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Abstract

This study tackles unsupervised domain adaptation of reading comprehension (UDARC). Reading comprehension (RC) is a task to learn

the capability for question answering with textual sources. State-of-the-art models on RC still do not have general linguistic intelligence;

i.e., their accuracy worsens for out-domain datasets that are not used in the training. We hypothesize that this discrepancy is caused by

a lack of the language modeling (LM) capability for the out-domain. The UDARC task allows models to use supervised RC training

data in the source domain and only unlabeled passages in the target domain. To solve the UDARC problem, we provide two domain

adaptation models. The first one learns the out-domain LM and in-domain RC task sequentially. The second one is the proposed model

that uses a multi-task learning approach of LM and RC. The models can retain both the RC capability acquired from the supervised data

in the source domain and the LM capability from the unlabeled data in the target domain. We evaluated the models on UDARC with

five datasets in different domains. The models outperformed the model without domain adaptation. In particular, the proposed model

yielded an improvement of 4.3/4.2 points in EM/F1 in an unseen biomedical domain.
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1. Introduction

Reading comprehension (RC) is a task to acquire a capabil-

ity of understanding natural language for question answer-

ing with textual sources. It has seen significant progress

since the release of numerous datasets such as SQuAD

(Rajpurkar et al., 2016) and the rise of the deep neural

models such as BiDAF (Seo et al., 2017). Recently, fine-

tuning of pre-trained language models (LM) such as BERT

(Devlin et al., 2019) has achieved state-of-the-art perfor-

mance in many NLP tasks including RC.

However, such state-of-the-art models still do not have gen-

eral linguistic intelligence; e.g., their accuracy is sensitively

affected by the difference in the distribution between the

training and evaluation datasets, such as in the domains

of textual sources. This discrepancy becomes an issue in

a real-world scenario. For instance, a business intending

to introduce an RC application for a service must create

tens of thousands of (passage, query, answer) tuples per

domain of the service (Yogatama et al., 2019). However,

such a large annotation to create training data costs much

money and takes up a lot of time. When the domain entails

personal information or expert knowledge, even crowd-

sourcing can not be used to create the training data.

This study tackles a task, called Unsupervised Domain

Adaptation of Reading Comprehension (UDARC). Ta-

ble 1 shows the task setting of UDARC. The model can use

the (passage, query, answer) tuples of the source domain for

training. In addition, the model can use unlabeled passages

for training in the target domain. Annotated corpora with

QA pairs in the target domain can not be used for training.

In addition to the interest in the domain discrepancy, we

think that this setting is a natural one in real-world scenar-

ios, where it is assumed that the RC application provider

has documents that can be used as knowledge sources for

RC in the target domain (e.g., technical documents about a

product). UDARC thus enables people who have such doc-

Training Evaluation

Input Output Input Output

Passage Query Answer Passage Query Answer

Source X X X

Target X X X X

Table 1: Task setting of unsupervised domain adaptation

for reading comprehension (UDARC). Only unlabeled pas-

sages can be used for training in the target domain. In terms

of QA pairs, the task requires zero-shot domain adaptation.

uments in the target domain but have no RC training data

for the domain to introduce RC applications. This scenario

also applies to low-resource languages, where the availabil-

ity of RC training data is limited.

We hypothesize that the poor performance of in-domain

models for out-domains is caused by a lack of LM ca-

pability for out-domains. That is, we can improve the

question answering accuracy, without the RC data for the

out-domains, by training the language model with textual

sources about the out-domains in an unsupervised fashion.

In this study, we introduce a no-adaptation baseline model.

It transfers a BERT model fine-tuned with the source do-

main RC dataset to the target domain without domain adap-

tation. As a natural unsupervised domain adaptation ap-

proach, we investigate a sequential model. It adapts the

language model of BERT with the unlabeled passages in the

target domain, and then it fine-tunes BERT with the source

domain RC dataset.

Moreover, we propose the multi-task learning approach of

LM in the target domain and RC in the source domain.

It is more promising because the model avoids forgetting

about the target domain while fine-tuning. This study in-

vestigates the feasibility of UDARC and the effectiveness

of these models on various domain datasets. Our main con-
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tributions are as follows.

• We tackled unsupervised domain adaptation of read-

ing comprehension (UDARC). To solve UDARC, we

hypothesize that the ability to understand the out-

domain passages can be learned without supervised

annotation for RC.

• We propose a multi-task learning approach of the LM

in the target domain and the RC in the source domain.

This approach retains both knowledge of RC in the

source domain and knowledge of LM in the target do-

main without forgetting. We use BERT as the back-

bone model.

• We evaluated three models on UDARC with five

datasets in different domains. The domain adapta-

tion models outperformed the no-adaptation model.

In particular, the proposed model (adapted from the

Wikipedia domain to a biomedical domain) yielded

the best performance, with a 4.3/4.2 point gain in

EM/F1 over the model without domain adaptation.

• We thoroughly investigated cases in which UDARC

is effective. We found that the task is promising

when the target domain is unseen in the training of

the source domain and the pre-training of the language

model and when the training data in the target domain

are insufficient to acquire the RC and LM capabilities.

2. Problem Formulation

Here, we will focus on unsupervised domain adaptation of

extractive RC, which is the most popular problem formula-

tion of RC. The UDARC task is defined as follows.

PROBLEM 1. Let IS be instances of 3-tuples (passage,

query, answer span) in the source domain, and IT be unla-

beled passages in the target domain. The task of UDARC is

to accurately answer the query (extract the correct answer-

span from an input passage) in the target domain by training

an extractive RC model with IS and IT .

3. Related Work

3.1. Reading Comprehension

Golub et al. (2017) and Wang et al. (2019) also tackled

UDARC. Their approaches are to create pseudo QA pairs

for training in the target domain. They use the answer ex-

traction model to find a potential answer from the passage

and the query generation model to create the query given

the potential answer and the passage. Our approach is dif-

ferent from theirs because, according to our hypothesis, we

can acquire knowledge in the target domain without RC

training. An advantage of our approach is the low com-

putational cost due to the lack of a need for the training of

the Sequence-to-Sequence model to generate the query.

The MRQA 2019 shared task has a similar motivation as

ours (Fisch et al., 2019). Its goal is to generalize to new

test distributions and be robust to test-time perturbations.

The task is on six in-domain training data and twelve out-

domain evaluation data (a many-to-many setting). Our mo-

tivation is to acquire the ability to understand out-domain

passages from unlabeled passages and the ability to answer

a query from annotated RC training data for domain adap-

tation (a one-to-one setting). This motivation corresponds

to a real-world scenario. The shared task resulted in the

certification of the dependence of RC performance on the

backbone LM capability. This result supports the effective-

ness of our approach to improve LM for domain adaptation.

RC is essentially classified into four types: extractive

(Rajpurkar et al., 2016), multiple-choice (Lai et al., 2017),

generative (Nguyen et al., 2016), and cloze-style

(Hermann et al., 2015). Although this study focused

on extractive RC, we believe that the concept of our model

can be applied to other types of RC.

Many RC datasets have been published recently, but

the ones for closed domains are limited in number.

There are datasets, for example, in biomedical do-

main (Šuster and Daelemans, 2018), scientific domain

(Clark et al., 2018; Johannes Welbl and Gardner, 2017),

and software domain (Dhingra et al., 2017). The limited

number is one reason for our developing UDARC. Despite

the demand for RC in closed domains, which requires

expert knowledge, the annotation cost of the dataset makes

it difficult to create the dataset.

3.2. Domain Adaptation

Unsupervised domain adaptation is a task to adapt the

model to the target domain with labeled source data and

unlabeled target data. While supervised domain adapta-

tion with labeled target data first trains the model in the

source domain and then adapts it to the target domain, un-

supervised domain adaptation takes another approach. In

NLP, Ziser and Reichart (2019) uses a two-step algorithm;

the model first learns the representations and then learns

the classification. Miller (2019) uses the multi-task learn-

ing approach of the classification and the feature selection

of structural correspondence learning (Blitzer et al., 2006).

Here, Ganin et al. (2016) trains the representation learning

and the classification jointly with a domain-adversarial neu-

ral network.

However, UDARC can not use standard unsupervised do-

main adaptation methods. As shown in Table 1, an instance

is divided into an input (e.g., a (passage, query) pair in RC)

and output (e.g., an answer in RC). Unsupervised domain

adaptation allows inputs to be used in the target domain

without outputs. In RC, neither the output nor the queries

in the inputs can be used for training.

Zero-shot learning is a task to adapt the model so that it can

predict unseen classes in the training (Socher et al., 2013).

In particular, the recently proposed zero-shot domain adap-

tation (Yang and Hospedales, 2015; Peng et al., 2018) can

not use the inputs for the training of domain adaptation.

UDARC can be interpreted as a kind of zero-shot domain

adaptation, because it can not use queries in the inputs for

the training.

Zero-shot domain adaptation is a more challenging task

than unsupervised domain adaptation, and there are few

studies on it. Peng et al. (2018) allows task-irrelevant

data in the target domain. This is similar to our set-

ting, but their task is classification of images, which is

rather different from extractive RC, which is a special
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Figure 1: Overview of the three models. The LM instances are from the target domain, and the RC instances are from the

source domain. “TRMs” means transformer layers.

case of sequence labeling for text. The results of other

studies have limitations when they are used for UDARC.

Yang and Hospedales (2015) and Mancini et al. (2019) hy-

pothesize that the training data are from multiple domains.

Ishii et al. (2019) suppose there is prior knowledge about

what factors cause the differences between the source and

target data distributions.

4. Methods

This section introduces three models: the baseline model

without domain adaptation, the sequential domain adapta-

tion model, and the proposed model using multi-task learn-

ing. We used a pre-trained BERTbase model as the back-

bone architecture for the three models. It was trained

with large-scale corpora: BookCorpus (800M words)

(Zhu et al., 2015) and English Wikipedia (2,500M words).

It has achieved state-of-the-art performance on various

RC datasets. See (Devlin et al., 2019) for the details of

BERTbase. Note that the models can use other pre-trained

LM consisting of stacked layers as their backbone architec-

ture.

4.1. No-adaptation Baseline

This baseline model is a BERT fine-tuned with an RC

dataset in the source domain. It does not consider domain

adaptation, so its performance corresponds to the lower

bound of UDARC.

Figure 1 (a) shows an overview of the model. We

follow the fine-tuning setup for extractive RC, as in

(Devlin et al., 2019). We add a linear layer for extractive

RC on top of the BERT layers, where its output dimension

is two. The first dimension represents a score that the to-

ken is the start of the answer span, and the other dimension

represents the end. The input sequence is [‘[CLS]’; query;

‘[SEP]’; passage; ‘[SEP]’], where ‘[CLS]’ and ‘[SEP]’ are

special tokens and ‘;’ means concatenation.

4.2. Sequential Model

This model first adapts the pre-trained BERT with unsuper-

vised passages in the target domain. Then, it fine-tunes the

adapted BERT with the RC dataset of the source domain.

Figure 1 (b) shows an overview of the model. For the first

unsupervised adaptation, a linear layer for LM is added

at top of the BERT layers. The BERT including the LM

output layer is trained (with the sentences in the unsuper-

vised passages) in the same manner as in the pre-training

of BERT, i.e., by using masked language modeling (MLM)

and next sentence prediction (NSP). The input sequence is

[‘[CLS]’; sentences 1; ‘[SEP]’; sentences 2; ‘[SEP]’]. Af-

ter the adaptation, another linear layer for RC is added, and

the BERT including the RC output layer is fine-tuned in the

same manner as in the no-adaptation baseline.

Note that we may conduct domain adaptation in reverse

order, i.e., first build an RC model in the source domain

and then adapt it to the target domain. However, this order

causes catastrophic forgetting of the capability of finding

an answer span. The sequential model follows the pipeline

strategy of the previous unsupervised domain adaptation

work (Ziser and Reichart, 2019). Their model learns rep-

resentations first and classification after that, but their task

is not RC and they do not use a pre-trained language model.

4.3. Proposed Multi-Task Model

We consider that the sequential model forgets the knowl-

edge in the target domain while it is being fine-tuned with

RC training data. Moreover, it is known that multi-task

fine-tuning of the pre-trained language models outperforms

single-task fine-tuning (Liu et al., 2019a). For this reason,

we propose a multi-task learning approach. Multi-task

learning adds an RC linear layer and LM linear layer to the

top of the BERT layers. The model uses the RC linear layer

for RC instances and the LM linear layer for LM instances

as the output layer. Figure 1 (c) shows an overview of the

model.

Our multi-task learning approach uses the following two

techniques.

4.3.1. Using Shared and Specific Transformer Layers

First, we use the top-n Transformer layers (TRMs) for the

tasks separately as task-specific RC or LM layers. The

task-specific layers are cloned and initialized from the orig-

inal pre-trained BERTbase layers. The other layers are com-

monly shared by the tasks. The RC instances pass through

the shared layers, the RC-specific TRMs, and the RC out-

put layer. The LM instances pass through the shared layers,

the LM-specific TRMs, and the LM output layer. This idea

follows Tenney et al. (2019)’s observation that basic syn-

tactic information (e.g., part-of-speech tagging) is captured
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Algorithm 1 Multi-task learning approach

Input: source RC instances IS , target LM instances IT ,

num. of steps N , the RC training ratio k

1: for all i in 1, · · · , N do

2: Select mini-batch bS ∼ IS
3: Train the shared layers, RC-specific layers, and RC

output layer with bS .

4: if i%k == 0 then

5: Select mini-batch bT ∼ IT
6: Train the shared layers, LM-specific layers, and

LM output layer with bT .

7: end if

8: end for

in lower layers and high-level semantic information (e.g.,

coreference labeling) are captured in higher layers. We con-

sider that the basic syntactic information is the common

features between tasks, and the high-level semantic infor-

mation is closely related to the output of the task. There-

fore, the LM instances in the target domain should use the

shared TRMs in order to capture the basic syntactic infor-

mation in the target domain. The LM instances should not

share the higher layers of BERT with the RC instances, be-

cause the way it uses the high-level semantic information is

different from in RC.

4.3.2. One-Segment LM Training

Second, we preprocess each LM instance as a sequence

with one segment. That is, each LM instance is [‘[CLS]’;

‘[LM]’; passage; ‘[SEP]’], and the segment ids are a zero

vector. Therefore, NSP is not used for training of our multi-

task model. This intends to prevent the learning of the

segment interaction in NSP from disturbing the learning of

query-passage interaction, because the two segments only

interact in the RC training. ‘[LM]’ is a special token mean-

ing that the instance is an LM instance.

4.3.3. Training Procedure

We perform the RC training and LM training alternately.

The RC training is performed k times as many times as the

LM training. The algorithm is shown in Algorithm 1.

Note that the model size and computational time in the eval-

uation are the same as in the original BERT, because the

LM-specific layers are not used for evaluation. In the train-

ing, the computational time remains about the same, be-

cause the training for each mini-batch is the same as in the

original BERT.

5. Experiments

5.1. Dataset

We evaluated the UDARC task on various datasets. The

training data in the source domain should be large and cover

a wide range of topics. Moreover, the test data in the target

domain should be from a closed domain. Here, we selected

five datasets from different domains. Table 2 shows the

statistics. We used the development data for the evaluation

because some of the datasets do not include test data. Note

that not all the unlabeled passages were used. The number

of used unlabeled passages depended on the experimental

dataset domain # training # dev. # unlabeled

data data passages

SQuAD Wikipedia 87599 10570 19047

NewsQA news 107064 5988 95933

BioASQ biomedical 0 1504 55148

DuoRC movie 69524 15591 5137

Natural HTML
104071 12836 12222

Questions Wikipedia

Table 2: Statistics of the datasets used in the experiments.

setup (the number of fine-tuning epochs and the value of k)

and the size of the training dataset.

SQuAD1.1 is an RC dataset from Wikipedia

(Rajpurkar et al., 2016). We used this dataset as the

source domain or target domain. We used the passages

of the training data as the unlabeled passages when the

dataset was in the target domain.

NewsQA is an RC dataset from CNN news

(Trischler et al., 2017). We used this dataset as the

source domain or target domain. We used the CNN

news scripts (Hermann et al., 2015) as unlabeled passages

similar to the data collection of NewsQA.

BioASQ is a biomedical semantic indexing and ques-

tion answering challenge1 (Tsatsaronis et al., 2015). The

MRQA 2019 shared task preprocesses this dataset for ex-

tractive RC; we used the MRQA version of this dataset.

The training data of this dataset is not provided in the

MRQA 2019 shared task. We used this dataset only for the

target domain. We collected the unlabeled passages from

the abstracts of PubMed articles.

Our main interest in the experiments is the performance of

the unsupervised domain adaptation models on BioASQ.

This is because the BioASQ domain is not fully covered

by the source domain (Wikipedia or news) or by the BERT

pre-training (BookCorpus and Wikipedia).

DuoRC is an RC dataset in the movie domain

(Saha et al., 2018). DuoRC provides parallel movie plots

from Wikipedia and IMDb. In the experiment, we used the

ParaphraseRC task in DuoRC, where each query is created

on a Wikipedia movie article, and each passage is collected

from an IMDb article corresponding to the same movie.

The ParaphraseRC task is difficult because it is designed

to contain a large number of queries with low lexical over-

lap between queries and their corresponding passages. We

used this dataset only for the target domain and the passages

of the training data as the unlabeled passages.

The movie domain is different from the source domains,

whereas the BERT pre-training covers many stories in

BookCorpus. Therefore, we think that the pre-trained

BERT has acquired knowledge of language modeling for

this dataset.

Natural Questions (NQ) is an RC dataset containing pas-

sages from Wikipedia written in HTML format, where

1Task 7b, Biomedical Semantic QA, is held with ECML

PKDD 2019. See http://BioASQ.org/ .
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Train w./ Domain Target

SQuAD Adaptation NewsQA BioASQ DuoRC NQ

Standard RC in Target 41.5/56.0 — 20.2/27.2 58.9/72.2

No-adaptation X 35.2/50.7 41.1/53.6 24.5/33.0 44.4/57.5

Sequential X X 35.2/51.0 44.5/57.1 25.4/33.8 —

Multi-Task X X 35.9/51.4 45.4/57.8 25.5/34.1 43.8/56.7

Table 3: Results when the SQuAD was the source dataset. EM is on the left and F1 is on the right in each cell. The top row

is the supervised training in the target domain, so it is the expected upper bound of UDARC. The Standard RC in BioASQ

is empty, due to the lack of training data. The sequential model for NQ is empty. NSP of the BERT pre-training can not be

applied to HTML with a lot of HTML tags (e.g., List and Table).

Train w./ Domain Target

NewsQA Adaptation SQuAD BioASQ DuoRC NQ

Standard RC in Target 80.9/88.4 — 20.2/27.2 58.9/72.2

No-adaptation X 59.8/73.9 34.5/48.3 22.5/31.2 39.0/52.7

Sequential X X 59.7/75.3 36.6/50.4 23.7/32.7 —

Multi-Task X X 60.6/75.8 36.8/50.3 23.8/32.3 42.0/56.2

Table 4: Results when the NewsQA was the source dataset.

each passage is given as a sequence of words and HTML

tags (Kwiatkowski et al., 2019). We used the preprocessed

dataset for extractive RC in the MRQA 2019 shared task

for the training and evaluation. We used the passages of the

training data in the original NQ as the unlabeled passages.

Although the domain is the same as that of SQuAD and is

also covered by the BERT pre-training, we used this dataset

to confirm whether our model can adapt to HTML format

without supervised RC data on the HTML format.

5.2. Experimental Setup

We compared three models, no-adaptation, sequential, and

multi-task on the above datasets.

We used the PyTorch implementation of BERT2. We

trained the models on four NVIDIA Tesla P100 GPUs. The

optimizer was Adam (Kingma and Ba, 2014). The warm-

up proportion was 0.1 and the learning rate was 0.00005.

The batch size was 32. There were three epochs. The in-

put length was 384. Sequences longer than the input length

were truncated with a stride length of 128. The other hy-

perparameters followed those of BERTbase. The ratio of

RC training to LM training k is 10. The number of task-

specific layers n is 3. The hyperparameters are fixed in all

of the fine-tunings for RC. The hyperparameters of the pre-

training in the sequential model follow the default settings

of the implementation, except that the input length is 512,

which is the longest case.

We evaluated the answer prediction in terms of exact match

(EM) and partial match (F1). These are official metrics of

SQuAD.

5.3. Results

Under what condition is UDARC effective? Table 3

(the source domain is Wikipedia from SQuAD) and Table

4 (news from NewsQA) show the performance of the mod-

els for the target domain. The “Standard RC in Target” row

2https://github.com/huggingface/pytorch-transformers

lists the results in the standard RC (non-UDARC) setting,

where each model was trained and evaluated in the target

domain, so these are expected to be the upper bounds. First,

we discuss each target-only dataset separately.

BioASQ. BioASQ is of main interest in our experiments.

The two domain adaptation models outperformed the no-

adaptation baseline in both the source domain settings.

The proposed model improved on the no-adaptation model

trained in SQuAD by 4.3/4.2 points.

BioASQ is in a domain that is not included in the BERT

pre-training corpora. The results showed that the UDARC

framework is effective in adapting to unseen domains.

Moreover, this result confirms that our hypothesis behind

UDARC is correct; i.e., the ability to understand the out-

domain passages can be learned from a non-annotated cor-

pus and the ability to answer the query can be learned

from annotated RC training data, even though BERT is pre-

trained with very large corpora.

DuoRC. All unsupervised domain adaptation models out-

performed the model trained with the supervised dataset

in the target domain3. This surprising result is caused by

the difficulty of the ParaphraseRC task of DuoRC. It has

low lexical overlap between queries and their correspond-

ing passages, and the passages are rather long and com-

plicated. As a result, the training data are too difficult for

learning the RC capability. We think UDARC is promising

when it is difficult to acquire the LM and RC capabilities

with the supervised datasets.

Natural Questions. We compared four models (No-

adaptation / Multi-Task with the source domain of SQuAD /

NewsQA) in the target domain of NQ. The results indicated

that unsupervised adaptation from SQuAD to NQ did not

3The performance of the supervised model was 20.2/27.2,

which is similar to the performance (19.7/27.6) reported in the

original paper.
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NewsQA BioASQ DuoRC NQ

Standard RC 80.9/88.4

Sequential 81.2/88.6 80.6/88.4 81.0/88.4 —

Multi-Task 81.1/88.5 81.1/88.5 80.7/88.3 80.9/88.4

Table 5: Results for when the source and evaluation

datasets were SQuAD. The model was adapted to each tar-

get dataset. The top row is the no-adaptation model trained

only with the SQuAD dataset.

SQuAD BioASQ DuoRC NQ

Standard RC 41.5/56.0

Sequential 41.8/56.9 42.0/57.1 42.7/58.0 —

Multi-Task 42.6/57.6 42.0/57.0 42.8/57.8 42.3/57.4

Table 6: Results for when the source and the evaluation

datasets were NewsQA. The model was adapted to each tar-

get dataset. The top row is the no-adaptation model trained

only with the NewsQA dataset.

improve accuracy; on the other hand, unsupervised adap-

tation from NewsQA to NQ was effective. These results

can be interpreted as meaning that the multi-task approach

trained in the news domain as the source successfully

adapted to the Wikipedia domain. However, the proposed

model trained with plain text failed to adapt to HTML for-

mat. We consider that the adaptation to the HTML format

is a more challenging task than domain adaptation. Here,

the task design of the language modeling remains as future

work to understand text in HTML format, such as under-

standing of the dependencies among segments separated by

HTML tags.

What is the performance of the three models? Here, let

us discuss the model performances shown in Table 3 and

Table 4. Except for NQ, the domain adaptation models out-

performed the no-adaptation baseline. In terms of the EM

metric, the multi-task model outperformed the sequential

model for all source/target settings. This tendency showed

the possibility that the sequential model forgets the out-

domain knowledge while it is being fine-tuned. However,

there was no statistical significance between the two mod-

els. We observed that the sequential model was as effective

as the multi-task model. It is worth pre-training BERT with

the unlabeled target domain data after pre-training in the

general domain. This finding can be applied to other NLP

tasks.

In comparison to the related work, Wang et al. (2019) only

refers to the experiments with BERT in the setting from

SQuAD to NewsQA. The improvement of their domain

adaptation method over BERT fine-tuned in the source do-

main is 0.6/0.5 points, which is comparable to our 0.7/0.7

point improvement, though their pseudo QA generation ap-

proach requires more computational cost.

Does domain adaption hurt the performance in the

source domain? We evaluated the drop in performance

in the source domain due to the domain adaptation. Table
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Figure 2: Performance (F1) of the proposed model in adap-

tation from SQuAD to BioASQ in terms of the number of

unlabeled passages. The proposed model was trained with

k times fewer LM instances than RC instances. The right-

most coordinate of each line is the maximum number of

used LM instances determined by k, the number of epochs,

and the number of training data.

5 and Table 6 show the results. The “Standard RC” row is

the model trained only in the source domain.

Surprisingly, the sequential model and the multi-task model

tend to outperform the standard RC training in the source

domain. In addition to the discrepancy between domains,

a discrepancy also exists between the training samples and

the evaluation samples. We consider that the domain adap-

tation has the effect of generalization, so the model over-

comes the sampling discrepancy. UDARC requires no ad-

ditional supervised data for training, so the framework of

UDARC can be easily extended to the standard RC task in

which we can expect an improvement in performance.

How many unlabeled passages are required? We eval-

uated the performance of the proposed model in terms of

the number of unlabeled passages. The experiments were

on adaptation from SQuAD to BioASQ, because this set-

ting showed the largest improvements and BioASQ is the

main focus of UDARC. Figure 2 shows the results.

The results show that the proposed model outperformed the

no-adaptation baseline even when there were only 500 un-

labeled passages. The gain was 3.7/3.3 points in EM/F1. In

terms of the RC-LM ratio k, k = 10 was preferred, but we

should note that in some cases, k = 100 was preferred in

the pilot experiments. The biomedical domain is far from

the pre-training corpus of BERT, so we consider that the

moderate frequency of LM training steps is larger than in

other domains included in the corpora. We found that the

performance does not always increase as more unlabeled

passages come to be used, though the best performance is

with the full 26280 passages.

What domain is preferred as the source domain? To

evaluate the preference about the source domain under the

same conditions, we equalized the number of training data

in the source domain. Figure 3 and Figure 4 shows the per-

formance of the proposed model with BioASQ and DuoRC

as the target dataset.

On BioASQ, the proposed model adapted from SQuAD

outperformed the model adapted from NewsQA. In con-

trast, on DuoRC, the performance was on par. Therefore,

the performance of the proposed model depends on the se-

lection of the source domain, but the preferred source do-

main cannot as yet be identified.
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Figure 3: Performance (F1) of the proposed model in adap-

tation from SQuAD and NewsQA to BioASQ versus num-

ber of source training data.
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Figure 4: Performance (F1) of the proposed model in adap-

tation from SQuAD and NewsQA to DuoRC versus number

of source training data.

How much source data are required? Figure 3 and Fig-

ure 4 show the performance in terms of the number of

source training data. The results indicate that more training

data results in higher performance. In particular, the im-

provement grows rapidly until 10000 instances, after which

it becomes slower. This result coincides with the observa-

tion of Yogatama et al. (2019). They showed that tens of

thousands of training data are required to fine-tune BERT.

We consider that the required number of source data for

UDARC shows the same tendency as in the standard RC

task.

6. Conclusion and Future Work

This paper studied UDARC to adapt an RC model to the

target domain without any annotated data in the target do-

main.

This is the first study to focus on the unsupervised domain

adaptation for acquiring the ability to answer the question

from the RC task in the source domain and the ability to

understand the out-domain passages from the LM task in

the target domain. This approach is different from the re-

lated work, which generates the pseudo QA pairs for the

training. We described two unsupervised domain adapta-

tion models using BERT. In addition, the proposed model

reduces the forgetting of out-domain knowledge while it is

being fine-tuned.

We evaluated the two models and the no-adaptation model

on the five datasets in different domains. As a result, the

domain adaptation models outperformed the no-adaptation

model especially well when the target domain was not con-

tained in the source domain or the BERT pre-training cor-

pora. The proposed model (adapted from the Wikipedia

domain to the biomedical domain) yielded the best perfor-

mance, with a 4.3/4.2 points gain in EM/F1 over the no-

adaptation model. We believe that this study sheds light on

the importance and feasibility of UDARC. Our experiments

also showed that the UDARC framework has the potential

to outperform a model trained with supervised datasets in

the target domain when it is difficult to acquire the LM and

RC capabilities from the supervised datasets.

Pre-trained language models (Devlin et al., 2019;

Radford et al., 2019; Yang et al., 2019; Liu et al., 2019b)

and the fine-tuned models achieved state-of-the-art perfor-

mance in many NLP tasks, including RC. We believe that

this study considering unsupervised domain adaptation

with BERT will foster great contributions to various fields

of NLP that have not been the subject of previous work in

unsupervised domain adaptation.
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