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Abstract
Conventional multimodal tasks, such as caption generation and visual question answering, have allowed machines to understand an
image by describing or being asked about it in natural language, often via a sentence. Datasets for these tasks contain a large number
of pairs of an image and the corresponding sentence as an instance. However, a real multimodal document such as a news article or
Wikipedia page consists of multiple sentences with multiple images. Such documents require an advanced skill of jointly considering
the multiple texts and multiple images, beyond a single sentence and image, for the interpretation. Therefore, aiming at building a
system that can understand multimodal documents, we propose a task called image position prediction (IPP). In this task, a system
learns plausible positions of images in a given document. To study this task, we automatically constructed a dataset of 66K multimodal
documents with 320K images from Wikipedia articles. We conducted a preliminary experiment to evaluate the performance of a current
multimodal system on our task. The experimental results show that the system outperformed simple baselines while the performance is
still far from human performance, which thus poses new challenges in multimodal research.

Keywords: resource creation, multimodal document understanding, vision and language

1. Introduction
Connecting the modalities of vision and language is one
of the most ambitious goals in computer vision and natural
language processing. A number of multimodal tasks has
been proposed and made a great progress to this end. For
example, caption generation (Lin et al., 2014) and visual
question answering (VQA) (Antol et al., 2015; Agrawal et
al., 2017) are well-known conventional multimodal tasks
that have received much attention in recent years (Hossain
et al., 2019; Kafle and Kanan, 2017; Wu et al., 2017). Cap-
tion generation aims to generate a caption to describe the
contents of an input image with a natural language sen-
tence while the goal of VQA is to answer a question written
in natural language about a given image. These tasks can
be solved by interpreting an image and the corresponding
short text such as a caption or question.
However, real multimodal documents consist of multiple
sentences and multiple images as seen anywhere. For ex-
ample, newswire articles contain photographs of events,
cooking recipes include pictures of intermediate stages of
cooking, and Wikipedia articles contain various types of
images showing people, buildings, scenery, and various ob-
jects. Being placed at appropriate positions in such a docu-
ment, images help people understand the whole document
by naturally considering the correspondence of the images
and document. Unfortunately, existing multimodal tasks
have not dealt with this high-level correspondence, because
an instance in a typical dataset often consists of a single im-
age and a single sentence. As a result, existing methods fail
to understand real multimodal documents.
To solve this problem, we propose a task called image po-
sition prediction (IPP). Figure 1 shows an overview of our
task. Given a document and a set of images, the goal of
this task is to find an appropriate position of each image
in the document that maximizes readers’ understanding of
the document. The task requires considering multiple texts
as well as multiple images. More specifically, the task in-
volves three key challenges, all of which contribute to un-

derstanding multimodal documents. (i) It requires consid-
ering longer contexts of texts and the relations between
them, in other words, document structures. (ii) A system
to solve the task also has to relate multiple images. For ex-
ample, both of the first two images on the right in Figure 1
complement the corresponding text by highlighting the dif-
ference of the devices separately shown in the images. (iii)
Because documents describe various types of topics, broad
coverage of vocabulary is needed, including common nouns
as well as proper nouns. Other wide-ranging skills such as
keyphrase extraction and inference on scenes may also be
required. We expect that these challenges will pave the way
for future applications on multimodal documents, such as
caption generation for newswire articles, automatic picture
book generation from texts, and album creation based on an
event description.
To address this task, we automatically construct a dataset
of 66K multimodal documents with 320K images from
Wikipedia articles. We focus on Wikipedia because it has
natural correspondences between the texts and images in
its HTML sources. Also Wikipedia articles describe vari-
ous topics and have structures similar to paragraphs, which
we refer to as “sections” in this paper. Thus, Wikipedia
offers all the challenges that we impose on our task. We
believe that the dataset we construct is the largest among
existing multimodal datasets in terms of the numbers of im-
ages, documents, and vocabularies.
We conduct a preliminary experiment to evaluate the per-
formance of a current multimodal model on our task. We
use the Pythia model (Jiang et al., 2018), the winning model
in the VQA Challenge 2018. While the original model
adopts an attention mechanism to jointly account for tex-
tual and visual features from an input of a question and
image, it cannot consider sets of texts and images, which
are the input to our task. Therefore, we extend it to accept
sets of texts and images, so that the extended model can
compute the interactions among them through the attention
mechanism. The experimental results show that although
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A stereo Bluetooth headset.

Headset (audio)
A headset combines a headphone with a microphone. Headsets are made 
with either a single-earpiece (mono) or a double-earpiece (mono to both 
ears or stereo). Headsets provide the equivalent functionality of a 
telephone handset but with handsfree operation. They have many uses 
including in call centers and other telephone-intensive jobs and for 
anybody wishing to have both hands free during a telephone 
conversation.

Mobile phone
Mobile (cellular) phone headsets are often referred to as handsfree. Most 
mobile phones come with their own handsfree in the form of a single 
earphone with a microphone module connected in the cable. … 
Smartphones often use a standard 3.5 mm jack, so users may be able to 
directly connect the headset to it. …

Bluetooth
Bluetooth technology is widely used for short-range voice transmission. 
… There are two types of Bluetooth headsets. Headsets using Bluetooth 
v1.0 or v1.1 generally consist of a single monaural earpiece, which can 
only access Bluetooth' s headset/handsfree profile. … Headsets with the 
A2DP profile can play stereo music with acceptable quality. …

Bluetooth wireless desktop devices
Desktop devices using Bluetooth technology are available. With a base 
station that connects via cables to the fixed-line telephone and also …

A typical Bluetooth headset.

… … ……

Mobile Phone, Smartphone headset should include 
a volume control, microphone and 3.5mm plug.

Document (segmented into sections) Images (with captions)

Figure 1: Overview of our IPP task. The example is taken from the English Wikipedia article “Headset (audio)”.

the model achieved promising results, the performance is
still limited, which means that our task is reasonably dif-
ficult to solve and poses new challenges in multimodal re-
search.

2. Related Work
Many works have proposed large multimodal datasets with
different characteristics. MS COCO was proposed by Lin
et al. (2014) as a benchmark dataset for image captioning.
It contains more than 12K images, and each image has at
least five ground-truth captions. The images were fetched
from Flickr, an image-hosting service while the captions
were separately annotated by using Amazon Mechanical
Turk. Goyal et al. (2017) introduced a VQA v2 dataset
with reduced language bias in the answers, making it more
balanced than the first VQA dataset (Agrawal et al., 2017).
Visual Genome (Krishna et al., 2017) is another multimodal
dataset that has dense annotations of image regions, their
region phrases, object attributes, relationships between ob-
jects, scene graphs, and QAs. Each image has an average
of 50 regions marked, and each region phrase describes the
contents of a marked region in an image with natural lan-
guage. The descriptions of these datasets were indepen-
dently annotated by crowdworkers who were not familiar
with the background of the provided images, which made
the words in the descriptions general in terms that common
nouns are frequently used. In contrast, KVQA (Shah et
al., 2019) was created with specialization in proper nouns
to enable reasoning over world knowledge. In particular,
knowledge on people in Wikipedia articles was included
and used in the questions.

However, none of above datasets consists of instances with
longer texts or multiple images, preventing systems from
dealing with such instances. Krause et al. (2017) con-
structed a paragraph-captioning dataset containing para-
graphs as captions instead of sentences. Therefore, this
dataset requires paragraph-level reasoning to generate para-
graphs describing given images. TQA (Kembhavi et al.,
2017) is another challenging dataset that offers lessons ob-
tained from middle-school textbooks. Each lesson consists
of multiple topical paragraphs along with instructive im-
ages such as diagrams or illustrations. To answer questions
in TQA, a system must understand the whole lessons by
associating multiple paragraphs and images in the lessons.

More recently, researchers have proposed several multi-
modal tasks requiring advanced skills beyond those learned
from longstanding multimodal tasks such as caption gener-
ation or VQA. Agrawal et al. (2016) proposed a task for
sequencing jumbled image-caption pairs belonging to the
same story in chronological order. Bosselut et al. (2016)
tried to learn typical sequences of events from photo al-
bums. Iyyer et al. (2017) compiled a new dataset from
comic book panels which consist of pairs of stylized art-
work and dialogue. The goal of the work was to examine
the capabilities of multimodal models to understand comic
books, by requiring them to predict the character utterances
or images in the following panels in a comic book. Biten
et al. (2019) addressed caption generation for news arti-
cles whose captions differ from crowdsourced captions be-
cause news articles involve various named entities. Zhu et
al. (2015) aimed to align movie shots with the correspond-
ing passages in the books. Hessel et al. (2019) trained a
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model that aligns sentences with images in various types of
multimodal documents, such as Wikipedia articles, cook-
ing recipes, and photo albums, in which the ground-truth
alignments of a sentence and image are not available dur-
ing training. These multimodal tasks pose new challenges,
and the derived datasets have unique characteristics of the
tasks. Nevertheless, our task poses other new challenges.
Furthermore, to the best of our knowledge, our dataset is
the largest in terms of the number of images associated with
longer texts and the vocabulary size, as well as other statis-
tics, as we describe later in Section 4.2.

3. Task Formulation
Here, we formulate our IPP task and give the notations used
throughout the paper.1 We use a large dataset of multimodal
documents, each consisting of a document and multiple im-
ages. Figure 1 shows an example. A document can include
tens to hundreds of sentences and have structures among
them. Images complement the document to help readers
understand it. Some images are associated with captions.
We assume that documents in the dataset have already been
segmented into meaningful textual units, such as sections,
paragraphs, or sentences, according to the structures in the
documents. Given these pairs of images and textual units,
the task is to find plausible assignments of the images with
the textual units so that the assigned images complement
the corresponding textual units.
We formalize this task as follows. For a multimodal doc-
ument d, the set of images in d is denoted as V and the
set of textual units in d is denoted as S. The numbers of
elements in these sets are denoted as |V | and |S|, respec-
tively. Each v ∈ V may consist of a visual part as an actual
image, and a textual part as the caption. Each caption and
textual unit s ∈ S consist of a sequence of words. We re-
gard d = 〈V, S〉 as a bipartite graph of |V | image nodes
and |S| textual unit nodes, where the edges represent the
correspondence between the images and the corresponding
textual units in d.
We define IPP as a graph completion task of the bipartite
graph by predicting all the plausible edges between V and
S. Completing the graph requires reasoning over the whole
graph, considering multiple texts as well as multiple im-
ages. Let A ∈ [0, 1]|V |×|S| represent an assignment matrix
of edges, where aij , the (i, j)-element of A, represents the
assignment probability of an edge connecting the i-th im-
age node and j-th textual unit node. While every image
node v ∈ V has a single (undirected) edge to a textual unit
node s ∈ S, a textual unit can have no or multiple edges
from different image nodes. Given this nature, we impose
a restriction on A such that each row ai in A sums up to
one, that is, for each i,

Σjaij = 1. (1)

This means that each row ai = (ai1, ai2, ..., ai|S|) is a prob-
ability distribution over S; we represent the probability dis-
tribution for each image vi as φ(vi) to directly indicate the

1We borrow some notations and statements from the work by
Hessel et al. (2019), because a data structure we use is similar to
it.

input image. Thus, we can obtain assignments of images to
the corresponding textual units by taking the highest prob-
ability for each row ai:

y = [y1, . . . , y|V |]
T , (2)

yi = argmax
j∈{1,...,|S|}

aij , (3)

where yi denotes the resulting plausible textual unit for an
image vi in V . Note that we can loosen this criterion by tak-
ing the k highest probabilities to consider more candidate
textual units.
We evaluate a system solving the IPP task by measuring ac-
curacy@k, the averaged accuracy over a given dataset when
we consider the k highest-confidence candidates for each
instance. Specifically, if a system predicts the correct tex-
tual unit within the k candidates for a given image, it earns
a “point.” Then, accuracy@k is the fraction of the total ob-
tained points to the total number of images in the dataset.
In our experiment, we used k ∈ {1, 3, 5}.

4. Dataset
4.1. Dataset Curation
In this section, we explain how we automatically create
our dataset for the IPP task from English Wikipedia.2 In
Wikipedia, an article can have sections delineated by the
HTML tag 〈h〉, and images (with captions) denoted by the
HTML tag 〈img〉. We consider any text between two dif-
ferent and consecutive 〈h〉 tags as the text of the section.
Likewese, the image positions are determined by two con-
secutive 〈h〉 tags nesting an 〈img〉 tag. Thus, Wikipedia
inherently suits the IPP task formulation, and we can auto-
matically build a large dataset via these explicit markers.
Here, we describe the data creation procedure in detail.
First, we extract sections, images and captions for all arti-
cles (i.e., documents) in a Wikipedia dump3. The extracted
sections do not contain texts in a table or an infoboxes.
Consequently, we obtained 5,870,656 documents, not in-
cluding ones failed to be parsed. Then, we picked up doc-
uments which have 10 to 50 sections and 2 to 30 images.
This left 161,763 documents, and we then tried to collect
all images in these documents. We restricted images by
their original file extensions, allowing any of jpeg, JPEG,
jpg, JPG, png, or PNG. In addition, we converted all the
extracted images to an RGB format and compressed the im-
age file size by reducing the image quality to some extent
to make the subsequent processing easier. Eventually, we
obtained a total of 66,947 documents with 320,200 images
as our IPP dataset.

4.2. Analysis
We summarize the statistics of our dataset in Table 1 and 2
comparing with previously proposed multimodal datasets
explained in Section 2. Our dataset offers notable charac-
teristics from both quantitative and qualitative perspectives.
How many sentences and words are in our dataset?

2https://github.com/muraoka7/tool4ipp
3We used the latest English Wikipedia dump as of June 1st,

2019.

https://github.com/muraoka7/tool4ipp
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Dataset #docs #images #t units
Vocab
size

Multi
sents

/ t unit

Multi
images
/ t unit

Included
noun
type

MS COCO – 123,287 616,767 captions 22,382 7 7 common
VQA v2 – 204,721 1,105,904 questions 13,634 7 7 common
Visual Genome – 108,077 5,408,689 phrases 56,505 7 7 common
KVQA – 24,602 183,007 questions 8,338 7 7 proper
Krause et al. – 19,561 19,561 descriptions 9,719 4 7 common
TQA 1,076 3,181 9,343 topics 15,791 4 4 common

Ours 66,947 320,200 1,129,321 sections 2,139,704 4 4
common
& proper

Table 1: Comparison of our dataset with previously proposed multimodal datasets. In the table, “t unit” indicates a textual
unit, which differs among the datasets.

Dataset #sents #words #images
/ doc / t unit / doc / t unit / sent / doc / t unit

MS COCO 5.0∗ 1.0 56.7∗ 11.3 11.3 – 1.0
VQA v2 5.4∗ 1.0 38.7∗ 7.2 7.2 – 1.0
Visual Genome 50.0∗ 1.0 263.9∗ 5.3 5.3 – 1.0
KVQA 7.4∗ 1.0 84.8∗ 11.4 11.4 – 1.0
Krause et al. 5.7 5.7 68.5 68.5 11.9 – 1.0
TQA 75.7 8.7 920.8 106.0 12.2 3.0 1.2
Ours 150.4 8.9 3,346.6 198.4 22.3 4.8 1.3

Table 2: Statistics in terms of a document (doc), textual unit (t unit), and sentence (sent). Numbers with ∗ are obtained by
treating all the textual units associated with an image as a document, despite lacking document structures, unlike TQA and
our dataset.

For a fair comparison, we applied the spaCy pack-
age (Honnibal and Montani, 2017)4 to all the datasets listed
in Table 1 to split sentences and tokenize words. Our
dataset contains more than 10M sentences in 1M sections
and each section has 8.9 sentences on average. The aver-
age sentence length is 22.3 words, and the average section
length is 198.4 words, which is the largest among the com-
pared datasets. The number of sentences per document is
almost double that of TQA (150.4 vs. 75.7 from Table 2),
and the number of words per document is more than 3.5
times greater. This confirms that understanding of longer
texts is required for the IPP task with our dataset.
How many images belong to a document or textual unit?
The number of images in our dataset is 320K, which is the
largest listed in Table 1. As previously explained, one sec-
tion in our dataset can have multiple images (1.3 images on
average), while one textual unit (e.g., a caption or question)
in the other datasets, except for TQA, exactly corresponds
to one image. In addition, our dataset has 4.8 images per
document. It thus requires reasoning over multiple images
for a system to complete the task.
How large is the vocabulary size?
Table 2 also lists the vocabulary size of our dataset and the
others. We make sure that our dataset has the largest vocab-
ulary size (>2M) by two orders of magnitude as compared
to the others. Because of the nature of Wikipedia, which
is one of the largest online encyclopedias, our dataset ob-
viously contains various topics of both common and world

4https://spacy.io/

knowledge, expressed by common nouns and proper nouns,
respectively. Hence, with our dataset, we can test the capa-
bilities of a system to manage a huge variety of vocabulary
to capture the semantics of the documents.
What skills are required to achieve the task?
We manually checked a subset of our dataset and catego-
rized the challenging skills required to solve the IPP task.
In addition to the key challenges explained in Section 1, we
found that our task requires the following: keyphrase ex-
traction, object-keyphrase matching, inference on scenes,
optical character recognition (OCR), diagram understand-
ing, and information integration/selection from whole doc-
uments. Although this list is not exhaustive, we frequently
observed instances requiring at least one of those skills to
solve the task. Figure 2 shows examples of those instances.

5. Preliminary Experiment
To measure the complexity of our task, we study how well
a current multimodal system suits our IPP task.

5.1. Extended Pythia Model
We extend Pythia (Jiang et al., 2018), the model that won
the VQA Challenge 2018. The original model is based on
a common architecture used in VQA (Kafle and Kanan,
2017; Wu et al., 2017). Given a question sentence and an
image as an input, that model first encodes them separately
with respective encoders to obtain feature vectors. It then
computes an attention layer to attend specific parts in the
image by considering what the question asks, and it gener-
ates the answer from the attended features.

https://spacy.io/
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Spidertrike

Tricycle rickshaw
Most cycle rickshaws, used for 
carrying passengers for hire, are 
tricycles (followed by 100 words to 
describe cycle rickshaws)
Spidertrike is a recumbent 
cycle rickshaw that is used in 
central London and operated by Eco 
Chariots. (followed by 59 words to 
describe spidertrike)

keyphrase extraction,
object-keyphrase matching

Tricycle Wine

Oak wine barrels

Storage
Wine cellars, or wine rooms, if they 
are above-ground, are places 
designed specifically for the storage 
and aging of wine. Fine restaurants 
and some private homes have wine 
cellars. (followed by 261 words but 
neither the words “oak” nor 
“barrels” appeared)

inference on scenes

A common marking at curved platforms 
on the London Underground.

Curvature
(73 words precede) Usually such 
platforms will have warning signs, 
possibly auditory, such as London 
Underground's famous phrase "Mind 
the gap". (followed by 77 words)

OCR

Railway platform

Montacute House

First floor: 1: Library (formerly known as 
the Great Chamber); (followed by names 

of the remaining numbered rooms)

Second-floor plan.
Key: 1: Long Gallery, (followed by names 

of the remaining numbered rooms)

information integration/selection from whole documents,
OCR, keyphrase extraction, object-keyphrase matching

First floor
The first floor contains one of the 
grandest rooms in the house, the 
Library. The room was formerly 
known as the Great Chamber; 
(followed by 444 words to describe 
the rooms in the floor)

Second floor
A notable feature of the house is the 
172-foot (52 m) second-floor Long 
Gallery, spanning the entire top floor 
of the house; (followed by 192 words 
to describe the rooms in the floor)

Diagram illustrating how the relative 
emphasis of different disciplines changes 

over the course of the project

Iterative and incremental
(10 words precedes) The Elaboration, 
Construction and Transition phases 
are divided into a series of timeboxed 
iterations. (followed by 54 words)
the relative effort and emphasis will 
change over the course of the project.

OCR, diagram understanding

Unified Process

Article name

Section

Image
(Caption)

Required skill

Article name

Section

Image
(Caption)

Required skill

(a) (b) (c)

(d) (e)

Figure 2: Selected samples of images and the corresponding textual units from our dataset, showing different skills required
to accomplish our task. The shown textual units are ground-truth. The underlined textual parts are relevant to the required
skills. (a) The instance requires extracting the word “Spidertrike” in the long textual unit (around 200 words) and matching
it to the object in the given image. (b) It is required to understand the scene of the image because the correct textual unit
describes a general topic (i.e., “Storage”), but does not have concrete words such as “oak” or “barrels” as given in the
caption. (c) This instance can be easily solved if OCR is available because almost the same words “Mind the gap” appears
in the associated textual unit and the image. (d) We can test whether a system can understand diagrams with this instance,
where the system has to associate what the diagram depicts with the corresponding texts (e.g., the “Elaboration” column in
the image is divided into two sub-columns, “E1” and “E2”, as explained in the textual unit). (e) Similar images appear in
different textual units, in which the images complement the respective textual units, and thus, a system must relate multiple
textual units and multiple images in the document.

We modify the Pythia model to receive a set of textual units
as well as images as an input. This allows the model to re-
late multiple textual units and multiple images to consider
the interactions among them. Figure 3 shows an overview
of our extended Pythia model. We give a detailed explana-
tion of it below.
For textual parts, we first tokenize a textual unit s and
caption c with a WordPiece tokenizer (Wu et al., 2016)5,

5In practice, we use the tokenizer implemented in the follow-

which generates a sequence of subwords. We then obtain
BERT embeddings through a pretrained BERT model (De-
vlin et al., 2019)6 for the first 512 subwords. Instead of
using GloVe embeddings (Pennington et al., 2014) as in
the original Pythia model, we adopt BERT embeddings be-
cause they have shown improvement in numerous natural

ing PyTorch’s Transformers, mentioned below.
6We used PyTorch’s Transformers (Wolf et al., 2019)

as the pretrained model.
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Mobile Phone, Smartphone headset
volume control, microphone and

Document (segmented into sections)

Images (with captions)

BERT

BERT

Slicing ResNet
+

C
oncat

|"| images

|"| captions

W

W

Σ

Softm
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|#| textual units

⨂
% &'
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)|*|

)|*|)'

)'

……
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entire image +

3×3 sliced images

512

768

1024

256

256

Attention
over sliced images

ReLU

ReLU

W
1

W
|"|

Softm
ax

C
oncat

R
eLU

Bluetooth
Bluetooth technology is widely used for short-range voice transmission. 
… There are two types of Bluetooth headsets. Headsets using Bluetooth 
v1.0 or v1.1 generally consist of a single monaural earpiece, which can 
only access Bluetooth' s headset/handsfree profile. … Headsets with the 
A2DP profile can play stereo music with acceptable quality. …

Mobile phone
Mobile (cellular) phone headsets are often referred to as handsfree. Most 
mobile phones come with their own handsfree in the form of a single 
earphone with a microphone module connected in the cable. … 
Smartphones often use a standard 3.5 mm jack, so users may be able to 
directly connect the headset to it. …

Headset (audio)
A headset combines a headphone with a microphone. Headsets are made 
with either a single-earpiece (mono) or a double-earpiece (mono to both 
ears or stereo). Headsets provide the equivalent functionality of a 
telephone handset but with handsfree operation. They have many uses 
including in call centers and other telephone-intensive jobs and for 
anybody wishing to have both hands free during a telephone 
conversation.

A stereo Bluetooth headset.
A typical Bluetooth headset.

Figure 3: Overview of our extended Pythia model. The gray and white boxes indicate pretrained models with fixed param-
eters and operations, respectively. The W s in orange circles indicate learnable parameters. The symbol ⊗ denotes matrix
multiplication. The gray numbers are the dimensionalities of the resultant vector representations for each feature.

language tasks (Wang et al., 2019) such as sentiment anal-
ysis, sentence similarity, question answering, and textual
entailment. Although we discard the remaining subwords
if we obtain more than 512 subwords for a given s or c,
we consider that number large enough because the average
number of words per textual unit is much lower (198.4) as
seen in Table 2. If the number of subwords is less than 512,
then we pad with zero vectors to make the length even (i.e.,
512). Each BERT embedding is taken from the last hidden
layer, corresponding to the last token in the subwords, and
is represented by a dtxt-dimensional real-valued vector, for
which we set dtxt = 768. Although the original model fur-
ther encodes the obtained embeddings with recurrent neu-
ral networks (RNNs) such as GRU (Cho et al., 2014) or
LSTM (Hochreiter and Schmidhuber, 1997), we did not
use them because we can successfully obtain interactions
among textual units in the subsequent layers, thereby de-
creasing the number of model parameters.7

As for visual parts, we use pretrained convolutional neural
networks (CNNs) to encode images. Specifically, we use an
18-layer Residual Network (ResNet) (He et al., 2016) pre-
trained on ImageNet (Russakovsky et al., 2015). Because
our task requires focusing on specific parts of images in
addition to whole-image understanding, we extract image
features from an entire image as well as sliced sub-images
of it. By slicing into 3 × 3 sub-images, we obtain K = 10
image features for one image, where the last feature is from
the whole image. Each image feature is represented as a
dimg-dimensional real-valued vector (dimg = 512) taken
from the final average pooling layer in ResNet, and thus, we
have a K × dimg feature matrix for each image. When we
choose to use the captions of given images, we simply copy
and concatenate the caption embeddings obtained through
BERT with each feature vector, resulting in a matrix with a
dimensionality of K × (dimg + dtxt).
Once we obtain the textual embeddings and image features
for a given document, we compute an attention layer to fo-
cus on a set of sub-images with different importance ac-
cording to a given set of textual units. Specifically, we

7In our experiment, we found that our model could achieve
promising performance even without such RNNs. In fact, we
found the training of such a larger model quite unstable because
the training frequently caused the exploding gradient problem.

can obtain the attention layer by applying a feature con-
catenation, a nonlinear and linear transformation, and soft-
max function as follows. Let S ∈ R|S|×dtxt be the ma-
trix of textual features, and V(i) ∈ RK×(dimg+dtxt) be the
matrix of visual features for the i-th image (1 ≤ i ≤
|V |). We first concatenate S with V(i) to create a ma-
trix M = [M(1), . . . ,M(|V |)]T by concatenating all the
rows of S with each image feature vector, resulting in M(i)
∈ RK×(dimg+dtxt+|S|×dtxt). We then obtain our attention
layer α by the following equation:

α = softmax((g2 ◦ f ◦ g1)(M)). (4)

f and gi (i ∈ {1, 2}) denote a nonlinear and linear trans-
formation, respectively defined by f(X) = ReLU(X) and
gi(X;Wi,Bi) = XWT

i + Bi. Note that Wi and Bi

are learnable model parameters, and the dimensionalities
are W1 ∈ R|S|×(dimg+dtxt+|S|×dtxt), B1 ∈ R(|V |×K)×|S|

where each row stores the same value, W2 ∈ R1×|S|, and
B2 ∈ R(|V |×K)×1. To compute the attended image fea-
tures, we take a weighted sum over each image feature ma-
trix V(i) with the attention weights given by α:

V̂(i) = ΣK
k=1αi(K−1)+kV(i, k), (5)

where V(i, k) denotes the k-th sub-image feature vector for
the i-th image.
We then obtain the assignment probabilities φ(vi) for each
image vi ∈ V from V̂ and S, especially by

φ(vi) = softmax((g3 ◦ f)(V̂(i)) (g4 ◦ f)(S)T ).

We set the resulting dimensionality of the linear transfor-
mation with W3 and W4 to 256. By stacking all the
φ(vi) for all images, we obtain the assignment matrix
A = [φ(v1), . . . , φ(v|V |)]

T , from which we can also ob-
tain the prediction of the image positions y, where yi =
argmaxφ(vi) is the resulting textual unit. In the training
phase, we adopt the cross-entropy loss over image positions
and backpropagate it to optimize the model parameters.

5.2. Experimental Setup
We randomly split our dataset into train/dev/test sets with
53,557/6,695/6,695 documents, respectively. We iteratively
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acc@1 acc@3 acc@5
Random 6.09% 17.46% 27.24%
Top frequency 8.61% 17.13% 41.54%
Our model 21.28% 46.11% 62.55%

w/o caption 20.36% 45.36% 61.90%
w/o image 21.81% 46.76% 63.13%

Human 60.00% – –

Table 3: Values of accuracy@k for our extended Pythia
model with different input features, as well as other naive
baselines, on the test set.

trained our model with mini-batches of size 16 by using
stochastic gradient descent. For each instance in a mini-
batch, we randomly swapped the orders of the input images
to prevent learning from just the orders. In contrast, we
fixed the orders of the input textual units because they were
linguistically structured and the order was meaningful. We
set the number of epochs to 10,000 and preserved the model
parameters giving the best performance on the dev set. As
in the original work on Pythia (Jiang et al., 2018), we used
AdaMax (Kingma and Ba, 2014) as an optimization algo-
rithm and a warm-up strategy for effectively updating the
learning rates with the initial learning rate of 0.001.8

5.3. Result
Here, we report the results of our model on the test set
with the best parameters obtained on the dev set in terms
of acc@1. Table 3 summarizes the ablative performance
of our model with different input features, as well as the
performance of other naive baselines. “Random” chooses
image positions at random and “Top frequency” always pre-
dicts the most frequent positions in our dataset. Perfor-
mance by humans is also shown in the bottom row, which
is the average accuracy by the three authors who manually
solved 100 images in randomly-selected 21 articles.
Our model using both image and caption features achieved
accuracy@k of 21.28%, 46.11%, and 62.55% with k ∈
{1, 3, 5}, respectively. It thus outperformed the naive base-
lines by a large margin up to ∼ 29 percentage points (accu-
racy@3). These results indicate that our model successfully
captured the meanings of given sets of texts and images. It
is also implied that a system adopting a typical architecture
for VQA could solve the task to some extent.
However, our model is still far from human performance,
and contribution of each modality (caption or image) is still
limited. Without captions, the performance slightly de-
creased, by 0.65 to 0.92 points (fourth row). In contrast,
when we used only captions (the “w/o image” row), the
performance was slightly superior to that of the model us-
ing both images and captions. This can be reasonable be-
cause captions sometimes share similar or same words with
textual units. Another reason could be that our model may
not handle features from different modalities, i.e., texts and
images, which is consistent with the results by Kembhavi
et al. (2017) and should be investigated more in the future.
We manually analyzed instances that our model predicted

8See the original paper (Jiang et al., 2018) for more detail.

correctly and incorrectly. Figure 4 shows the examples of
the predictions by our model. We found that our model
could learn the typical correspondences between texts and
images. For example, our model learned that monochrome
images tend to be associated with sections about past times
such as “History” or “Early age” (first example in Fig-
ure 4(a)). Our model also learned that images of maps and
landscapes are more likely to be placed in “geographic”
sections (second one in Figure 4(a)), while building im-
ages were put in “architecture” sections (third one in Fig-
ure 4(a)). This implies that our model captured the general
meanings of images and texts, even though OCR and di-
agram understanding were not used in our model. More
interestingly, we observed some encouraging examples,
where our model could assign similar images to different
sections in a document (Figure 4(b)). We conjectured that
our model considered the contexts (e.g., backgrounds or
types of images) of the images together with the captions.
On the other hand, our model could not cope well with
the localization of the contexts, and thus, the prediction
was affected by the general meanings of the images. For
example, as shown in the first and second images in Fig-
ure 4(c), when images depict typical objects such as roads,
our model wrongly associated them with the typical sec-
tions (the “Road” section), even though the captions share
the same words with the correct sections. Our model also
did not consider the structure of the document. Although
the last example in Figure 4(c) required to relate the correct
section and its subsections to describe the types of plat-
forms, all of which are summarized in the input image,
our model failed to capture it. These would be solved if
a system could successfully account for the structured texts
and the relative differences of the meanings of images in a
given document. We believe that our dataset enables learn-
ing such semantics that lie in multimodal documents, which
is not obtained via the existing multimodal datasets.

6. Conclusion
We paved the way for learning multimodal documents by
proposing a novel task called image position prediction
(IPP). The IPP task offered three key challenges and sev-
eral challenging skills that allow machines to go beyond
conventional multimodal tasks. To study our task, we also
automatically created the largest multimodal dataset from
Wikipedia articles. From a preliminary experiment, we
showed that the proposed task is moderately difficult and
the further research is needed.
Since our dataset contains correspondence between longer
texts and images, it can be used to train multimodal en-
coders that effectively encode interactions in textual and
visual information by enriching the encoded features with
the other modality. It would be interesting to apply such en-
coders to other tasks including single-modal tasks to evalu-
ate the effectiveness.
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Article name

Section

Image
(Caption)

Rheinfelden

Bentley Priory (c.1800)

History
… The Marquess of Abercorn 
acquired the estate, along with 
Bentley Priory, in 1839. …

Izena Island

Map of the Okinawa Islands, 
showing the location of Izena …

Geography
… to the northwest 
of Okinawa Island, and 
southeast of Iheya Island. …

Dithmarschen

Marne church and city hall

Architecture
The Dithmarschen landscape 
was long dominated by 
churches. …

Rocketdyne F-1

F-1 rocket engine components

Design
… The heart of the engine 
was the thrust chamber, … 
A gas generator was used to 
drive a turbine … Below the 
thrust chamber was 
the nozzle extension …

F-1 engine on display at 
INFINITY Science Center.

Locations of F-1 engines
… and the first stage from 
SA-515 is on display at 
the INFINITY Science 
Center at John C. Stennis 
Space Center in Mississippi.
…

Recovered F-1 engine parts 
on display at the Museum 

of Flight in Seattle.
Recovery
… On May 20, 2017 the 
Apollo permanent exhibit 
opened at the Museum of 
Flight in Seattle, WA and 
displays engine artifacts …

Article name

Section

Image
(Caption)

Transport in Delhi

Radio Taxi near airport

Road
Two upcoming bridges 
over Yamuna will 
connect Faridabad to Noida
and Greater Noida. …

Taxis
… Recently, Radio Taxis 
have started to gain ground 
in Delhi. …

Road
Two upcoming bridges 
over Yamuna will 
connect Faridabad to Noida
and Greater Noida. …

Transport in Delhi

The DND Flyway

Expressways and National 
Highways
… DND Flyway connects 
Delhi with its other financial 
hub, …

Oil platform

1, 2) conventional fixed platforms; 
3) compliant tower; … 

Challenges
Offshore oil and gas 
production is more 
challenging than land-based 
installations…

Types
Larger lake- and sea-based 
offshore platforms and drilling 
rig for oil. (the platforms in 
the image are described in the 
following subsections)

Article name

Section
(predicted)

Image
(Caption)

Section 
(gold)

(a) Examples that our model could capture typical correspondences.

(b) Examples that our model successfully distinguished the contexts of the images.

(c) Examples that our model failed to predict the correct positions.

Figure 4: Example predictions of our model. The first and second rows show positive examples while the last indicates
failure cases.
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