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Abstract
Word embedding learning is the task to map each word into a low-dimensional and continuous vector based on a large corpus. To
enhance corpus based word embedding models, researchers utilize domain knowledge to learn more distinguishable representations via
joint optimization and post-processing based models. However, joint optimization based models require much training time. Existing
post-processing models mostly consider semantic knowledge so that learned embedding models show less functional information.
Compared with semantic knowledge sources, glossary is a comprehensive linguistic resource which contains complete semantics.
Previous glossary based post-processing method only processed words occurred in the glossary, and did not distinguish multiple senses
of each word. In this paper, to make better use of glossary, we utilize attention mechanism to integrate multiple sense representations
which are learned respectively. With measuring similarity between word representation and combined sense representation, we aim to
capture more topical and functional information. We propose GGP (Glossary Guided Post-processing word embedding) model which
consists of a global post-processing function to fine-tune each word vector, and an auto-encoding model to learn sense representations,
furthermore, constrains each post-processed word representation and the composition of its sense representations to be similar. We
evaluate our model by comparing it with two state-of-the-art models on six word topical/functional similarity datasets, and the re-
sults show that it outperforms competitors by an average of 4.1% across all datasets. And our model outperforms GloVe by more than 7%.
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1. Introduction

Word embedding learning is the task to utilize a continu-
ous vector to represent each word. With the success of
Word2Vec (Mikolov et al., 2013) and GloVe (Pennington
et al., 2014), which are trained on a large corpus via a sim-
ple neural network or matrix factorization, pre-trained word
representations are widely used in various Natural Lan-
guage Processing (NLP) tasks, such as sequence labeling
task (Lample et al., 2016), text classification (Kim, 2014),
etc. However, typical word embedding models including
Word2Vec and GloVe, are based on the Distributional Hy-
pothesis (Harris, 1954), which utilizes the distribution of
context words as the target word representation. In prac-
tice, the corpus is always limited, which makes it difficult
to calculate the actual context word distribution of each tar-
get word. For example, synonyms and antonyms are usu-
ally hard to distinguish. Meanwhile, the quality of the word
embedding highly depends on the frequency of the word in
the corpus, rare words are usually discarded.
To improve the quality of the word embedding, vari-
ous knowledge bases such as WordNet (Miller, 1995),
FrameNet (Baker et al., 1998), and Paraphrase Database
(Ganitkevitch et al., 2013) are considered. Meanwhile,
joint optimization and post-processing are two popu-
lar approaches to incorporate domain knowledge, which
have achieved better performance. Joint optimization
based models design extra constraints according to domain
knowledge. And they retrain a new model with integrated
objectives on a large corpus and knowledge bases, which
usually require much training time. As for post-processing
based models, they fine-tune pre-trained word embedding
models with new constraints on the knowledge bases, and
the data volume of the knowledge bases is much smaller
than that of the corpus. So post-processing is a more effi-

cient way. Besides, as many pre-trained word vectors exist,
e.g., Google News Vectors 1 (based on Word2Vec), GloVe
2, and FastText 3 (Bojanowski et al., 2016), post-processing
approaches are more effective.
Recent works focus on fine-tuning pre-trained word em-
bedding models with word-to-word semantic knowledge
such as synonyms and antonyms. Retrofitting (Faruqui et
al., 2015) utilized semantic lexicons’ relational information
and assumed linked words should learn similar represen-
tations. ER-CNT (Glavaš and Vulić, 2018) used a deep
neural network to fine-tune word vectors by adding con-
straints on synonyms and antonyms. It shows a significant
improvement in topical similarity datasets, while loses the
functional (Levy and Goldberg, 2014) information. There
are also some works utilize the glossary to learn word rep-
resentations via extending the original corpus with word
definitions. The Dict2vec (Tissier et al., 2017) model con-
structed word pairs from both the corpus and dictionary en-
tries. Especially for negative sampling, it ignored the words
in pairs from the second part. Then Skip Gram (Word2Vec)
is used to learn the word embedding model. CPAE (Bosc
and Vincent, 2018) proposed a LSTM based auto-encoding
model to learn word representations from dictionary def-
initions which are assumed to be similar to their embed-
ding. However, Dict2vec required to retrain the word em-
bedding model, which was time-consuming. CPAE com-
bined multiple senses of each word into one sense, which is
not reasonable. And in CPAE, the authors also introduced a
post-processing model, however, it could only fine-tune the
words having a definition or that occur in definitions.
Glossary is the collection of glosses, and each gloss con-

1https://code.google.com/archive/p/word2vec/
2https://nlp.stanford.edu/projects/glove/
3https://fasttext.cc/docs/en/english-vectors.html
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sists of a word as well as its definition (a word sequence
to explain the word). In common sense, looking up the
glossary (dictionary) is one important way for humans to
learn a new word, and learning from example sentences of
the word is another way. However, corpus is always not
enough to estimate the real context words distribution, and
there are also no effective approaches for semantic com-
position. Combining the corpus and the glossary is nec-
essary, and they should be modeled in different ways. In
Distributional Hypothesis based word embedding models,
word vector represents the distribution of context words,
which combines context words of different senses. Besides
learned word representations are the composition of differ-
ent senses. So word embedding should be approximate to
the linear combination of its senses’ representations.
We propose GGP (Glossary Guided Post-processing)
model, which combines a general function to fine-tune
all pre-trained word representations, and an auto-encoding
model to learn the representation of each sense. By joint
optimization, embedding learned by GGP exhibits better
topical and functional similarity. In addition, to speed up
the convergence of the auto-encoding model, word defi-
nitions are also used to pre-train it. To evaluate whether
our model learns both topical and functional information,
we test our model on six word tpical/functional similarity
datasets, i.e., Men, Simverb3500, RW, Simlex999, WS353
and Mturk. Experimental results show that our model out-
performs rivals by at least 4.1% in all benchmarks. And
compared to GloVe, our model outperforms more than 7%.
We also use two glossaries and two pre-trained word em-
bedding models with different vocabulary sizes to show the
effectiveness of our model. In summary, our contribution
are:

• For multi-sense word, we learn sense representation
respectively and utilize attention to integrate them.

• We combine a general post-processing function and
sense representation learning model so that each pre-
trained word representation could be post-processed.

• Experimental results show that our model learn both
topic and functional information and performs much
better than previous model.

2. GGP Model
Our model contains two parts as shown in Figure 1. The left
part is a sequence to sequence auto-encoding model (Li et
al., 2015), which is used to transform each sense entry into
a sense vector. The right part is a general mapping func-
tion, a multi-layer fully-connected feed-forward network,
to fine-tune each word vector. Besides, we expect the gen-
eral function could preserve learned information so that the
word embedding will not change too much. Furthermore,
We constrain the linear composition of sense vectors from
the left part to be similar to the post-processed vector in the
right part.

2.1. Sequence to Sequence Auto-encoding
The auto-encoding model consists of an encoder which
transforms a sequence into a vector, and a decoder which

decodes the vector to a new sequence. The encoder has
two layers, the first layer is a bi-directional Long Short-
Term Memory (LSTM) neural network which captures the
full context information of each word. The second layer, a
vanilla LSTM network, is used to learn a composition func-
tion to transform a whole sentence into one vector by utiliz-
ing word order information. The decoder is also a two-layer
vanilla LSTM neural network which tries to reconstruct the
input sequence from the output of the encoder.
Given a word wt, the definition sequence of ith sense is
init = {init,1, init,2, ..., ini

t,ni
}, where ni is the number of

words of the sense definition. Encoder(· ) andDecoder(· )
are the encoder model and the decoder model respectively.
The encoder transforms the definition sequence into a se-
quence of hidden states heit = {heit,0, heit,1, ..., heit,ni

} as
shown in Formula 1. Meanwhile, heit,ni

is used to represent
the ith sense. And the decoder utilizes the sense represen-
tation heit,ni

as the initial hidden state hdit,0, then generates
a new sequence hdit = {hdit,1, hdit,2, ..., hdit,ni

} as shown
in Formula 2.

he = Encoder(init) = BiLSTM(LSTM(init)) (1)

hd = Decoder(heit,ni
) = LSTM(LSTM(heit,ni

)) (2)

The reconstruction loss Lr of the auto-encoding part is de-
fined by CrossEntropy loss shown in Formula 3, where
nt is the number of senses, init is the input sequence of the
ith sense, and hdit is the output sequence of the decoder.

Lr =
1

nt

nt∑
i=1

CrossEntropy(hdit, in
i
t) (3)

2.2. Composition of Sense representations
With all calculated sense representations het =
{he1t,n1

, he2t,n2
, ..., hent

t,nnt
} of the given word, addi-

tive attention (Bahdanau et al., 2014) is used to calculate
Swt

, the composition representation of all sense vectors,
which is shown as Formula 4:

Swt
=

nt∑
i=1

wi ∗ heit,ni
(4)

Where heit,ni
is the ith sense representation of the word t,

wi is the weight of the representation of ith sense calcu-
lated as Formula 5. vwt

is the word embedding of word t,
besides, W and b are parameters to be learned.

wi =
tanh(W [vwt , he

i
t,ni

] + b)∑nt

j=1 tanh(W [vwt
, hejt,nj

] + b)
(5)

2.3. Multi-layer Fully-connected Feed-Forward
Network

To learn a general post-processing mapping function to
fine-tune any pre-trained word vectors, a multi-layer fully-
connected feed-forward neural network is adopted. It maps
a vector vwt ∈ Rd∗1 to a new one v′wt

∈ Rd∗1, where d is
the dimension size of the word embedding. Each layer is
calculated as:

hn = tanh(Wn−1hn−1 + bn−1) (6)
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Figure 1: Model Framework (an example of one word with three senses)

WhereW and b are parameters to be learned. And the input
h0 is the pre-trained word vector vwt

, the post-processed
vector v′wt

is hn. To preserve the information learned by the
pre-trained model, we use F2 norm as the loss Ln shown in
Formula 7.

Ln = ‖v′wt
− vwt

‖2
F

(7)

2.4. Extra Constraint and Joint Objective
Given post-processed word vector v′wt

and sense composi-
tion representation Swt , we assume the word representation
learned from the corpus and that from the glossary should
be similar. The loss of the extra constraint Ls is defined as
Formula 8, where D means distance measurement.

Ls = D(v′wt
, Swt

) (8)

All these three objectives are optimized jointly, so the total
lossL is defined as Formula 9, where α and β are adjustable
weights.

L = Ls + αLr + βLn (9)

3. Experiment and Discussion
3.1. Pre-trained Vectors
GloVe has several pre-trained word vectors with different
sizes of corpuses, and it outperforms other word vectors in
most word similarity tasks. We select two pre-trained word
vectors trained on two extremely large corpuses. One is
trained on the corpus of 840 billion tokens and the vocabu-
lary has 2.2 million unique words. The other one uses the
corpus containing 42 billion tokens and the size of the vo-
cabulary is 1.9 million. All of the word vectors are in 300
dimensions.

3.2. Definition Entries
In our experiment, we construct two dictionaries from
WordNet and Opted. We only extract the definitions ex-
plaining the words in the two vocabularies. For the dic-
tionary from WordNet (Miller, 1995), we extract the word
definitions with multi-senses via the interface provided by

Vocab Dict NW NSW ALS
1.9M WordNet 51621 1.57 5.39
1.9M Opted 64616 3.49 6.10
2.2M WordNet 47337 1.62 5.33
2.2M Opted 58575 3.68 6.04

Table 1: Dictionary Statistics

NLTK 4. And Opted is from an open project called The On-
line Plain Text English Dictionary (Gutenberg, 2009), we
parse all the original dictionary files downloaded from the
website 5 and construct a unified dictionary, while each def-
inition is separated into multiple senses. We also calculate
some statistical properties, including the number of words
having senses (NW), the average number of senses for each
word (NSW), and the average length for each sense (ALS),
shown in Table 1. We find that Opted contains more words
in the two vocabularies of the pre-trained models, and pro-
vides more words to explain senses.

3.3. Pre-train Auto-encoding Model
In previous work (Howard and Ruder, 2018), researchers
proposed a pre-trained language model to improve classi-
fication tasks. Motivated by it, we also pre-train the auto-
encoding part, then jointly optimize the auto-encoding part
as well as the post-processing part. Furthermore, dictionary
entries are used to train the auto-encoding model until the
loss on the validation set increases.

3.4. Model Parameter Specification
In all experiments, we adopted softmax as a special dis-
tance measurement, which is approximated by negative
sampling (Mikolov et al., 2013). We separate 20% of word
and definition pairs as validation samples. And we use two
different word embedding matrices for auto-encoding and

4http://www.nltk.org/howto/wordnet.html
5http://www.mso.anu.edu.au/˜ralph/OPTED/
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Model Corpus Dict SV SL Men RW Mturk WS353 WS-S WS-R
GloVe 42B - 22.6 37.4 74.3 37.4 64.5 63.2 69.8 57.1

ER-CNT 42B - 47.0 61.1 - 64.7 36.3 56.6 59.5 66.0 49.0
CPAE 42B - 27.5 33.2 52.2 23.0 33.7 40.5 49.5 32.8
GGP 42B WN 28.6 40.6 80.2 42.5 69.8 73.8 76.2 70.2

GGP + PT 42B WN 29.3 42.4 80.7 42.8 70.3 75.5 78.0 72.7
GGP 42B Opted 30.6 43.8 80.8 43.8 68.2 75.6 78.4 72.4

GGP + PT 42B Opted 30.5 44.2 81.2 44.6 68.7 75.0 77.8 72.7
Glove 840B - 28.3 40.8 80.5 45.5 69.3 71.2 80.2 64.4

ER-CNT 840B - 47.2 59.0 67.6 43.2 62.3 59.3 70.6 44.6
CPAE 840B - 33.8 39.7 62.3 32.4 41.7 48.7 60.3 39.3
GGP 840B WN 32.0 42.7 82.5 49.0 71.5 73.8 79.0 67.9

GGP + PT 840B WN 31.9 44.2 82.4 49.5 72.3 75.5 80.2 68.2
GGP 840B Opted 32.7 44.3 82.2 48.6 69.5 73.0 79.4 65.4

GGP + PT 840B Opted 32.9 44.2 82.1 50.4 70.1 74.7 79.9 68.2

Table 2: Word Similarity Experiment Results (Spearman’s correlation coefficient ρ * 100)

fully-connected networks respectively, where both the em-
bedding size are set to 300. In fully-connected networks,
we set 3 hidden layers. α and β are both set to 0.3 for two
pre-trained word embedding models. For each word and
definition pair, the number of negative samples is 10. And
an Adam optimizer is used with an initial learning rate as
0.5. Besides, the loss of validation samples is monitored to
know when to stop early.

3.5. Word Similarity

We tested our model on six word similarity datasets, in-
cluding Men (Bruni et al., 2014), Simverb3500 (SV) (Gerz
et al., 2016), RW (Luong et al., 2013), Simlex999 (SL)
(Hill et al., 2015), WS353 (Finkelstein et al., 2002) and
Mturk (Radinsky et al., 2011). Simberb3500 and Sim-
lex999 are topical similarity datasets (Glavaš and Vulić,
2018). Men, RW, and Mturk are functional similarity
datasets. WS353 consists of a topical similarity part WS-S
and a functional similarity part WS-R. Spearman’s ρ rank
correlation between the ground truth and calculated word
similarity from word embedding is used to evaluate the per-
formance. We show the experimental results on five mod-
els including GloVe, ER-CNT (Glavaš and Vulić, 2018),
CPAE (Bosc and Vincent, 2018), and our model (GGP), as
well as our model with the pre-trained auto-encoding model
(GGP+PT). The former three models are used as baseline
models. For ER-CNT model, the paper only reported the
performance on SV and SL datasets, we run the source code
published by the authors 6 to obtain the performance on all
six datasets. CPAE only utilized Word2Vec to evaluate their
model and ignored GloVe, since they said that GloVe per-
forms much better than Word2Vec in their paper. We also
run the source code published by the authors 7 to test the
model on the six datasets. Finally, we tested two pre-trained
word embeddings with different vocabulary sizes and two
different dictionaries.

6https://github.com/codogogo/explirefit
7https://github.com/tombosc/cpae

3.6. Analysis and Discussion
According to Table 2, ER-CNT (Glavaš and Vulić, 2018)
outperforms other models by a large margin in SV and SL
(two topical similarity tasks), however, on the rest func-
tional similarity datasets ER-CNT performs worse than
GloVe. CPAE (Bosc and Vincent, 2018) shows a little im-
provement in SV, and performs worse on all other datasets.
Our model enhances GloVe by around 7% in all datasets,
which shows that our model could capture topical and func-
tional information simultaneously.
The Influence of Distance Measurement Absolute dis-
tance and relative distance are two common distance mea-
surements. Absolute distance including cosine similarity,
Euclidean distance, etc., stresses that two words should be
similar enough. Relative distance, asks two words should
be closer than another two words, for example, softmax
constrains that the distance between the target word and
context word should be smaller than that between the tar-
get word and negative words. In ER-CNT (Glavaš and
Vulić, 2018), ”Contrasting Objective” is also a relative dis-
tance and shows significant improvement. In our model,
softmax also shows a surprisingly better performance.
The reason is that the relative distance tends to give a par-
tial order to several words (more than two words), while the
absolute distance only constrains two words.
The Influence of the Size of the Corpus GloVe learned
from the larger corpus performs better. When GloVe trained
on the small corpus was fine-tuned with the glossary, it
shows a comparable, sometimes even better performance,
which shows the effectiveness of utilizing the glossary. Ex-
periments show less improvement when incorporating the
glossary with the larger corpus, for the overlapping in-
formation between the corpus and the glossary increases.
Opted dictionary show better performance than WordNet
on the small corpus. Since Opted contains more explana-
tions which provide more extra information.
The Influence of Pre-Trianed AE In most datasets, pre-
trained auto-encoding model shows improvement. Maybe
the pre-trained auto-encoding model helps the total model
to be trained from a better initialization.
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4. Conclusion and Future Work
In this paper, we propose a model to incorporate dictionary
entries to post-process word embedding to be more topical
and functional. Experimental results show the effectiveness
of our model. To further improve the work, we will com-
bine various word relationships in a partial order to improve
the word embedding models.
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Gerz, D., Vulić, I., Hill, F., Reichart, R., and Korhonen, A.
(2016). Simverb-3500: A large-scale evaluation set of
verb similarity. arXiv preprint arXiv:1608.00869.
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