.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J.,
Bethard, S. J., and McClosky, D. (2014). The Stan-
ford CoreNLP natural language processing toolkit. In
Association for Computational Linguistics (ACL) System
Demonstrations, pages 55–60.

Mei, Q. and Zhai, C. (2008). Generating impact-based
summaries for scientific literature. In Proceedings of
ACL-08: HLT, pages 816–824.

Mieskes, M., Fort, K., Névéol, A., Grouin, C., and Cohen,
K. (2019). Community perspective on replicability in
natural language processing. In Proceedings of the Inter-
national Conference on Recent Advances in Natural Lan-
guage Processing (RANLP 2019), pages 768–775, Varna,
Bulgaria, September. INCOMA Ltd.

Řehůřek, R. and Sojka, P. (2010). Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Val-
letta, Malta, May. ELRA. http://is.muni.cz/
publication/884893/en.

Ronzano, F., Freire, A., Saez-Trumper, D., and Saggion,
H. (2016). Making sense of massive amounts of scien-
tific publications: the scientific knowledge miner project.
In Proceedings of the Joint Workshop on Bibliometric-
enhanced Information Retrieval and Natural Language
Processing for Digital Libraries (BIRNDL), pages 36–
41, June.

Rotsztejn, J., Hollenstein, N., and Zhang, C. (2018). ETH-
DS3Lab at SemEval-2018 task 7: Effectively combining
recurrent and convolutional neural networks for relation
classification and extraction. In Proceedings of The 12th
International Workshop on Semantic Evaluation, pages
689–696, New Orleans, Louisiana, June. Association for
Computational Linguistics.

Zhang, Y., Lin, H., Yang, Z., Wang, J., Zhang, S., Sun, Y.,
and Yang, L. (2018). A hybrid model based on neural
networks for biomedical relation extraction. Journal of
biomedical informatics, 81:83–92.


