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Abstract
Named entity recognition (NER) from speech is usually made through a pipeline process that consists in (i) processing audio using an
automatic speech recognition system (ASR) and (ii) applying a NER to the ASR outputs. The latest data available for named entity
extraction from speech in French were produced during the ETAPE evaluation campaign in 2012. Since the publication of ETAPE’s
campaign results, major improvements were done on NER and ASR systems, especially with the development of neural approaches for
both of these components. In addition, recent studies have shown the capability of End-to-End (E2E) approach for NER / SLU tasks. In
this paper, we propose a study of the improvements made in speech recognition and named entity recognition for pipeline approaches.
For this type of systems, we propose an original 3-pass approach. We also explore the capability of an E2E system to do structured
NER. Finally, we compare the performances of ETAPE’s systems (state-of-the-art systems in 2012) with the performances obtained us-
ing current technologies. The results show the interest of the E2E approach, which however remains below an updated pipeline approach.
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1. Introduction

Named entity recognition seeks to locate and classify
named entity mentions in unstructured text into pre-defined
categories (such as person names, organizations, locations,
...). Quaero project (Grouin et al., 2011) is at the initia-
tive of an extended definition of named entity for French
data. This extended version has a multilevel tree structure,
where base entities are combined to define more complex
ones. With the extended definition, named entity recogni-
tion consists in the detection, the classification and the de-
composition of the entities. This new definition was used
for the French evaluation campaign ETAPE (Galibert et al.,
2014).

Since the ETAPE’s results publication in 2012, no new
work were published, to the best of our knowledge, on
named entity recognition from speech for Quaero-like tree-
structured French data. Tree-structured named entities can
not be tackled as a simple sequence labeling task. At the
time of the ETAPE campaign, state-of-the-art works fo-
cused on multiple processing steps before rebuilding a tree
structure. Conditional Random Field (Lafferty et al., 2001)
(CRF) are in the core of these previous sequence labeling
approaches. Some approaches (Dinarelli and Rosset, 2012
Dinarelli and Rosset, 201 1)) used Probabilistic Context-Free
Grammar (Johnson, 1998) (PCFG) in complement of CRF
to implement a cascade model. CRF was trained on compo-
nents information and PCFG was used to predict the whole
entity tree. The ETAPE winning NER system (Raymond,
2013) only used CRF models with one model per base en-
tity.

Most of the typical approaches for named entity recognition
from speech follows a two steps pipeline, with first an ASR
system and then a NER system on automatic transcriptions
produced by the ASR system. In this configuration, the
NER component must deal with an imperfect transcription
of speech. As a result, the quality of automatic transcrip-
tions has a major impact on NER performances (Ben Jannet
et al., 2015).

In 2012, HMM-GMM implementations were still the state-
of-the-art approaches for ASR technologies. Since this
date, the great contribution of neural approaches for NER
and ASR tasks were demonstrated.

Recent studies (Lample et al., 2016; |Ma and Hovy, 2016)
improve the NER accuracy by using a combination of bidi-
rectional Long Short-Term Memory (bLSTM) and CRF
layers.

Other studies (Tomashenko et al., 2016) are based on a
combination of HMM and Deep Neural Network (DNN)
to reach ASR state-of-the-art performances.

Lately, some E2E approaches for Named Entity Recogni-
tion from speech have been proposed in (Ghannay et al.,
2018)). In this work, the E2E systems will learn an align-
ment between audio and manual transcription enriched with
NE without tree-structure. Other works use End-to-End
approach to map directly speech to intent instead of map
speech to word and then word to intent (Lugosch et al.,
2019).

Theses works shows the growing interest in E2E ap-
proaches for this type of task.

In this paper, we propose a study of recent improvements
for NER in the scope of the ETAPE campaign. We compare
classical pipeline approaches with updated components and
E2E approaches train with two kinds of strategy.

The first contribution of this paper is a 3-pass implementa-
tion in order to tackle tree-structured named entity recog-
nition. This 3-pass implementation consists in splitting the
tree-structured scheme of named entity annotation into 3
parts to allow classical sequential labeling of each part be-
fore rebuilding the complex structure.

The second contribution is an application of an E2E ap-
proach for tree-structured named entity recognition. It con-
sists in training a system that learns the alignment between
audio and textual transcription enriched with the structured
named entity.

After a description of the Quaero named entity tree-
structured task (Section , we described our 3-pass im-
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plementation, our state-of-the-arts for NER and ASR com-
ponents and our E2E implementation (Sections [3.] and ).
Data sets (Section [5]), experimental results and analyses
are presented (Section [6) followed by a conclusion (Sec-

tion[7)).
2. Task definition

This study focuses on tree-structured named entities fol-
lowing the Quaero guideline (Rosset et al., 2011). This
guideline allows annotation according to 8 main types of
named entities: amount, event, func, loc, org, pers, prod
and time. The annotation uses sub-types to set up a hier-
archy of named entities in order to better describe the con-
cepts. Final annotation is necessarily the leaf of the hierar-
chical tree with each annotation node separates by a point.
For example loc.add.phys which is the physical address of a
place. With types and sub-types, there is 39 possible entity
types in the Quaero annotation guideline.

Also, in order to decompose the concepts, named entities
are annotated by component. There is 28 possible compo-
nent in the Quaero annotation guideline. The component
is the smallest annotated element. Each word located in-
side a named entity needs to be annotated in components.
Except for some articles and linking words. Most of the
components depend on named entities types (e.g “day”,
“week” which refer to the type “time”) but some are cross-
cutting (e.g ’kind”, ”qualifier” which can be located inside
all named entity types).

Finally, annotations have a tree-structure. A named en-
tity can be composed of components and other named
entities, itself composed of components and named en-
tities without nesting limit. For example, the sentence
”la mairie de paris” can be annotated as "la <org.adm
<kind mairie > de <loc.adm.town <name paris > > >".
org.adm/loc.adm.town are Named Entities types with sub-
types and kind/name are components.

With the Quaero definition of named entity, NER consists
in entity detection, classification and decomposition. Since
this new definition is used for the French evaluation cam-
paign ETAPE, the task in this study consists in Quaero
named entity extraction from speech.

3. Pipelines systems
3.1. 3-pass implementation

Our NER systems use standard BIO2 (Sang and Veenstra,
1999) format. This standard consists of writing a column
file with first the words column and then the labels column.
There is one couple of word/label per line and two different
sentences are separated by an empty line. The label of a
word corresponds to the named entity concept in which the
word is located. This label is prefixed by a ”B-" or an "’I-”
depending on the position of the word in the concept. "B-"
(Begin) is used to prefixed the label of the first word and
”I-” (Inside) for all the others. ”O” (Outside) is the label
used for words that are not inside a concept.

Due to the structure of the annotation, most of the time
words are inside more than one concept. Consequently,
multiple labels are often related to a word. A single se-
quence labeling system cannot manage more than one pre-
diction by word. The label concatenation can handle this

problem by reducing all labels related to a word into a sin-
gle one. Figure [T]illustrates an example of this concatena-
tion.

la <org.adm> <kind> mairie </kind> de <loc.adm.town> <name> paris
</name> </loc.adm.town> </org.adm>

|

la o

mairie B-org.adm_B-kind

de l-org.adm

paris |-org.adm_B-loc.adm.town_B-name

Figure 1: Transformation example of a tree-structured
named entity sequence into BIO format. This sentence
means in English ”the town hall of paris”

The label concatenation induces a dramatic increase of the
number of predictable outputs for a classical sequence la-
beling approach. With this concatenation this number grow
up to around 1690 predictable tags. It also induces a large
annotation sparsity. These issues motivated us to split the
BIO annotation into different levels.

Since the named entities are necessarily decomposed in
components, two facts can be deduced. First, the root of
the tree structure is necessarily a named entity type. Sec-
ond, the leaves of the tree structure are mainly components.
And third, annotations between the leaves and the root of
this structure are a mixture of type and component. Based
on these observations we split the concatenated BIO anno-
tation into three different levels.

The first level contains the furthest annotations to the word
level. These annotations are the root of the tree-structured
named entities. This level is represented in green color in
figure|l|and requires 96 predictable tags.

The third level contains the closest annotations to the word
level. These annotations are the leaves of the named enti-
ties. This level is represented in red in figure[I|and requires
57 predictable tags.

Finally, the second level contains every others annotations.
These annotations are named entity types and/or compo-
nents located between the root and the leaves of the named
entities. This level is represented in black in figure [1| and
requires 187 predictable tags.

With the annotation divided into three levels, the tree-
structured NER task is tackled by three sequence-labeling
systems. A sequence labeling model is trained for each
level. The final output of our 3-pass implementation is the
output concatenation of each model from the first level to
the third. With this final output, we are able to rebuild the
tree-structured annotation. Then we can transform the BIO
format into sequences.

The sub-components of a named entity are dependents on
the parent-component of this entity. For example, an or-
ganisation (parent-component) can contains a name (sub-
component) and a time can contains an amount. In order
to provide this information to our systems, the predictions
from the previous levels are added as an additional input
to the next levels. So, predictions from the first level are
injected into the training data of the second and the third
level. Also, predictions from the second level are injected
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into the training data of the third level.
The 3-pass implementation is represented by the figure 2]

Intermediat Final
Words Systems  prediction concatenated
by level prediction
. 0
Level 1 l-org.adm ..

I-org.adm

{000

la ) :
mairie_ | 4 nerspem O B-org.adm_O_B-kind
de Level 2 (o] . l-org.adm_0_0
paris . B-loc.adm.town; |-org.adm_B-loc.adm.town_B-name
g (o]
NER System B-kind .-~
Level 3
o
B-Name
Figure 2: 3-pass implementation overview
3.2. CRF

The NER systems developed for this work are based on
CRF (Conditional Random Fiedls). The models were
trained using the WAPITI software (Lavergne et al., 2010).
The models are based on a various set of features:

e Words and bi-grams of words located in a [-2,+2] win-
dow around the target word

e Prefixes and suffixes of words located in a [-2,+2] win-
dow around the target word

e Some Yes/No features like “Does the word start with
capital letter?” “Does the word contain non alphanu-
meric characters?”

Some models also used morpho-syntactic features extracted
from the output of the tree-tagger tool. For the 3-steps mod-
els, hypothesis provided by previous level models are also
used. For all the models, we used the rprop algorithm dur-
ing the training with a maximum of 40 iterations.

3.3. NeuroNIp2

NeuroNlp is an implementation of the NER system pro-
posed in (Ma and Hovy, 2016). This system uses a neu-
ral approach for sequences labeling. It takes benefits from
word and character-level embeddings learned automati-
cally by using a combination of bidirectional Long Short-
Term Memory, convolution layers and Conditional Random
Fields.

A single CNN layer is used for character embeddings com-
puting. Then, character embeddings are concatenated to
word embeddings and feed the bLSTM layers. Finally, the
output vectors of bLSTM are fed into the CRF layer to de-
code the best label sequence. In complement, dropout lay-
ers (Srivastava et al., 2014) are applied on input and output
vectors of bLSTM and on input vectors of CNN.

For our works, we kept all the default parameters except the
numbers of bLSTM hidden layers which is set to two and
the number of units per hidden layers is set to 200.

"https://github.com/XuezheMax/NeuroNLP2

3.4. ASR System

The state-of-the-art speech recognition system for this
study was built using Kaldi (Povey et al., 2011). The
acoustic model is based on the lattice-free MMI, so-called
’chain” model (Povey et al., 2016). We used a time-delay
neural network (Peddinti et al., 2015) and a discrimina-
tive training on the top of it using the state-level minimum
Bayes risk (sSMBR) criterion (Vesely et al., 2013). A reg-
ular backoff n-gram model was estimated using the data
presented in section[5.2] using SRILM. A 2-gram decoding
is performed, followed by a 3-gram and a 4-gram rescoring
step. The LM interpolation weights between the different
data sources was optimized on the REPERE (Giraudel et
al., 2012)) development corpus. The vocabulary contains
the 160k most frequents words in the manually transcribed
corpus.

4. End-to-End System

In this study, we used an End-to-End (E2E) implementation
based on DeepSpeech 2 ASR system (Amodei et al., 2016).
His architecture consists of a stack of two 2D-invariant con-
volutional layers (CNN), five bidirectional long short term
memory layer (bLSTM) with sequence-wise batch normal-
ization and a final softmax layer.

This system is trained with the Connectionist Temporal
Classification (CTC) loss function which allows the sys-
tem to learn an alignment between an audio input and a
character sequence to produce (Graves et al., 2006). In-
put features are sequences of log-spectrograms of power
normalized audio clips calculated on 20ms windows. As
we proposed in (Ghannay et al., 2018]), output sequences
consist of a sequence of characters composed of the word
and Named entity tags. These tags are represented by start-
ing tags and ending tags before and after words supporting
these tags. The NE tree structure can be represented by a
succession of tags, thus, the concatenation of labels is not
required. The labels sparsity issue of the BIO format is not
present in the case of our E2E system and so, the 3-pass im-
plementation is not used. This system will learn the align-
ment between audio and character sequences enriched with
NE tags. For example, the sentence: ”la mairie de paris” for
speech recognition becomes: ’la <org.adm <kind mairie
> de <loc.adm.town <name paris > > > for Named
Entity Recognition. In this example, “org.adm”, kind”,
”loc.adm.town” and “name” are four NE starting tags and
7> represent the ending tags.

Notice that starting and ending tags are actually represented
by a single character within the character sequence pro-
duced by the neural network. The previous example be-
come "la $ & mairie > de % # paris > > >”.

5. Data

5.1. Named entity recognition

For our experiments, data comes from the French corpus
ETAPE (Gravier et al., 2012). This corpus is composed of
data recorded from French radio and TV stations between
2010 and 2011. They come from four different sources:
France Inter, LCP, BFMTYV, and TV8. This corpus con-
tains 36 hours of speech divided into three parts: training
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(22 hours), development (7 hours) and test (7 hours). These
data have manual transcriptions and are fully manually an-
notated with named entities concepts.

Our training data were augmented with the Quaero corpus
(Grouin et al., 2011). This corpus is composed of data
recorded from French radio and TV stations between 1998
and 2004. These data are made up of 100 hours of speech
manually transcribed and fully annotated with named enti-
ties following the Quaero annotation guideline.

5.2. Automatic speech recognition

In this study, we used several corpora (ESTER 1&2 (Gal-
liano et al., 2009), REPERE (Giraudel et al., 2012) and
VERA (Goryainova et al., 2014)) for a total of around 220
hours of speech. These data are used for the acoustic model
training of the kaldi ASR system of the pipeline approach.
The LM of this approach was trained using the speech tran-
scripts augmented with several French newspapers (see sec-
tion 4.2.3 in (Deléglise et al., 2009)). For ASR parts, our
pipeline system and our E2E system use the same dataset
except for the speech of ETAPE train dataset which is used
only with our E2E approach.

6. Experiments

All our experiments are evaluated on the ETAPE test set
with the Slot Error Rate (SER) metric (Makhoul et al.,
1999)) defined as:

a1S; + aaSy + a3Sp: + ﬁD + "YI

EFR =
SER 7

ey
where:

e S : the number of slot boundaries substitution

e S : the number of slot type substitution

e Sy : the number of slot boundaries and type substitu-
tion

e D/I : the number of slot deletion / insertion
e R : the number of slot references

A slot is defined as an annotated text segment with start/end
boundaries and a NE type. a1, as, ag, 5 and -~y are the
weights assigned to each type of error. Here, a3, 8 and ~y
are set to 1 and «v; and a5 are set to 0.5.

The best NER system of ETAPE campaign (Raymond,
2013)) was made of 68 different binary CRF models. One
per entity type and component. This system was applied
to the output of the best ASR system and this combination
reached 59.3% of SER. This constitute our baseline (Sys-
tem 0).

In order to use the automatic transcriptions provided by dif-
ferent ASR system, manual references of named entities
are projected on automatic transcriptions. Also, as the E2E
system produce words and NE concepts, we keep only the
word to get his automatic transcriptions.

To be fully comparable, we use the ETAPE evaluation and
projection scripts for all our experiments.

6.1. Pipeline Experiments

In this study, the pipeline experiments were carried out on
automatic transcriptions coming from two different ASR
systems. We compare the results of the best ASR of the
evaluation campaign (Galibert et al., 2014) and the results
of our state-of-the-art ASR. Performances of these ASR
systems are presented in table [I| Evaluation Metric used
is Word Error Rate (WER). The best ASR system of the
evaluation campaign is denoted ASR5012, While our state-
of-the-art ASR is denoted ASR2019. The system ASRyg19 is
trained with all our audio data described in[3.2]

Table 1: Automatic Speech Recognition performances

ASR System | WER
ASRyp12 21.8
ASRa019 16.5

The system ASR2(12 reached 21.8% of WER. Our state-of-
the-art ASR reaches 16.5% of WER on the ETAPE test set.
This represents a relative improvement of 24.3% in terms
of WER.

NER systems were trained on manual transcriptions and
then applied on automatic transcriptions. Part-of-speech
(POS) tags were used for all of these experiments.

System A corresponds to a 1-pass implementation of a clas-
sical CRF approach applied on ASR5¢12.

System B corresponds to a 3-pass implementation of the
same CRF approach than system / applied on the same au-
tomatic transcription.

System C corresponds to the same 3-pass CRF implemen-
tation than system B applied on automatic transcription of
our state-of-the-art ASR system.

System D corresponds to a 3-pass implementation of our
state-of-the-art NER system applied on ASR2012.

Finally, system E corresponds to the combination of our
state-of-the-art ASR and NER systems with a 3-pass im-
plementation of NER component.

Results of these systems are shown in Table 2]

Table 2: Pipeline experimental results

System SER
Sys 0. Baseline ETAPE 2012 59.3
Sys A. 1-pass — CRF — ASRyp12 69.4
Sys B. 3-pass — CRF — ASRy¢12 59.5
SyS C. 3-pass — CRF - ASR2019 55.0
Sys D. 3-pass — bLSTM-CRF — ASRyp12 | 56.1
Sys E. 3-pass — bLSTM-CRF — ASRyp19 | 51.1

Our simplest system A reached 69.4% of SER. By using
the 3-pass approach in the same configuration, the system
B reached 59.5% of SER. The use of the 3-pass approach
allows a 14.3% relative gain, showing the interest of the
3-pass approach. Results obtained with B are close to the
baseline system (+0.2%), with only 3 CRF models instead
of 68.

As expected, automatic speech transcription quality im-
provement has a positive impact on SER results. This can
be shown by a comparison between systems B and C and
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also between the systems D and E. For a CRF NER sys-
tem, results start at 59.5% of SER and decrease to 55.0%
(7.6% relative gain). For a bLSTM-CRF NER system, re-
sults start at 56.1% of SER and decrease to 51.1% (8.9%
relative gain).

The use of our state-of-the-art NER system allows another
significant improvement. This improvement can be shown
by a comparison between system B and system D and
also by analyzing the differences between C and E. For
an HMM-GMM ASR system, results decrease from 59.5%
of SER to 55.0% (7.6% relative gain) For an HMM-DNN
ASR system, results decrease from 55.0% to 51.1% of SER
(7.1% relative gain).

Finally, the combination of our 3-pass approach with state-
of-the-art ASR and NER systems reach the best results for
tree-structured named entity recognition from speech on
these data at 51.1% of SER with a pipeline approach.

6.2. End-to-End Experiments

For the E2E system training, we apply the same strategy
as in our previous work to compensate the lack of au-
dio data with a manual NE annotation (Ghannay et al.,
2018). It consists of multi-task learning with first an
ASR system and then, by transfer learning, a NER sys-
tem (ASR — > NFERguct)- The output labels change
between ASR and NER tasks by the addition of labels for
NE tags. For the transfer learning, we keep all the model’s
parameters except the top layer (softmax) which are fully
reset. To train the ASR task, we use all our audio data de-
scribed in[5.2] For the NER task, we use the data described
in[3.11

Our previous work shows the interest of a Curriculum-
based Transfer Learning approach (CTL) for the E2E sys-
tem (Caubriere et al., 2019). It consists to train the same
model several times with different tasks ordered from the
most generic to the most specific.

In our targeted task, a NE is composed of types and compo-
nents. Components are used to decomposed NE types (see
section [2)). With the CTL approach, we proposed to train
the NER task with two different tasks. First with the NE
types only and second with the full annotation. Since the
components are directly dependent on the NE types, we as-
sume that a task with types only is more generic than a task
with types and components. We train the learning chain
ASR — > NERuypes — > NERjyy, with first the
speech recognition system, then the NER system trained
with only the NE types annotations and finally the NER
system with the full annotation for the targeted task.
Results of the both E2E systems are reported in table [3]
Metrics and data sets used are the same as our pipeline ex-
periments.

Table 3: End-to-End experimental results with a greedy de-
coding

System SER
ASR— > NERgtruct 62.9
ASR— > NERypes— > NERpu | 61.9

Results shows the interest of the CTL approach for our task.

by splitting the training into two different tasks we are able
to reduce the SER from 62.9% to 61.9%.

With the DeepSpeech 2 implementation, it is possible to
compute a beam search on the neural network outputs. We
use two different word-level language models (3-gram and
4-gram) trained on the ETAPE and QUAERO train set. Re-
sults are presented in table [4]

Table 4: End-to-End experimental results with a beam
search decoding

System LM SER
ASR— > NERiryet 3-gram | 57.9
ASR— > NERypes— > NERy,y | 3-gram | 57.5
ASR— > NERiryet 4-gram | 57.3
ASR— > NERypes— > NERj, | 4-gram | 56.9

As expected, all results are improved by the use of a lan-
guage model. By applying the 3-gram LM we can reduce
significantly the SER from 62.9% to 57.9%. We can reduce
more the SER by applying a 4-gram LM and reach 57.3%.
Notice that the CTL approach is still useful and set our best
results to 56.9% of SER.

6.3. Global comparison

We reported in table [5 the results of the best pipeline sys-
tem, the best E2E system and the best system of the ETAPE
campaign, our baseline.

Table 5: Reported results of ETAPE baseline and best
pipeline and end-to-end systems.

System SER
(Sys 0) Baseline ETAPE 2012 59.3
(E2E) ASR— > NERypes— > NERj,y (4-gram) | 56.9
(PIP) 3-pass — bLSTM-CRF — ASRyp19 51.1

With our E2E approach, we reach a relative improvement
of 4% since the publication of ETAPE results. However,
results show also that a pipeline approach with each com-
ponent updated with our 3-pass implementation still better
and set the new state-of-the-art. Comparison between the
baseline and our best pipeline systems shows a significant
relative improvement of 13.8%. By comparison between
our best E2E approach and our best pipeline approach, re-
sults show a relative improvement of 10.2% at the advan-
tage of the pipeline approach.

7. Conclusion

This study gives an update on the NER results that can be
achieved on the French ETAPE evaluation campaign. Our
experiments have been carried out on pipeline and end-to-
end systems. In this paper, an original 3-pass implementa-
tion is proposed for the NER component in the context of
pipeline systems. By splitting the tree-structured named en-
tities annotations into three parts, we are able to handle this
task as three different simple sequence labeling tasks. This
approach reaches similar results than the best NER system
of ETAPE campaign with only 3 CRF models instead of
68 binaries models. Based on our previous work on flat
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named entity recognition system with E2E approach, we
also proposed an E2E system for structured named entity
recognition. We are able to reach the best results with the
E2E systems by the use of our CTL approach. By compari-
son between the best result of ETAPE evaluation campaign
and our best E2E system, results show a relative improve-
ment of 4%. However, this approach doesn’t set the new
state-of-the-art which is set by the fully updated pipeline
systems with our original 3-pass implementation. Experi-
mental results show an interesting global relative improve-
ment of 13.8% between ETAPE results and the new state-
of-the-art.
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