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Abstract
Many organizations use domain- or organization-specific words and phrases. This paper explores the use of vetted terminology as an
input to neural machine translation (NMT) for improved results: ensuring that the translation of individual terms is consistent with
an approved multilingual terminology collection. We discuss, implement, and evaluate a method for injecting terminology and for
evaluating terminology injection. Our use of the long short-term memory (LSTM) attention mechanism prevalent in state-of-the-art
NMT systems involves attention vectors for correctly identifying semantic entities and aligning the tokens that represent them, both
in the source and the target languages. Appropriate terminology is then injected into matching alignments during decoding. We also
introduce a new translation metric more sensitive to approved terminological content in MT output.
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1. Introduction
Machine translation (MT) is a growing research area within
natural language processing, a high-demand area of com-
puter science. For many years, statistical MT (SMT) has
dominated this research area and much progress has been
made in MT using this approach and its variants, such as
phrase-based MT. However, many believe, as quoted by a
researcher in the field, that “the current approach of statis-
tical, phrase-based MT has kind of reached the end of its
natural life.”1 (Marking, 2016) With the recent resurgence
of neural networks, advances in MT over the last two to
three years are due to neural machine translation (NMT).
Most organizations use an increasing number of domain-
or organization-specific words and phrases. Any associated
translation process, whether human or automated, must ac-
curately and efficiently use these specific multilingual ter-
minology collections. Hasler et al. (2018) make the point
that enforcing “terminology. . . is a requisite, . . . for compa-
nies wanting to ensure that brand-related information is ren-
dered correctly and consistently when translating. . . and is
often more important than translation quality alone.” Cost
savings are significant for organizations that manage and
apply terminology (SDL, 2017), including in multilingual
processes like translation.
However, comparatively little has been done to explore the
integration of vetted terminology and MT processing, with
the goal of improving overall results. In particular, manip-
ulating the translation output of NMT systems to adhere to
user-provided terminology specifications, despite the im-
pressive quality improvements of NMT, remains an open
problem (Hasler et al., 2018).
The now-common (and perhaps past its prime) SMT and
the newer NMT both rely on training data and computed
probabilities and weights to achieve their results. However,
this does not always guarantee that the output results will
contain the approved terminology, as is the case with Dinu
et al. (2019). A sentence translated using MT may be gram-
matically or linguistically correct, but if it does not reflect

1Alan Packer, Engineering Director and head of the Language
Technology team at Facebook

terminological content mandated by the organization, the
translation is suboptimal.
This paper presents a method for introducing approved ter-
minology into the core of NMT processing. A type of ter-
minology injection, it involves substituting or replacing an
approved term where it doesn’t emerge during translation.
We show how it achieves improved terminology selection
over most current state-of-the-art translation methods. We
also introduce a new translation metric more sensitive to
approved terminological content in evaluating MT output.

2. Background
In addressing the terminology challenge in MT, differing
solutions have been implemented in the last few years. A
common technique is to use rote dictionary lookup: sub-
stituting exact matches, typically in the output translation,
from a table that specifies source/target terminology items
(Luong et al., 2015b). This is usually possible since, if a
source item is unknown to the MT system, it is often passed
through untranslated to the output sentence, allowing it to
be replaced automatically by the target entry from the dic-
tionary. Direct string replacement in MT output may also
be triggered by more active means, such as pre-annotating
in the input (manually or otherwise) source terms with their
translation equivalent for replacement in post-processing.
Another recent technique, constrained decoding, manipu-
lates the data structure (a beam) that represents a specified
number of output hypotheses, all scored statistically. The
standard beam search algorithm that determines and returns
the best-scored output is modified to allow for the satisfac-
tion of constraints. In this case the constraints are essen-
tially pre-specified sub-sequences of terminological content
that can be injected into the beam search process, thus im-
proving its chances of appearing in the output (Hokamp
and Liu, 2017; Hu et al., 2019). However, probability
still plays an important role in the final output. Although
the output is constrained, probabilities in play at this point
mean that the final output may or may not contain the con-
strained sequences. With terminology injection, our system
precludes adjustment of output probabilities in the beam
search, which could result in errors.
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Dinu et al. (2019) propose a technique that involves inline-
annotation of the input during training that specifies pre-
ferred translation units. The system learns to bias these in-
put specifications, and fuzzy matching can abstract away
from minor morphological variations. No constrained de-
coding or direct injection occurs.
Terminology content expresses semantic relationships—si-
milarities and differences—between concepts, and the lexi-
cal content that encodes them in a context of domain knowl-
edge. Effective translation relies upon the ability to faith-
fully communicate accurate concept equivalences as re-
flected in terminological units, beyond merely splicing to-
gether word sequences. To the extent that semantic prin-
ciples find expression in a terminology-grounded MT task,
the result will be more terminologically correct, naturalis-
tic, and understandable.
It is often the case that currently approved terminology ei-
ther has not been used historically and is not contained at
all in any legacy texts, or it has been used only rarely. This
poses another problem for an MT system: how to produce
quality translations when there is no—or only minimal—
approved terminology in the training data. This diverges
from methods that intentionally include raw terminology in
the training data (Dinu et al., 2019). On the other hand,
new translations over time that take advantage of approved
and integrated terminology will become part of the stan-
dard training data for the MT system. This will ensure that
proper terminology becomes an integral part of future trans-
lations.
Related to the question of domain adaptation in MT, we
evoke the issue in this paper but leave it for further future
exploration.

2.1. NMT and terminology
Within the last few years, NMT has found traction in
MT research and commercial use because of its ability to
produce higher-quality and more-fluent translations than
SMT (Denkowski and Neubig, 2017; Koehn and Knowles,
2017). We now sketch considerations for proper process-
ing of terminological content in an NMT system. We do
not provide a discussion of NMT architectures in general,
which can be found elsewhere.
The training stage in NMT prepares a translation model
from aligned bitexts in a given domain. An expensive and
time-consuming process, it may not be practical to fre-
quently retrain an NMT model to include the most current
terminology in an active and growing or changing terminol-
ogy collection. In this paper our proposed solution to this
problem allows for an MT model of a particular domain to
be augmented with both legacy translations and more up-
to-date terminology to produce desirable results. This can
mean lower cost and shorter time to delivery than is neces-
sary with retraining a model to include evolving terminol-
ogy.
When a word token is encountered in the training data,
a vector representation is created for that word. An n-
dimensional continuous vector space model (i.e., word em-
bedding) encapsulates the vocabulary’s characteristics as
reflected by words’ usages in the training data; one result
is that semantically similar words are mapped to nearby

points. Particular embedding methods vary, but they all re-
flect to some degree the Distributional Hypothesis, which
states that “words that occur in the same contexts tend to
have similar meanings” and are therefore semantically re-
lated (Pantel, 2005). This observation also extends to ter-
minological units, hereafter TU’s,2 where similar terms will
group proximally since TU’s combine conceptual (seman-
tic), lexical (terminological), and contextual (situational)
perspectives (Cabré Castellvı́, 2003), all three of which are
relevant and salient in the embeddings.
NMT training also produces a target vocabulary containing
the individual and unique target tokens in the training cor-
pora, sorted by frequency. Ideally, this vocabulary contains
every token in the training data, though it is routinely lim-
ited in practice to a specific number of the most frequently
occurring tokens. Jean et al. (2015) observe that the vo-
cabulary of NMT has a limitation, as training complexity
as well as decoding complexity increase proportionally to
the number of target words. Recent techniques have been
developed to mitigate these limits (Denkowski and Neubig,
2017); the OpenNMT system, which we use in this paper,
has a default vocabulary limit of 50K words (Klein et al.,
2017; Klein et al., 2018).
Part of the translation process is encoding, where the sys-
tem re-expresses the human-readable source sentence into a
mathematical representation for future use. This mathemat-
ical representation is known as the context vector (Luong et
al., 2015a).
The decoding stage of the translation process renders the
context vector from its mathematical representation to a
human-readable sentence in the target language. This is
done in a two-step process: first, generate a vector repre-
sentation of the target sentence based on the trained model,
then tokenize the target vector into a human-readable sen-
tence using tokens from the target vocabulary.
As described by Luong et al. (2015a), the decoder gen-
erates one target word (token) at a time, using conditional
probability to generate the best word based on those in pre-
vious time steps. This backward glance allows for multi-
token terms (a complete TU) to be generated.
In decoding, the attention mechanism focuses on different
parts of the source sentence that are more important at var-
ious stages of the translation as an alternative to just pro-
cessing the source sentence sequentially. It also permits a
view into what is going on in the decoder in a straightfor-
ward way.
Luong et al. (2015a) present both a global attention model
and a local attention model. The idea of a global atten-
tion model is to consider all the hidden states of the en-
coder when deriving the context vector. In this model type,
a variable-length alignment vector whose size equals the
number of time steps on the source side, is derived by com-
paring the current target hidden state with each source hid-
den state.
The purpose of the attention mechanism is to generate the
align weights. These align weights are used to produce an
alignment between the source sentence and the target sen-

2not to be confused with “translation unit”; see (TERMI-
UMplus, 2019)
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tence based upon the vector embeddings in the alignments
while generating the target sentence. Luong et al. (2015a)
observe that a by-product of attentional models are word
alignments. These intrinsic word alignments, not inher-
ently available in SMT, are the key to injecting terminology
in NMT. Indeed, the foundational NMT work by Bahdanau
et al. (2014) focuses on alignment as a way to improve
translation.
The attention mechanism helps to focus on the most prob-
able representations. Then, tokens from the target vocabu-
lary that represent the TU’s in the target vector are selected
to complete the target translation. This is referred to as the
prediction.
One caveat is in order: attention vectors provided by NMT
are not a perfect representation for translation. NMT chal-
lenge #5 cited by Koehn and Knowles (2017) states that the
attention model for NMT does not always fulfill the role of
a word alignment model, and may at times dramatically di-
verge. That is not to say it doesn’t work at all, rather that it
is as yet imperfect and can be improved. They continue this
idea by observing that the word attention states match up
well with the word alignments obtained with “fast align,”
a common alignment tool. However, they noticed that the
attention model may settle on alignments that did not corre-
spond with their intuition or alignment points obtained with
fast align.
Human-readable tokens do not exist in a context vector (the
output of the encoder). Instead, the context vector is a se-
mantic representation of the entire source sentence. When
the context vector is passed to the decoder, a new vectorized
semantic representation is generated that matches the target
language. This is sometimes referred to as the hypothesis.

3. Approach
This paper reports on experiments involving English and
Spanish as the source and target languages, respectively,
mostly due to availability of relevant resources.

3.1. Terminology Injection
The crucial first step in generating the target sentence is
decoding the context vector into a target sentence vector.
The decoder uses the trained model and the vector-space
model to generate a target sentence vector. Once the target
sentence vector has been generated by the decoder, a target
sentence token index is generated. The last step in building
the target sentence is to select tokens in the target vocabu-
lary that represent the TU’s in the target sentence vector.
Terminology injection involves modifying the target sen-
tence symbols (tokens). Recall that the tokens in the target
token vocabulary are human-readable symbols that repre-
sent the TU’s in the target sentence vector which are found
in the training corpus. Of crucial importance is the exis-
tence of a mapping between the vector space and the to-
kens in the vocabulary. Therefore, it is possible to modify
the vocabulary and replace a token with a different token.
Tokens cannot be removed from the vocabulary, but they
can be modified. Doing so will allow for replacement of a
TU.
For example, an NMT system might translate the source
sentence given in (1) as the viable Spanish translation given

in (2).3 However, in a given organizational context (3) or
even (4) might instead be the approved translation.
(1) Your report is absolutely disgraceful.

(2) Su informe es absolutamente vergonzoso.

(3) Su exposición es absolutamente vergonzoso.

(4) Su exposición de alta calidad es absolutamente vergonzoso.

Terminology injection allows for the requisite manipulation
of the target sentence in these cases. The internal state of
the NMT system is open to inspection; crucially, for injec-
tion, the attention matrix can be examined for source/target
alignments. Figure 1a shows different versions of the trans-
lation with their associated attention matrices. Angle brack-
ets and red highlighting in the matrix indicate the locus of
terminology substitution in the target output, illustrated in
the first column.

(a) Raw NMT output based on trained bitext

(b) NMT injected output (1-to-1) from a termbase

(c) NMT injected output (1-to-many) from a termbase

Figure 1: Predictions using original and substituted tokens

Note that all values in the attention vectors are exactly the
same in each table no matter the substitution. Since tokens
in the target output are just string literals, we can substitute
them freely from an external termbase.
A limitation of this method so far involves the fact that
it can handle cases of 1-to-1 and 1-to-many replacement,
where only a single source token can be handled; but

3Sentences (1) and (2) are from EuroParl bitext.



4823

many-to-1 and many-to-many, which replace more than one
source token, cannot.
Note that injection can also cause problems with proper lin-
guistic agreement in the target language. The word “ex-
posición” in Spanish is a feminine form while the word
“informe” is masculine. Replacing “informe” with “ex-
posición de alta calidad” causes an agreement problem
because the adjective “vergonzoso” is a masculine form
that agrees with the grammatical gender of the word “in-
forme” but not with the grammatical gender of the word
“exposición”. In this case, a simple grammatical gender
change from the masculine “vergonzoso” to the feminine
“vergonzosa” would fix the problem. When a replacement
token or sequence fails to agree with its new target context,
correcting the output will require post-editing.

4. The algorithm
We now extend the current account to allow for variable-
length source substitutions, building on the core idea of to-
ken replacement based on TU identification. Each row of
the attention matrix pertains to a single token in the gen-
erated target sentence, whereas each column pertains to a
single source sentence token. Table cells contain proba-
bility values that represent the likelihood of an association
(i.e., the alignment) between the relevant source and tar-
get tokens in the current sentence. But now we can extend
these attention probabilities to contiguous cells in both di-
rections.
In both Figures 1b and 2a, the highest value in the column
under the source token “report,” a value of 0.8274, triggers
the target token selection. That is, the token “informe” is
the correct target equivalent of the source token “report”
with an 82.74% confidence. The highest value in each col-
umn is indicated in Figure 2a and shows the relationship
between each source token and its corresponding target to-
ken. In other words, it indicates an alignment.
Note that in the first two columns of Figure 2b, the high-
est values are both in the first row. This is because the
two source tokens “We” and “must” both correctly align
with the single target token “Debemos” in Spanish. This
is an example of many-to-1 mapping between source and
target tokens. The attention vectors in the matrix identify
the translation equivalents in the matrix. This allows the
NMT system to correctly produce a translation sequence of
“Debemos” from “We must”.
Figure 3 provides an example of a more complex sentence
involving many-to-1 injection. It involves a many-to-many
(3-to-4 term) injection with substantial reordering (the ad-
jective “European” at the beginning of the source term has
its corresponding Spanish translation ending up in term-
final position in the target language).
We now sketch the process to correctly identify and ap-
ply appropriate terminology, given an external source/target
termbase and an NMT alignment matrix. More details are
available elsewhere (Dougal, 2018). This process will in-
ject supplied terms into the NMT decoder output by match-
ing the TU’s in the attention matrix.

1. Create a “term candidates” collection by scanning the
source sentence for all occurrences of any term from

(a) Attention vectors in the columns

(b) Attention vectors in the rows

Figure 2: Attention vectors in the LSTM attention matrix

Figure 3: TU identification in a more complex sentence

the terminology collection. Compute the longest-
cover match between term candidates.

2. Generate the attention matrix using the attention vec-
tors from the NMT decoder.

3. Map each token in the source sentence to a column in
the attention matrix, token 0 to column 0, token 1 to
column 1, and so on as shown in Figure 1.

4. For each term in the source sentence (possibly more
than one token), identify the highest probability value
in the column for both the first and last tokens, and
identify the corresponding row in the attention matrix
for each.

The set of probability values, P , for a given column in
the attention matrix, C, can be represented by Equa-
tion 1 as follows, where r is the total number of rows
in the matrix and p is a single probability value in C.
The entire attention matrix, then, can be expressed by
Equation 2, where n is the total number of columns in
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the matrix. It follows, then, that the row of a given
token in target term T in attention matrix M can be
expressed as RSi

, where R is the row in M of the
ith token in the current source term, S, as given in
Equation 3. Note that the argmax function returns
the index of the max element of the specified array,
and not the max element itself.

PC = {p0, p1, p2, · · · , pr} (1)

M = {P0, P1, P2, · · · , Pn} (2)

RSi
= argmax(PCi

) (3)

Figure 3 includes a multi-word or multi-token source
term, “European Works Councils.” As mentioned pre-
viously, the target equivalent in Spanish is also a multi-
token term, but due to text expansion it contains more
tokens than the source equivalent. Correct identifica-
tion of the entire TU in the target sentence requires an
additional pair of functions. These functions are ap-
plicable to terms with any number of tokens, where B
represents the beginning token in the TU and E repre-
sents the ending token in the TU:

B = min(RSfirst
, RSlast

) (4)

E = max(RSfirst
, RSlast

) (5)

Therefore, the TU in the source sentence is repre-
sented by source tokens 4 through 6, whereas the TU
in the target sentence is represented by target tokens 3
through 6.

5. Look up the source term for the optimized sequence
in the terminology collection and retrieve the target
equivalent, which are then substituted in place of the
original target tokens in the NMT prediction.

5. Experiments
For training and testing the NMT model, we used three per-
tinent language resources. The base system we used was
the OpenNMT PyTorch system (Klein et al., 2017; Klein
et al., 2018), an open source deep-learning platform; ad-
ditional code for our new functionality was also written in
Python. To provide a baseline, we trained the system on
one million EuroParl sentence pairs for 10 epochs. Though
the system default is 13 epochs, 10 seemed appropriate for
our purposes. The nearly two-week training stage produced
a model consisting of a 2-layer Long Short-Term Memory
(LSTM) network with 500 hidden units on both the encoder
and decoder. The system worked well, even using default
settings.4

EuroParl: This is a multilingual bitext corpus containing
transcriptions of the proceedings of the European Par-
liament, therefore involving a domain of government
and politics.5 It is commonly used for MT evaluations.
We used the first half of the 2 million aligned English-
Spanish sentence pairs to train the system.

4http://opennmt.net/OpenNMT-py/options/
train.html

5www.statmt.org/europarl/

Microsoft C# technical documentation: We collected
this corpus by scraping the Microsoft Developer
Network (MSDN) website.6 It contains high-quality
pre-aligned bitexts for a variety of language pairs;
our corpus comprises 10,000 aligned sentences. We
selected this corpus primarily because of its very
different domain from EuroParl, allowing us to
evaluate the effect of terminology injection on NMT
output from a largely unmatched training domain.
In the real world, this is actually a very common
scenario and subsequently a very useful evaluation.
In fact, Koehn and Knowles (2017) list raising the
quality of out-of-domain translations as the first of
“Six Challenges for Neural Machine Translation.”

Microsoft terminology: We also used an existing ter-
minology collection available from Microsoft. We
converted a publicly available TermBase eXchange
(TBX) file directly from the Microsoft Language Por-
tal, thus obtaining both English and Spanish equiva-
lent terms in approximately 30,000 concept entries.7

6. Results and discussion
For our evaluation we used the NMT model trained on Eu-
roParl as our baseline system. We then used terminology
injection with an externally specified termbase to see what
effect would be produced. See Table 1 for comparative
statistics regarding both text types and characteristics of the
terminology matches.
We then computed scoring metrics for the raw output. Fi-
nally, we scored the output with terminology injection, and
calculated the difference from the raw output (baseline)
scores. As is common practice, we report our results us-
ing standard metrics: the Bilingual Evaluation Understudy
(BLEU) score (Papineni et al., 2002) and its variants Multi-
BLEU and NIST-BLEU.
We first attempted to evaluate terminology injection on the
EuroParl corpus using IATE, the official EU terminology
resource, as a termbase input.8 Coverage for EuroParl term
usage, though, was very low, hence yielding somewhat
disappointing results: with injection the Multi-BLEU and
NIST-BLEU scores showed consistently slight decreases.
On the other hand, as expected, coverage by the Microsoft
termbase of terms used in the Microsoft documents was
high, and as a result terminology injection was substantial
and yielded excellent results (see Table 2). Both terminol-
ogy collections used in this study—IATE and the Microsoft
collection—are the vetted and recommended terminology
collections for the respective datasets.
Our results demonstrate a significant improvement in NMT
output using terminology injection versus raw output for
the Microsoft content. Furthermore, our results, based
on limited data, indicated that percentage improvement in-
creases, on average, with the size of the corpus as measured
with BLEU, though this may not be true in all cases. How-
ever, more evaluations will be necessary to validate that as-

6https://docs.microsoft.com/en-us/dotnet/
csharp/

7https://www.microsoft.com/en-us/language
8See https://iate.europa.eu.

http://opennmt.net/OpenNMT-py/options/train.html
http://opennmt.net/OpenNMT-py/options/train.html
www.statmt.org/europarl/
https://docs.microsoft.com/en-us/dotnet/csharp/
https://docs.microsoft.com/en-us/dotnet/csharp/
https://www.microsoft.com/en-us/language
https://iate.europa.eu.
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Average words
per sentence

Average terms
per sentence

Average term
n-gram size

% of sentences
with terms

EuroParl Source 28.86 0.65 2.07 42.61Target 27.83 0.63 2.47

Microsoft Source 16.76 3.35 1.10 90.83Target 16.39 3.14 1.19

Table 1: Document and translation characteristics

Dataset Sentences Multi-BLEU NIST-BLEU
Raw Result Gain Raw Result Gain

EuroParl 1K 997 33.31 -0.67 -2.01% 33.57 -0.68 -2.03%
EuroParl 3K 3,497 33.60 -0.23 -0.68% 33.82 -0.23 -0.68%
EuroParl 5K 5,000 32.00 -0.48 -1.50% 32.27 -0.47 -1.46%
EuroParl 10K 9,934 32.25 -0.30 -0.93% 32.51 -0.32 -0.98%
Microsoft Original 1,003 26.03 +1.70 6.53% 26.30 +1.77 6.73%
Microsoft Combo 1,103 26.00 +1.90 7.31% 26.32 +2.31 8.78%
Microsoft Medium 3,000 23.00 +2.81 12.22% 23.43 +2.85 12.16%
Microsoft Large 10,000 23.77 +2.95 12.41% 24.39 +2.98 12.22%

Table 2: BLEU performance data for datasets using terminology injection

sertion or to determine in what circumstances it may apply.
This is particularly interesting since the Microsoft dataset
reflects out-of-domain results.
These results are very different from the expectation of an
improvement score that remains uniform and average re-
gardless of the size of the dataset. Still, these data support
the finding that our injection method improves NMT output
by a significant margin (Koehn, 2004).

7. Introducing TREU
Several considerations documented elsewhere (Coughlin,
2003; Koehn, 2004; Och, 2003; Papineni et al., 2002)
make BLEU somewhat suboptimal for evaluating transla-
tions that have dense terminological content. In this sec-
tion we introduce a new metric that is comparable to BLEU
and is more sensitive to terminological content. We call
this scoring algorithm Terminology Recall Evaluation Un-
derstudy (TREU). Consider the following three tokenized
sentences.

(5) The dog chased the cat . (Refs)
(6) The dog chased the cat . (Pred)
(7) The dog chased the {feline} . (Pmod)

Note that (7) is identical to (5) with the exception that the
term “feline” is injected and tagged, replacing “cat” in (7).
Though the terms are semantically similar, a preference
was made to use the term “feline” instead. Using BLEU,
these two sentences would not receive the same score since
BLEU is based on orthographic similarity. Thus BLEU in-
herently penalizes use of approved terminology even when
it is used appropriately. TREU scores translation output
using a combination of standard string-matching metrics
while also taking terminology injection into account.
Following is the process for calculating TREU scores:

1. Calculate the overlap between the reference sentence,
Refs, and the raw prediction, Pred, as well as between
Refs and the modified prediction, Pmod.

The overlap, o, between two sentences, S1 and S2, is
the summation of the minimum occurrence of all to-
kens common between the two sentences. A token, t,
is an element of the shared vocabulary, V , which is the
set of all unique tokens common to both sentences. If
a token exists in one sentence but not the other, that
token does not “overlap” both sentences and it is not
counted.

o =
∑
t∈V

min(count(t, S1), count(t, S2)) (6)

A credit value, C, is necessary to account for termi-
nology tokens, t′, that will not be counted when calcu-
lating the overlap, o, between the reference sentence,
Refs, and the modified prediction, Pmod, using ortho-
graphic matching. Note that C is only calculated on
a translated sentence into which terminology has been
injected. If neither S1 nor S2 is the modified predic-
tion, Pmod, there is no need to provide a credit for
semantic equivalence and C will be zero. Of neces-
sity, the calculation of C assumes that all terminology
injections are correct.

C = count(t′, Pmod) (7)

The complete overlap, O, is the sum of the initial over-
lap, o, and the terminology credit, C.

O = o+ C (8)

For example, if we assume that (5) is the reference sen-
tence, Refs, and (6) is the prediction, Pred, the value
of O is 6 when comparing these two sentences: The
number of orthographically identical tokens is 6 and
no terminology credit is needed, leaving C at zero
(O = 6 + 0). However, when comparing (5) and (7),
O is still 6 even though “cat” and “feline” are ortho-
graphically distinct. In this case, there are 5 ortho-
graphically identical tokens in common between the
two sentences (o = 5) and the terminology credit, C,
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is 1 because the term “feline” is tagged in (7). This
allows us to accept semantic equivalence between two
terms despite orthographic differences.

2. Once the values for overlap have been calculated for
both Pred and Pmod, compute the value for Recall.
Count the total number of tokens in Refs to compute
Recall using the overlap results.

r =

{
1, if O > count(t, Refs)

O
count(t,Refs) , if O = count(t, Refs)

(9)

R =

{
r, if O > 0

0, if O = 0
(10)

3. While Recall, R, (Equation 10) will always rely upon
the number of tokens in the reference sentence, Refs,
the Precision equation, P , (Equation 12) will use ei-
ther the unmodified prediction, Pred, or the modified
prediction, Pmod, depending upon the intended com-
parison. Therefore, ϕ is used to represent either Pred
or Pmod, as the case may be. Compute Precision ac-
cordingly.

p =

{
1, if O > count(t, ϕ)

O
count(t,ϕ) , if O = count(t, ϕ)

(11)

P =

{
p, if O > 0

0, if O = 0
(12)

4. Given these values, the F1 score is computed as usual,
which is then used to compare sentences.

These equations are based on the standard equations for the
Recall, Precision, and F1 metrics. Table 3 shows scoring
over the baseline for both datasets as described by TREU,
the new metric more sensitive to terminology matches from
a standard terminology resource. TREU shows an improve-
ment over the basic NMT baseline when terminology injec-
tion is used, even when the match between the termbase
(IATE) and the text (EuroParl) is not a very good one,
as discussed earlier. As shown in the Microsoft listings,
results are even more impressive when the termbase/text
match is better (compare Table 1).

Dataset Sentences TREU
Raw Result Gain

EuroParl 1K 997 0.6523 +0.0159 2.44%
EuroParl 3K 3,497 0.6455 +0.0132 2.04%
EuroParl 5K 5,000 0.6334 +0.0138 2.18%
EuroParl 10K 9,934 0.6296 +0.0213 3.38%
Microsoft Original 1,003 0.6258 +0.0716 11.44%
Microsoft Combo 1,103 0.6255 +0.0726 11.60%
Microsoft Medium 3,000 0.5943 +0.0578 9.73%
Microsoft Large 10,000 0.5963 +0.0577 9.67%

Table 3: TREU measurements for terminology injection

According to Koehn (2004), if the BLEU score difference
is at least 2-3% for a test set size of 300 sentences or more

then the results are within the 95% statistical significance
range. Although TREU and BLEU are distinct metrics and
are used for different purposes, they are comparable in their
methods. Table 3 shows that the percentage gain for all
datasets used in this study falls within the statistical signif-
icance range indicated by Koehn (2004).

8. Conclusions and Future Work
Given the need for correct usage of vetted terminology
in the translation process, an effective integration with
termbases in various MT approaches is desirable. This
is especially true for NMT, which already often produces
more natural or “fluent” translations. Terminology injec-
tion leverages the inherent advantages of expanded con-
text (via the LSTM capability) and semantically expressive
word embeddings. By associating a bilingual termbase with
an NMT system and associating source and target terms
with the alignment matrix, terms can be injected even when
they involve length mismatches or reorderings.
Using standard MT evaluation metrics, we show that injec-
tion is effective, especially when the termbase’s coverage
in the source text is more extensive. The Microsoft tech-
nical documentation and associated terminology collection
are good illustrations of this.
We also proposed another MT metric, TREU, that is more
sensitive to the presence of approved terminology in the
target translation. We showed that, even in domains
where termbase coverage is limited—such as the EuroParl
proceedings—TREU reflects an increase over the baseline
because of the terms that injection does recognize and pro-
cess.
Several avenues of future research are possible to continue
this work.
As discussed earlier, injection of target terminology some-
times introduces target-language grammatical errors when
incompatibility with the rest of the sentence arises. Per-
haps the NMT decoder could be harnessed to provide cor-
rect agreement processing, or more likely a separate trained
LSTM network could be used to make proper adjustments
to the target sentence to correct problems that arise.
The current implementation only uses a flat list of non-
hierarchical source-target term pairs (often referred to as
a “glossary”) to seed the injection process, which increases
the likelihood of polysemic collisions. On the other hand,
terminology management practices involve much more
complex termbases that express several types of lexical,
domain, semantic, hierarchical (taxonomic), ontological,
overlapping, and nesting relationships among terms. A
more complex interaction between sophisticated concept-
based termbase content and the injection process should be
possible.
Finally, more empirical work could be done to extend the
evaluation:

• study human judgments of quality and correctness
of the TU-injected output and their correlation with
TREU metrics;

• run comparative tests against the two alternative pro-
cessing modalities discussed earlier; and

• quantify how well the system scales up with more
training data, larger termbases, and larger test sets.
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