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Abstract
We introduce LifeQA, a benchmark dataset for video question answering that focuses on day-to-day real-life situations. Current video
question answering datasets consist of movies and TV shows. However, it is well-known that these visual domains are not representative
of our day-to-day lives. Movies and TV shows, for example, benefit from professional camera movements, clean editing, crisp audio
recordings, and scripted dialog between professional actors. While these domains provide a large amount of data for training models, their
properties make them unsuitable for testing real-life question answering systems. Our dataset, by contrast, consists of video clips that
represent only real-life scenarios. We collect 275 such video clips and over 2.3k multiple-choice questions. In this paper, we analyze the
challenging but realistic aspects of LifeQA, and we apply several state-of-the-art video question answering models to provide benchmarks
for future research. The full dataset is publicly available at https://lit.eecs.umich.edu/lifeqa/.
Keywords: natural language processing, question answering, video question answering, computer vision

What is the name of the 
younger girl?
A.  Caitlin B.  Lucy
C.  Jane D.  Cindy

How many people are playing?

A.  2 B.  4     
C.  3 D.  1

Caitlin, are 
you gonna be 
a little helper 

on this 
challenge?

Figure 1: An instance from LifeQA. The image shows a
frame from the video, part of the transcriptions, two ques-
tions along with the candidate answers, and the correct an-
swers in bold.

1. Introduction
Video Question Answering (Video QA) is one of the most
challenging and crucial problems for artificial intelligence.
In this task, we are given a video and must answer natural
language questions about its content, such as “What game is
the little girl playing?”. Answering these questions requires
a rich understanding of the visual and auditory content in
the video, as well as the ability to relate this content to
natural language concepts. Like many challenging tasks,
much of the recent progress on Video QA is due to the
introduction of several large-scale datasets, which consist
primarily of movies and TV shows (Tapaswi et al., 2016;
Rohrbach et al., 2017; Lei et al., 2018). Movies and TV
shows provide for countless hours of clean, crisply-edited
video and accurately-captioned audio, and are therefore eas-
ily adapted into datasets. However, these same features
mean that movies and TV are not representative of day-to-
day life. Therefore, these datasets cannot be used to evaluate
how well models perform when applied to realistic videos
of day-to-day life.
To address this issue, we introduce Life Question Answer-
ing (LifeQA), a Video QA benchmark dataset that consists
of videos and questions about day-to-day life. LifeQA is
drawn from hand-picked YouTube videos, which depict sce-

narios such as children playing, a family having a meal
together, or a snapshot from a daycare. These videos are
not professionally shot, edited, or scripted, making them
much more representative of daily life than prior datasets.
They also benefit from increased diversity in terms of the
number of people and scenes that appear, since they are not
drawn for a small set of shows or films. In addition, the
questions include few proper names or references to known
locations, which are commonly referenced in TV datasets
that feature well-known characters (such as “Sheldon”, or
“Monica’s apartment”), and therefore the questions have
to be answered without prior knowledge about the scene.
Moreover, the questions are challenging as they cover vi-
sual grounding (“what color is the blanket?”), intent (“what
does the father want to do with the box?”), and common-
sense reasoning (“what is in the bottle?”), all hallmarks of a
comprehensive QA dataset.
LifeQA consists of 275 videos and 2,326 multiple-choice
questions, making it a suitable complement for existing
datasets and a challenging benchmark for existing Video
QA systems. To enable future research, we are making
LifeQA publicly available, along with automatically and
manually generated transcriptions (from the speech in the
audio channel) and pre-computed features for every video.
In this paper, we describe the LifeQA dataset, present several
analyses, and evaluate the performance of several baselines
that highlight the difficulty of the task.

2. Related Work
2.1. Text-based Question Answering
Question answering based on text has been extensively ex-
plored (Richardson et al., 2013; Hermann et al., 2015; We-
ston et al., 2015). Early question answering systems were
developed for restricted domains, relied on manually crafted
features, and had limited capabilities (Katz et al., 2002;
Soricut and Brill, 2004; Benamara, 2004). Recently, the
rise of deep learning methods motivated the need for large
question answering datasets to leverage the capabilities of
such models. With that goal in mind, several large-scale
reading comprehension datasets were introduced (Rajpurkar
et al., 2016; Richardson et al., 2013; Bajgar et al., 2016;
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Nguyen et al., 2016). (Rajpurkar et al., 2016) introduced the
SQuAD dataset, which is composed of Wikipedia articles
and the answers are specified as spans from a text passage.
Similarly, (Richardson et al., 2013) collected the MCTest
dataset, a multiple-choice open-domain reading comprehen-
sion dataset. Given a paragraph, a question, and a set of
multiple answers, the task of a QA system is to select the
correct answer.

2.2. Multimodal Question Answering
Recently, question answering systems have been constructed
to answer questions about other modalities, such as images
(Visual QA) and video (Video QA). For the former, several
datasets have been proposed such as VQA (Agrawal et al.,
2017), Visual7W (Zhu et al., 2016), VisDial (Das et al.,
2017), GQA (Hudson and Manning, 2019) and DREAM
(Sun et al., 2019). These benchmarks aim to help building
visual understanding systems that can reason about the con-
tents of a given image. Given an image and a question, the
system would either select a correct answer from multiple
choices or generate a free-form textual answer.
Video QA is more challenging, in that it allows for a broader
range of question types, and requires the use of temporal in-
formation. Many datasets have been proposed for Video QA,
such as LSMDC 16 (Rohrbach et al., 2017), TGIF-QA (Jang
et al., 2017), MovieQA (Tapaswi et al., 2016), PororoQA
(Kim et al., 2017), MarioQA (Mun et al., 2017), VCQA
(Zhu et al., 2017), TVQA (Lei et al., 2018), and ActivityNet-
QA (Yu et al., 2019). LSMDC, TGIF-QA, PororoQA, and
MarioQA consist of short video clips (just a few seconds),
which is difficult to understand what is going on in a scene
beyond several actions that can be identified. Additionally,
they are completely dependent the on visual cues, with no
presence of speech and other audio cues.
MovieQA and TVQA consist of movies and TV series. The
questions and answers were generated based on the dialog
and visual information presented in short video clips from
TV shows. However, these acted and well-directed video
clips are hard to find in the real world. As in them, we con-
structed our questions and answers based on both textual and
visual cues from short video clips. However, unlike them,
our proposed dataset relies on video clips that were recorded
naturally by people, without predefined scripts. Therefore,
understanding videos requires overcoming challenges such
as environmental noise, camera movements, lighting condi-
tions, and naturally occurring dialogues. In addition, scenes
are less defined, with undefined characters, lack of subject
permanence, and sometimes incoherent conversations. That
makes our dataset more challenging for Visual QA tasks.

2.3. In-the-Wild Datasets
Recent work in computer vision has focused on evaluating
models “in the wild” — that is, on realistic datasets that
depict real-life situations. This is evident in recent video
datasets, such as Charades (Sigurdsson et al., 2016) and
VLOG (Fouhey et al., 2018), both of which include indoor
scenes of human activities. These datasets include rich
annotations about human actions, objects, and scenes, but
do not include questions and answers as in LifeQA. To the
best of our knowledge, our LifeQA dataset is the first real-

life dataset for Video QA.
ActivityNet QA consists of short YouTube clips originally
selected for an activity recognition dataset (Heilbron et al.,
2015). Unlike our dataset, these datasets do not explicitly
include videos of real-life settings.
VCQA (Zhu et al., 2017) consists of cooking and in-the-
wild YouTube videos (about half of the dataset), and clips
from movies (the other half). Questions in VCQA are auto-
matically generated from templates and are not written by
humans. Additionally, these automatically generated ques-
tions only focus on nouns and verbs, as well as short-term
temporal reasoning questions, while in LifeQA we have a
more challenging question set about reasons, emotions, and
locations. Moreover, VCQA does not consider dialogues,
texts, and audio information, which are equally important to
understand real-life scenes.

3. LifeQA Dataset
3.1. Dataset Collection
To collect this dataset, we begin by searching for videos
on YouTube, using manually-chosen keywords that lead
to videos of people living out their daily lives in varied set-
tings (e.g., “my morning routine,” “dialogue,” “kids playing,”
“class in elementary school” and “watching TV”). We then
hand-pick 59 such videos, based on the condition that they
must contain recordings of natural interactions in natural
settings. We explicitly exclude videos that do not contain
language interactions.
The identification of such videos turns out to be a chal-
lenging task, requiring significant manual effort. This is
primarily because most of the recordings available online
are in the form of vlogs, which include video recordings
with voice layovers, and are therefore not typical of natural
interactions.
We manually split the source videos into 275 video clips
such that each clip includes coherent scenes and lasts for
1–2 minutes. We obtain transcriptions for the video clips
using the Google Cloud Speech-to-Text platform. We also
collect manual transcriptions for each video.
Next, two annotators write five questions per video. For each
question, we ask the annotators to write the correct answer to
the question as well as three distractors (which we define as
incorrect but semantically related answers). The annotators
are instructed to formulate a diverse set of questions, which
require an understanding of both the visual and linguistic
content of the videos. We then instruct a third annotator to
merge the two sets of questions from the original annotators,
manually eliminate any duplicate questions, and correct
typographical errors. In total, we collect 2,326 questions
using this procedure.
We present a summary of the dataset in Table 1. Figure 1
shows an example from the LifeQA dataset, showing two
sample questions that require either linguistic or visual clues
to be answered. Additional questions are illustrated in Fig-
ure 5.

3.2. Dataset Analysis
We examine LifeQA’s common question types in Figure 2. A
majority of the questions are “what” questions, which were
previously acknowledged to be among the most frequent and
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Source videos 59
Clips 275
Clips per source video 4.7 ± 3.6
Clip duration 1m 14s ± 16s
Modalities video, audio, text

Questions 2326
Questions per clip 8.5 ± 2.0

Candidate answers 4

Tokens per question 6.7 ± 2.1
Tokens per correct answer 1.5 ± 1.1
Tokens per incorrect answer 1.4 ± 0.9

Table 1: Statistics of the LifeQA dataset. Here we report
totals and averages along with standard deviation.
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Figure 2: Distribution of the LifeQA questions’ tokens.

also most ambiguous types of questions. We find that “what”
questions most frequently reference “color”, “number”, and
“kind”, each of which require visual clues from the video.
Not pictured in Figure 2: we find that nouns referring to
people, such as “girl”, “woman”, “man”, and “boy” are the
first noun in more than 21% of the questions, and we find
very few proper names.
We then analyze the type of data required to answer the
questions, as shown in Figure 3. To obtain these results, we
manually inspect each question and answer to determine
whether the question requires the visual (video) or speech
(audio or transcription) modalities to answer. We find that
61% of questions need the video to be answered, 29% re-
quire the speech or audio information, and 10% need both
modalities.
In addition, we analyze the questions based on the expected
answer types, as shown in Figure 4. This analysis is inspired
by (Tapaswi et al., 2016) and (Lei et al., 2018) as a way of
more deeply understanding the type of information needed to
answer each question. The graph shows that many questions
reference basic visual features, such as count (how many),

Figure 3: Venn diagram at scale showing the amount of
questions by answer type.

Reason:action (how)
3.0%
Color (what color)
11.8%

Abstract (what)
15.3%
Causality (what 
4.4%
Object/Thing (what)
3.9%
Action (what)
19.2%

Event/time (when)
4.9%

Location (where)
8.9%

Person name (who)
5.9%

Count (how many)
20.2%

Emotion (how feel)
2.0%

Figure 4: Distribution of the LifeQA questions by type.

color (what color), and location (where) answers. However,
there are also many questions that require both language and
visual features. For example, abstract (“what”) questions
(“What is the job of the woman?”) can require more than
one mode of information to answer.

Dataset Comparison. In Table 2 we compare our dataset
with other Video QA datasets. We highlight the presence
of multiple modalities and its real-life nature, which dif-
ferentiates it from prior work. Specifically, LifeQA is the
only existing Video QA dataset that focuses on real-life un-
derstanding and is carefully constructed from hand-picked
in-the-wild videos. In addition, it spans all typical audio
and visual modalities, and contains videos that are much
longer than those in many other datasets. These qualities
lead to a diverse, high-quality video dataset that is suitable
for benchmarking current video QA systems and serves
as a complement to existing QA datasets. Please refer to
Section 2. for more details on the comparison.

More Examples. In Figure 5, we present additional exam-
ples of instances in LifeQA. These examples demonstrate
the wide variety of scenes and question types present in
LifeQA.

4. Experiments
To show the difficulty of the task and explore biases, we
implement several models and compare their performance
by measuring the question answering accuracy.
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Avg Real
Dataset Task Source Answer Questions Instances dur. (s) life? D T A I V

DREAM Reading Comprehension Exams MC 10,197 6,444 - X X
VisDial Dialog QA Images MC 1,261,510 133,351 - X X X
LSMDC 16 Video Description Movies Text 128,118 128,085 4.1 X X X
TGIF-QA Temporal Reasoning Tumblr GIFs MC/Txt 165,165 71,741 ≈3.6 X X
MovieQA Story Understanding Movies MC 14,944 6,771 202.7 X X X X X
PororoQA Story Understanding Cartoons MC 8,913 16,066 4.6 X X X X X
MarioQA Temporal Reasoning Video games MC 187,757 187,757 4.5 X X
TVQA Story Understanding TV Series MC 152,545 21,793 76.2 X X X X X
VCQA Temporal Reasoning Movies/Web FB/MC 390,744 109,895 ≈30.0 X X

LifeQA Real-life Understanding YouTube MC 2,326 275 74.0 X X X X X X

Table 2: Video and Dialog QA datasets comparison. Answer = answer type, h = hours of video, s = seconds per video clip,
D = dialog, T = text, A = audio, I = image, V = video, MC = multiple choice, FB = fill in the blanks.

What will she teach?

A.  game   B.  play
C.  greeting   D.  song

What time of day is it?

A.  afternoon B.  night     
C.  morning D.  noon

Ready? Go.

What is the pink shape 
on the car?
A.  green   B.  golden
C.  heart    D.  blue

How is the woman in the 
beginning?
A.  sweaty B.  dressed up
C.  tied D.  blindfolded

I love how 
strong of a 
woman you 
are. I love 

your laugh.

Figure 5: Additional instances from LifeQA. The videos capture a broad range of indoor and outdoor scenes, and the
questions refer to both visual and auditory concepts.

4.1. Baselines
We implement and evaluate several baselines, including sim-
ple heuristics as well as neural methods. We categorize
these baselines according to what inputs they use (the ques-
tion, the transcriptions, or the visual content) and whether
they are trained from scratch or pretrained. By analyzing
these baselines, we demonstrate the differences between
evaluations on our data versus other non-real-life datasets.

Human baseline. We provide a human baseline, in which
two workers were asked to answer a random sample of 101
questions. One of them first listended to the audio in the
video without looking at the visual content, then answered
the questions, and then repeated the same task by using both
modalities (i.e., listen to the audio and watch the video).
The other worker did the same but using the visual content
— i.e., they first watched the video without listening to the
audio, then they answered the questions, and then repeated
the same task with both modalities. Note that this differs
from the previous analysis in Figure 3 as workers answer the
questions here by using one modality at a time and without
knowing the correct answer a-priori.

Question-only. We implement several baselines that use
only the questions and their candidate answers. Three of
these baselines use only the answers, without the question;
Random chooses one out of the four options uniformly at
random, and Longest answer and shortest answer choose the
answer with most or fewest number of tokens, respectively.
The first two baselines that also use the question are based
on computing some measure of similarity between the ques-

tion and candidate answers. The first is Word matching, as
defined by (Yih et al., 2013), which finds the answer with
the most overlapping words with the question. The second
is Most similar answer, which looks at word-level similarity,
which we compute by using the average GloVe embedding
(Pennington et al., 2014) of the question and each answer,
and selecting the answer with the highest cosine similarity
with the question. We use GloVe embeddings (Pennington
et al., 2014) with size 300 pretrained on 6B tokens from
Wikipedia 2014 (Rajpurkar et al., 2016) and Gigaword5
(Parker et al., 2011).
Finally, we implement ST-VQA-Text, a variant of Spatio-
Temporal VQA (ST-VQA) (Jang et al., 2017) which uses no
visual information. It encodes the question with a 2-layer
LSTM, then encodes the candidate answers and assigns a
score to each one. The text is tokenized and represented
using GloVe embeddings (Pennington et al., 2014) of size
300 pretrained on the Common Crawl dataset.

Question + Transcriptions. We present several neural
baselines that use the questions, answers, and transcriptions,
but omit the videos and audio.
Text-only LSTM and text-only CNN both use neural models
to separately encode the transcript, question, and answers.
The former is a one-layer BiLSTM of hidden size 100. The
latter is a 1D CNN with 100 filters of size two tokens and 100
filters of size 3 tokens. We then concatenate the transcript
and question encodings, and embed them with a two-layer
fully-connected network. We compute the dot product simi-
larity between the question+transcript encoding with each
of the candidate answers, and select the one with the highest
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score.
Second, we use a variant of BiDAF (Seo et al., 2017) in
which we remove the component that predicts the likelihood
of each token being the start and end of the span that is
needed for SQuAD (Rajpurkar et al., 2016), because in
LifeQA there are no such spans. We then compute the
dot product between the final hidden state of the Modeling
Layer and the representation of each answer choice, which
serves as a score. This same process is repeated for both the
question and the transcript.
Finally, we use a modified version of the end-to-end Mem-
ory Network (MemN2N) proposed by (Tapaswi et al., 2016)
based on (Sukhbaatar et al., 2015) to handle multiple-choice
question answering. The input to the model are the transcrip-
tions, questions, and candidate answers. The transcription
segments are obtained by mean-pooling the GloVe represen-
tation of the words for each segment. Our network has an
attention layer over the transcriptions to pick the segments
that are most relevant to the given question and trained in an
end-to-end fashion to select the correct answer.

Question + Vision. We use two variants of ST-VQA (Jang
et al., 2017). Both encode the video using a CNN followed
by an LSTM, whose final hidden state is then used as in ST-
VQA-Text. ST-VQA-Tp. uses the concatenation of the output
of an ImageNet (Deng et al., 2009) pretrained ResNet152
(He et al., 2016) pool5 layer and of a Sports1M (Karpathy
et al., 2014) pretrained C3D (Tran et al., 2015) fc6 layer
as the video encoder. ST-VQA-Sp.Tp. computes a spatial
attention map to decide what parts of the image are most
useful, and uses the res5c and conv5b of the two CNN
encoders. Both use temporal attention maps to pool impor-
tant information across video frames. We also tried a variant
that uses RGB-I3D (Carreira and Zisserman, 2017) (with
avg_pool and mixed_5c layers respectively) instead of
C3D, pretrained on ImageNet and Kinetics but do not report
it because we obtained similar results.

Question + Transcriptions + Vision. We implement two
neural models that use all modalities, TVQA (Lei et al.,
2018) and MovieQA (Tapaswi et al., 2016). Both models
use object detection networks to identify visual concepts in
the corresponding video frames, allowing them to make use
of the visual modality. For both we use as visual inputs the
output predictions of a Faster R-CNN (Ren et al., 2015) ob-
ject detection model pretrained on Visual Genome (Krishna
et al., 2017).

Pretrained Baselines. Finally, we utilize the TVQA
model pretrained on the TVQA dataset. We evaluate it
in two versions, with and without fine-tuning on LifeQA.

4.2. Results
In Table 3 we evaluate each model with a five-fold cross-
validation, grouping by source video.1 Similar to (Lei et
al., 2018), the baselines trained from scratch do not gen-
erally benefit from using the visual information. In fact,
most models do not surpass ST-VQA-Text, a baseline which
uses only the question and the candidate answers as input.
This shows the presence of biases in the dataset, including

1Note: we used 221 out of the 275 video clips (50 out of 59
source videos) that were available when running the experiments.

Inputs Model Accuracy

Random 25.0

A Longest answer 30.6
Shortest answer 21.5

Q+A
Word matching 24.8
Most similar answer 35.2
ST-VQA-Text 45.4

T+Q+A

BiDAF 43.3
Text-only CNN 43.5
Text-only LSTM 44.0
Text-only Memory Network 37.9
Human 63.4

V+Q+A
ST-VQA-Tp. 45.0
ST-VQA-Sp.Tp. 44.6
Human 48.5

V+T+Q+A

Multimodal Memory Network 38.2
TVQA from scratch 41.1
Pretr. TVQA w/o fine-tuning 51.8
Pretr. TVQA w/ fine-tuning 51.6
Human 90.6

Table 3: Baselines on the LifeQA dataset. In the first column,
“A” stands for answer, “Q” for question, “T” for transcripts
and “V” for visual modality. When the transcripts are part
of the input, the human performance is measured by using
the audio instead.

the multiple-choice setup as opposed to free answer, which
allows models to overfit to obtain better-than-random perfor-
mance. It also demonstrates that leveraging real-life video
data is a challenge for existing systems.
The TVQA model shows a significant gain in performance
when is pretrained on the TVQA dataset, possibly due to the
significant larger training size. However, there is still a big
gap with respect to human accuracy, providing evidence that
this is a challenging benchmark. The same model is able
to obtain 66.5% accuracy on the TVQA dataset with five
answer choices instead of four. Moreover, the model is not
able to perform better even when fine-tuning, showing that
the task is still hard when given in-domain training data and
giving hints that more robust models should be considered
to close the gap as opposed to labeling a larger amount of
data to train on.

5. Conclusion
In this work, we introduced LifeQA, a real-life dataset
for evaluating Video QA systems on real-life scenarios.
Through several analyses and experimental evaluations,
we showed that LifeQA presents a challenging task for
existing models, with a significant gap in accuracy com-
pared to human performance, thus suggesting that future
research is necessary to leverage the multimodal features
in this domain. The dataset is publicly available at https:
//lit.eecs.umich.edu/lifeqa/.2

2Given the relatively small amount of video data we share and
the fact that it is drawn from public sources, the sharing of this
data falls under “fair use.”

https://lit.eecs.umich.edu/lifeqa/
https://lit.eecs.umich.edu/lifeqa/
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