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Abstract
Multiword Expressions (MWEs) are a frequently occurring phenomenon found in all natural languages that is of great importance
to linguistic theory, natural language processing applications, and machine translation systems. Neural Machine Translation (NMT)
architectures do not handle these expressions well and previous studies have rarely addressed MWEs in this framework. In this work,
we show that annotation and data augmentation, using external linguistic resources, can improve both translation of MWEs that occur in
the source, and the generation of MWEs on the target, and increase performance by up to 5.09 BLEU points on MWE test sets. We also
devise a MWE score to specifically assess the quality of MWE translation which agrees with human evaluation. We make available the
MWE score implementation – along withMWE-annotated training sets and corpus-based lists of MWEs – for reproduction and extension.
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1. Introduction
Multiword Expressions (MWEs) are a pervasive phe-
nomenon in all natural languages to the point that, accord-
ing to some studies, they represent approximately half of
a language’s lexicon (Jackendoff, 1995). They also chal-
lenge NLP applications because of their often unpredictable
morpho-syntactic and lexico-semantic behaviour (Villavi-
cencio et al., 2005). We call a MWE an expression that
is composed of two or more words working as a unit with
respect to some levels of linguistic analysis (Calzolari et al.,
2002); a MWE displays idiosyncratic properties that cannot
be explained solely on the basis of regular syntactic and
semantic rules (Everaert et al., 2014) and is generally char-
acterised by some degree of conventionality (Baldwin and
Kim, 2010; Constant et al., 2017).
In the last few years, NeuralMachine Translation (NMT) has
proved the best performing framework compared to previ-
ousmethodologies, with neural architectures producing ever
more natural-sounding target language. Even so, NMT out-
put is sometimes a poor translation of the source sentence
(Nguyen and Chiang, 2018) and it is therefore important to
investigate specific linguistic phenomena and improve trans-
lation quality not only in terms of standard measurements.
Previously dominant phrase-based and syntax-based Sta-
tistical Machine Translation (SMT) techniques (Koehn et
al., 2007; Junczys-Dowmunt et al., 2016) naturally take
into account phrasal components, and there has been sig-
nificant research on MWEs in these frameworks; however,
for NMT, due to a lack of phrasal segmentation, it is less
obvious how to address specific language phenomena such
as MWEs. Moreover, while standard metrics are effective
in terms of system comparison, their ability to account for
more fine-grained improvements in MT is less straightfor-
ward (Callison-Burch et al., 2006), and their effectiveness
has been questioned. Therefore, evaluating the performance
of NMT architectures in translatingMWEs remains an open
challenge.
The aim of this study is to empirically verify whether inte-
grating information on MWEs either through targeted train-

ing examples or through explicit annotation in the target
language can help disambiguating between simple phrasal
units and non-compositional expressions, and thus be bene-
ficial to NMT. In our first approach, we try augmenting our
training data with entries from a bilingual and a monolin-
gual MWE dictionary, adding a relatively small number of
instances (10% and 2% of the original data, respectively),
both in isolation and in their sentence context from usage
examples provided. The second approach takes a MWE
annotation tool, and labels MWEs on the source. We ei-
ther concatenate MWE into one word or we use factors to
indicate if they form part of a MWE.
We show that for a test set comprised of genuinely non-
compositional MWEs the NMT output is of extremely low
quality, indicating that thesemodels struggle to handle these
examples, especially in the small training data condition.
We also show that all our methods improve translation in
general and MWE translation in particular. The method of
including MWE in context, with backtranslation to recreate
the source side, does well in the low resource setting, but
given the small number of genuine examples is not scalable.
Our approach of labelling MWEs does however extend to
improving translation in a large resource experiment.
In order to further analyse our results, we propose a novel
evaluation metric (the Score_mwe) that specifically evalu-
ates how well MWEs on the source side are translated. It
needs a test set with human annotated MWEs on the source
and their translation in the reference. It uses the Levenshtein
distance to find the closest matching word in the hypothesis
and rewards partial matches at the character level. We com-
pare our novel metric with manual evaluation and show that
it agrees with human judgments.
In this paper we limit our study to one language pair (from
English to Italian) and to one specific neural architecture,
but our methods can easily be extended to other language
combinations or different NMT frameworks. We also rely
on human curated resources in order to prove their value to
NMT, and in future work we plan to consider automatically
extracted MWE lexicons and unsupervised taggers.
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2. Related work

While most work focussing on MWEs in MT has been
within the context of rule-based and statistical machine
translation systems, there have however been recent papers
addressingMWEs in anNMT framework. Some use general
knowledge about phrasal structures to improve translation,
such as Tang et al. (2016), for example, who improve trans-
lation by symbolically encoding phrasal candidates on the
source side and allowing the decoder to output more than
one word at a time for source phrases. While they focus
on fixed expressions such as named entities, names, places,
numbers etc., in our experiment 6.3.1. we address virtually
all MWE categories.

Few recent studies also proposemethods to integrate explicit
information on MWEs in the context of NMT. For example,
Rikters and Bojar (2017) use parallel MWE candidates on
the source side, automatically extracted from preprocessed
text, and employ them as additional training data (method
1), and extract parallel sentences featuring the MWEs se-
lected in (1) as additional training examples (method 2).
Our first method (Section 6.2.1.) is inspired by their first,
best performing one, but while they use standard toolkits
for MWE extraction, an approach that is affected by the ac-
curacy of the selected tool and by noise of the data, we aim
to minimize false positives by using a manually compiled
bilingual dictionary to select the MWE candidates on the
source side.

Other studies exploit monolingual data to learn a better lan-
guage model and integrate it into the decoder (Gulcehre
et al., 2015). Monolingual data in the target language are
paired with synthetic back-translations on the source side
(Edunov et al., 2018), and this new bi-text is used as addi-
tional training text. This method is effective in improving
translation quality, as described in Sennrich et al. (2016a),
outperforming state-of-the-art results for English-Turkish.
Our second method (6.2.2.) is inspired by these approaches,
which we extend by applying them specifically to MWEs.

Most studies focussing on MWE translation evaluation aim
to evaluate how well the MWEs identified in the source
text are translated into the target language. This involves
(i) identifying the MWEs in the source text, (ii) identify-
ing their translation in the target text, (iii) evaluating the
translation quality based on criteria such as adequacy (full,
partial, etc.) and fluency (fluent, non–native, disfluent, etc.)
(Ramisch et al., 2013). The first two tasks are usually com-
pleted by MWE extraction tools and automatic alignment,
the third is usually carried out via instance-based manual
inspection of the output translation. When not evaluated in
terms of accuracy over a manually compiled gold standard
(Monti et al., 2015), translation quality is evaluated through
standard measures such as word–based BLEU (Papineni et
al., 2002) and METEOR (Denkowski and Lavie, 2014) or
character–based chrF (Popović, 2015), but none of them
specifically addresses the translation of MWEs (although
character–based metrics have similarities to our proposed
Score_mwe measure, as we will discuss in Section 4.2.).

3. Background
3.1. Neural machine translation
The neural machine translation toolkit used in all our ex-
periments, Nematus (Sennrich et al., 2017), implements a
bi-directional encoder-decoder architecture with attention,
similar to the model described by Bahdanau et al. (2015).
The Encoder consists of two single recurrent neural net-
works (RNNs), one encoding the input forward from left to
right, the other backward from right to left, so that all the
context from the input is available at each time step (not
only the preceding words), and the hidden state of a word is
represented by the concatenation of these hidden states.
In the implementation we employ in all our experiments,
training is performed by cross-entropy minimization on the
parallel training corpus with Adam (Kingma and Ba, 2014),
a variant of the stochastic gradient descent algorithm. Pe-
riodic validation is performed on smoothed sentence-level
BLEU (Chen and Cherry, 2014) and early stopping on this
metric is applied for training stabilization.

3.2. Integrating input features: factored NMT
In order to allow to specify for arbitrary linguistic input fea-
tures for each word, in the methods we describe in Sections
6.3.2. and 6.4. we represent the encoder input as a concate-
nation of input features, as originally proposed by Sennrich
and Haddow (2016). The idea is that, for each feature, a
separate embedding vector is created, and all feature vectors
are then concatenated to form a factored representation of
the input word, whose length is equal to the total embedding
size. This is done for an arbitrary number of input features
|F | according to the equation 1

~hj = tanh( ~W (‖|F |k=1EkXjk) +
~U~hj−1) (1)

where ‖ is vector concatenation, Ek is a feature embedding
matrix,Kk is the vocabulary size of input feature k, ~W and
~U are weight matrices.

4. Evaluation methods
4.1. BLEU score
For general translation evaluation we use detokenized, case-
sensitiveBLEUscore (Papineni et al., 2002) as implemented
in the multi-bleu-detok.perl script of the Moses
toolkit (Koehn et al., 2007). The BLEU score measures
the n-gram overlap between the translation hypothesis and
the reference translation and somewhat correlates with hu-
man judgements, however, it has a host of known limita-
tions (Callison-Burch et al., 2006), such as requiring exact
(word-level) matches, and poorly managing word order (and
reorder).

4.2. Score_mwe
Evaluating MWE translation usually means measuring how
well the MWEs featuring the source side are translated into
the target. To do this, we ideally need to identify (the exact
extent of)MWEson the source side and align thembothwith
their reference and their hypothesis translations. In practice,
this can be difficult especially in theNMT framework, where
we cannot faithfully rely on the attention mechanism as a
valid substitute for phrase alignment (Ghader and Monz,
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2017). To overcome these limitations, we devise a metric
which does not need phrase alignment, only requiring a
reference translation of the source MWE, as it works on full
target sentences1. We refer to this metric as Score_mwe.
Our test sets have identified MWEs on the source side (the
scope of the evaluation), and their reference translations
are also identified in the target. We can start by taking
each of the words that comprise the reference translation
of the MWE, and take its closest match in the translated
hypothesis according to a character-based distance metric
to be its actual translation. We use the standard definition
of the Levenshtein distance between two strings a, b (of
length |a| and |b| respectively) as leva,b(|a|, |b|) where

leva,b(i, j) =


max(i, j) if min(i, j) = 0,

min


leva,b(i − 1, j) + 1

leva,b(i, j − 1) + 1

leva,b(i − 1, j − 1) + 1(ai 6=bj)

otherwise.

(2)

where 1(ai 6=bj) is 0 when ai = bj and 1 otherwise, and
leva,b(i, j) is the distance between the first i characters of
a and the first j characters of b. The first element in the
min corresponds to deletion (from a to b), the second to
insertion and the third to match or substitution.
Specifically, for each reference sentence in the test set, we
take a MWE reference translation of length n, comprised of
the words x0, . . . , xn, with word lengths of |x0|, . . . , |xn|.
For each word in the sequence x0, . . . , xn, we find the word
in the translation hypothesis ymin with the lowest Leven-
shtein distance then average this over all the MWEs in the
sentence to get the Score_mwe for that sentence, as described
in Equation 3:

Score_mwe = 1−
∑i=n

i=0 (
levxn,ymin

|xn| )

n
(3)

We calculate the Score_mwe for all the sentences in the
corpus, and divide by the number of sentences, to get the
score for the entire test set. In our implementation, the
distance is capped to be at most equal to |xn| (length of
the reference component), and – being normalised by it –
ranges from a minimum of 0 to a maximum of 1.
From a linguistic viewpoint, we are making a strong as-
sumption that the least distant word ymin corresponds to
the actual translation of the reference component without
looking at its real alignment. While of course this does not
hold for all sentences, we empirically find that this assump-
tion matches up with manual inspection because it is very
unlikely that the items featuring theMWE translation appear
elsewhere in the sentence. For instance, using this measure
on the test_ted and test_mwe reference translations
(described in Section 5.2.) yields an almost perfect score of
99.4% and 99.8%, respectively.
The measure considers character–level matches rather than
full words. This allows the metric to account for partial
matches, which are particularly important when translating
into highly inflected languages like Italian. In fact, a system
may be able to correctly detect and translate a MWE, but
in a different grammatical form or category than it appears

1 However, if alignment is available, it can work directly – with
even more precision – on the aligned items instead of the whole
target sentence.

(Source) he woke up
(Hyp.) si sveglia

(Reference) si è svegliato

character-based
si è svegliato

(2/2 + 0/1 + 7/9)/3 = 0.59

word-based
si è svegliato

(1 + 0 + 0)/3 = 0.33

(Source) I rang up
(Hyp.) ho fatto una telefonata
(Reference) ho telefonato

character-based
ho telefonato

(2/2 + 9/10)/2 = 0.95

word-based
ho telefonato

(1 + 0)/2 = 0.5

Table 1: Difference between character-based and word-
based matching. Green indicates correct matches of the
hypothesis over the reference string (blue); scores are nor-
malized by the length of reference string.

in the reference (which many times may be acceptable),
and this cannot be accounted for by word-level matches.
In Table 1, we report a toy example to explain such intu-
ition: the MWE he woke up is translated by “si è svegliato”
(lit. “himself is woken”) in the reference translation and “si
sveglia” (lit. “himself wakes”) in the hypothesis, which is
correct as for the choice of the lexical item but incorrect
in verb tense. A word-based match would only match the
first element. Similarly, the MWE I rang up (reference:
“ho telefonato” (lit. “(I) have phoned”)) is translated as “ho
fatto una telefonata” (lit. “(I) have made a phone call”),
which is a correct translation and would be over penalized
by a word-based metrics. On the contrary, the Score_mwe
is able to smooth these effects by awarding (higher) partial
credit for the character-based matching strings. Another
advantage of this approach is that, although our metric re-
quires specifically annotated test corpora, it is able to focus
on MWEs while traditional word–based metrics such as the
BLEU score or even character–based methods such as chrF
(Popović, 2015) are far less sensitive to improvements in
MWE translation specifically.

4.3. Human evaluation
Finally, we ask 4 expert human annotators to evaluate the
quality of the translation of 100 MWEs identified in our
test_100 set (described in Section 5.2.), which we com-
pare with the results given by our proposed Score_mwe.
Annotators are provided with the source sentences (with
one identified MWE for each sentence), a reference transla-
tion for each sentence (with the identified translation of the
MWE), and the systems’ output for each sentence.
We ask annotators to focus on the translation of the iden-
tified MWE only and evaluate it for each sentence in each
system on a scale from 1 to 5, considering a) idiomaticity
(whether the idiomatic meaning of the source MWE has
been correctly identified) b) grammaticality, and c) fluency.
Reference translation is given as benchmark, but we ask
annotators to also consider alternative correct translations
as valid. Like each of our selected automatic measures,
we do not distinguish between these linguistic aspects in
a fine-grained manner, and ask annotators to express one
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single score for each sentence for each system. Finally, we
average each system’s sentence scores to get system-level
evaluation.

5. Data description
5.1. Training and development sets
As a baseline for our translation experiments in a low
resource setting (described in Sections 6.2.1.-6.3.2.) we
use the English-Italian parallel corpus released for the
IWSLT Evaluation Campaign 2014, composed of 181,874
translated sentences from the TED conferences transcripts
(train_small) and available from the WIT 3 Web In-
ventory (Cettolo et al., 2014). As a baseline for our last
experiment (Section 6.4.), we combine the above corpus
with the English-Italian section of the Europarl parallel
corpus (2012 v7 release) (Koehn, 2005) which consists of
1,909,115 parallel sentences from the proceedings of the
European parliament (train_big). We use the available
TEDx.dev2014 English–Italian parallel corpus for develop-
ment (dev) (1,056 sentences).

5.2. Test sets
We evaluate our models on three separate test sets. The
first (test_ted) is the annotated corpus made available
by Monti et al. (2015), consisting of 1,529 parallel English-
Italian sentences from TED talks transcripts (but not in-
cluded in our training sets). This corpus is manually an-
notated for MWEs and – to the best of our knowledge –
it represents the most comprehensive MWE-aware bilin-
gual resource for the English-Italian pair. Each manually
annotated MWE on the (English) source side (which can
be of any grammatical type) is aligned with its reference
translation into the target language (Italian) (which we use
in our Score_mwe evaluation metric, Section 4.2.), and the
reference translation may, or may not, be in turn a MWE.
In total, the English side the corpus presents 880 different
MWE types (over a total of 2066 MWE instances), the ma-
jority of which are continuous (91%). MWE length spans
from 2 to 7 words, the majority featuring either 2 or 3 words.
The criteria according to which the test_ted corpus has
been annotated are such that phrases like there are, expect
to or and so are annotated as valid MWEs, but a stricter def-
inition of MWE-hood would classify them as collocations
or frequent compositional combinations of words. Thus, in
order to specifically target idiosyncraticMWEs in our exper-
iments, we construct a second test set (test_mwe), using
the example sentences of a manually compiled bilingual
dictionary, the Il Ragazzini dictionary of English–Italian
(Ragazzini, 2019). The example sentences are complete
sentences that are presented to the reader in order to exem-
plify a lemma, an expression or a specific use of a word. We
collect 3,494 parallel sentences, connected to expressions
that in the dictionary have been marked as MWEs by pro-
fessional lexicographers. Some of these example sentences,
along with the MWE and their translation, are reported in
Table 2.
Finally, we randomly select a subset of these sentences (100
sentences) and annotate them for MWEs (similarly to how
was done in the test_ted corpus by Monti et al. (2015).
Annotation is partially done automatically, by matching the

lexical items in the sentence with the lemmatizedMWE and
its translation as reported in the dictionary, then manually
fine-tuned to correct errors. We call this subset test_100
and use it to evaluate our results with the Score_mwemetric,
which requires identification of the MWE reference trans-
lations, and for human evaluation.

Lemma MWE Example sentence
Translation

short
(come)

short of

the result has come short
of our expectations

il risultato ha deluso
le nostre speranze

sweet sweet spot

they’re struggling to find
the sweet spot in the market

stanno faticando a trovare la
collocazione giusta sul mercato

Table 2: Example sentences from the test_mwe test set,
which has a more rigorous definition of MWE-hood, with
the indication of the lemma and the MWE featuring in them
(as originally reported in the Il Ragazzini dictionary).

5.3. Data preprocessing
We preprocess all datasets by applying language-specific
tokenization and truecasing using the Moses toolkit (Koehn
et al., 2007). In order to limit the size of the training
vocabulary and to achieve open-vocabulary translation, we
use byte-pair encoding (Sennrich et al., 2016b) by jointly
learning and applying BPE on both source and target sides
with 32K merge operations and apply it with vocabulary
threshold = 1 (meaning that when re–applying BPE each
subword must have been seen at least once at training time,
and is otherwise replaced by the UKN symbol).

6. Experiments
In this section we describe four methods to integrate knowl-
edge from existing lexicographic resources into an NMT
framework. We do this in a low-resource setting by aug-
menting our training instances with artificial parallel data,
specifically targeting MWEs in the source (6.2.1.) or in
the target language (6.2.2.), by identifying existing MWEs
on the source side and symbolically encode them as single
tokens (6.3.1.) or through a factored representation, along
with more linguistic information (6.3.2.). Finally, we scale
the last, most flexible method to a high-resource setting
(6.4.).

6.1. Baseline training and settings
We train a translation model from English into Italian us-
ing an encoder–decoder recurrent neural architecture with
attention and gated recurrent units. Since our aim is not that
of achieving state of the art results, but rather improve per-
formance in NMT regardless of the particular experimental
setting, we use a shallow architecture (one bidirectional
layer for the encoder and one single layer for the decoder)
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with the following parameters (which we do not optimize),
following Sennrich and Haddow (2016): embedding layer
size = 512; hidden layer size = 1024; training minibatches
size = 80; beam size = 12; maximum sentence length = 50;
dropout with probability = 0.2. We train for about 1 day
using cross-entropy as our objective loss function, we sort
sentences by length and we shuffle them at each epoch. We
calculate BLEU score every 5,000 iterations and apply early
stop when we see no improvement on the development set
for at least 10 checks.

6.2. Data augmentation
6.2.1. MWE dictionary
In our first method (which we refer to as
MWE_dictionary) we use linguistic knowledge
about MWEs from a traditional lexicographic resource
and augment our training data with additional lemmatized
bi-text from a manually compiled source. This is the
English–Italian section of the Il Ragazzini bilingual
dictionary (Ragazzini, 2019), which we use in its latest
XML-encoded version. In the dictionary, each MWE
receives several translations (often synonyms or near
synonyms, separated by a semicolon), which we preprocess
by splitting them into separate training examples.
In order to get the MWE candidates, we extract all the lem-
mas which contain a whitespace and have therefore been
classified as (idiosyncratic) lexical items with a “word” sta-
tus – because they have their own dictionary entry – but are
composed of two or more words. The majority of these ex-
pressions are verbal, especially verb-particle constructions
(such as stand at, take off etc.), secondarily prepositional
(according to), nominal (Bach flower remedies) and adjec-
tival (au pair) expressions. Notice that we extract lemma-
tized forms and pair themwith their (base form) translations,
which is how they appear in every standard dictionary, such
as, for example, the English base verbal form get into and
its Italian translation in the present infinitive (entrare).
In total, we cover 3560 different MWE types and obtain
18,048 (parallel) MWE tokens after processing, which in-
cludes splitting the several translations connected to a single
MWE into separate instances. We add the so obtained par-
allel entries to the baseline training set for a total of 199,922
sentences (i.e. we augment the baseline training data with
synthetic data by approx. 10%). We learn and apply BPE
jointly in both languages with 32K merge operations, and
train the new model with the hyperparameters described in
Section 6.1.

6.2.2. MWE in context with backtranslation
In this method (MWE_backtrans), we aim to improve
translation by attending to MWEs in context on the target
side. We do so by augmenting the training data with mono-
lingual sentences on the target side that contain at least one
MWE in context for each target instance. The hypothesis
behind this is that, since RNNs are capable of modelling
sequence context, they should be better at discriminating
between MWEs and simple phrases — and therefore ensure
a better translation quality — if exposed to their larger con-
texts. This approach may also result in overgeneration, as it
can pair an idiomatic MWEwith an incorrect literal transla-

tion on the English side; nonetheless, it should provide the
decoder with both correct MWE instances and their con-
texts, which should help the system generate more correct,
naturally sounding language.
Sentences containing MWEs can be extracted from raw
text using standard identification techniques (Rikters and
Skadin, a, 2016), but in order to ensure that our data con-
tain genuine MWE candidates, we extract them from a
monolingual dictionary of Italian lo Zingarelli (Cannella
and Lazzarini (a cura di), 2019), encoded in XML with
a similar mark-up schema as the Il Ragazzini used in
MWE_dictionary. The encoding of the dictionary ex-
plicitly marks phrasal components with the <phr> tag, and
for a selection of them (in particular, for the most idiosyn-
cratic ones) it provides some usage examples (in the form
of complete sentences). We extract these usage example
sentences – which therefore contain at least one MWE –
for a total of 3923 Italian sentences, and pair each with
its approximated back-translation in English, obtained by
re-training a model with the same hyperparameters, setting
and data used as the baseline (6.1.), but in reversed direc-
tion (from Italian to English). We include the so obtained
supplementary data to the original training instances, for a
total of 185,797 (i.e. we augment the training data by 2%).
We jointly learn and apply BPE with 32Kmerge operations,
and train the new model with the same hyperparameters as
in 6.1.

6.3. MWE labelling
In the following methods, we use the identification tool
provided by the annotate_mwe.py module of the mwe-
toolkit (Ramisch et al., 2010) to identify MWEs on the
source side. The method requires a list of MWE candidates
to be specified in their lemmatized form, and uses it to look
at each word’s lemma in the text to tag it as part of a MWE2.
As a source of lemmatized MWE candidates, we ex-
ploit the English section of the Il Ragazzini dictio-
nary of English-Italian, which we already employed for
MWE_dictionary (Section 6.2.1.). There we adopted
a strict definition of MWE-hood and only considered the
<lemma> elements that contained a whitespace; however,
in that method the number ofMWE candidate type was little
more that 3k, while here we aim to expand our candidate list
in order to identify as many MWEs as possible. Thus, we
take a more shallow approach and extend the English MWE
list already used in MWE_dictionary by extracting all
the elements in the dictionary annotated as phrasal units.
These candidates span from a minimum length of 2 words
to a maximum of 13, and can pertain to any grammatical
category.
After constructing the MWE candidate list, we use the Nat-
ural Language Toolkit (NLTK) (Loper and Bird, 2002) to
perform POS tagging over all our source training instances.
POS annotation is then used by the stem.lemmatize()
method in the NLTK module, combined with positional
features, to extract the lemma for each word. Finally, we

2 We are aware that more sophisticated methods for MWE iden-
tification exist but devising more complex methods of MWE
identification would represent a task on its own, falling outside
the scope of the present study.
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feed the lemma and POS information on each lexical item
to the annotate_mwe.py script to identify and annotate
MWEs on the source text.
The method returns a factored representation of the text in
Moses style (where each word is represented as a chain of
features separated by the pipe symbol |), and words making
up the identified MWEs (as well at its lemma) are joint with
an underscore. For example, a sentence such as

(1) the men were angry and walked off

would receive the following annotation:

(2) the|the|DT men|man|NN were|be|VB
angry|angry|JJ and|and|CONG

walked_off|walk_off|VB

where the first factor indicates the surface form, the second
the lemma (which can be aMWE lemma as inwalk_off ), and
the third the part-of-speech. For the sake of our translation
experiments, we use such information and encode it in two
different ways, which we refer to as “word-with-spaces” and
a “IOB encoding”, respectively.

6.3.1. Word–with–spaces approach
In a first setting, which we use for
MWE_wordwithspaces, we take a “word with
spaces” approach and simply encode each MWE as a single
word, by keeping the original underscore given by the
annotation tool whenever a MWE has been identified, and
discard all remaining linguistic information. In this setting,
sentence (1) would thus be represented as

(3) the men were angry and walked_off

The intuition behind this is that, like subword units, named
entities, semantic roles etc., MWEs represent a single unit
“spread out” onto several symbols, and therefore encoding
them as a single token may be beneficial to their interpreta-
tion.
Like in the other methods, we use BPE to achieve open
vocabulary translation. When learning BPE, we do not
consider the underscore as a word separator and instead we
let the BPE algorithm treat it as a valid character. This has
the nice side effect of allowing the algorithm to automati-
cally learn regularities over MWEs too across our dataset.
For example, if we examine the vocabulary file produced
by the BPE learning script, we notice that, for instance,
out</w>, out@@ and out_@@ are encoded as different
tokens3, meaning that, when applying BPE at test time, the
system will know that they represent three different lexical
items (and only the latter is part of a MWE), providing a
simple but effective disambiguation method for these other-
wise indistinguishable components. Moreover, the fact of
encoding out_ as a separate token can potentially allow the
system to generalize on different MWEs not seen at training
time, considering them MWEs if correctly annotated at test
time. However, as a drawback, this simple method does not
allow to encode discontinuous MWEs.

3 where </w> and @@ indicate word and subword boundaries,
respectively

We apply the annotation on the train_small dataset,
learn and apply BPE jointly in both languages with 32K
merge operations and train the new model with the same
hyperparameters as the baseline (6.1.).

6.3.2. IOB encoding
In a second setting (MWE_iob_small), we construct in-
put features and annotate them in Moses factored format,
as required by our chosen toolkit Nematus. We consider
three features: the surface form of a word (factor 1), the
lemma (factor 2) and whether the string in factor 1 is at
the beginning, inside or outside a MWE. Firstly, we dis-
card the POS information from the initial annotation. We
keep factor 2 as returned by the annotation method, which
then reports the word-level or the MWE-level lemma (with
underscores). Secondly, we split the surface MWE forms
into their single-word components, and apply BPE on the
single-word corpus. For each resulting word or subword
unit, we indicate whether it is at the beginning (B), inside
(I) or outside (O) a MWE in field 3, and copy the word’s
feature value in factor 2 to all its smaller units. Assuming
walked were a rare word, sentence (1) would receive the
following annotation4:

(4) the|the|O men|man|O were|be|O
angry|angry|O and|and|O

walk@@|walk_off|B ed|walk_off|B
off|walk_off|I

Unlike the word-with-spaces approach in
MWE_wordwithspaces, which only applies to
continuous MWEs, this strategy may also apply to discon-
tinuous configurations (which, however, we do not consider
in the present study because of the lack of an appropriate
identification technique, but represents a natural extension
of our work, see Section 8.).
Following recommendations in Sennrich and Haddow
(2016), we want to make sure that the improvements over
the baseline are not due to an increase in the number of
model parameters. Therefore, we make sure that the sum of
the sizes of the embedding layers for each factor equals the
size of the embedding layer as in the baseline (512). We set
embedding size to 300, 202 and 10 for factors 1, 2 and 3,
respectively (roughly balancing the sizes of the respective
vocabulary, but without optimizing for this parameter). We
adjust the training script as to specify the number of factors
(3) and one vocabulary file for each of them (plus the target
vocabulary). All other parameters are as in Section 6.1.

6.4. Factored NMT at scale
Finally, we aim to improve the translation of MWEs, and
the general translation quality, in a high-resource setting
by scaling the method used in MWE_iob_small (6.3.2.)
to a much bigger training set. The reasons why we
choose to scale this particular method and not the best
scoring method described above (which would have been

4 Notice that under this setting factor 3 is constrained in that B
may not be followed by O, I may be followed by either I O or
B (indicating consecutive MWEs); notice that more subsequent
B’s are possible as they may indicate multiple subwords units of
the first word of a MWE.
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MWE_backtrans) are multiple. Firstly, the method used
in MWE_backtrans is necessarily dependent on the train-
ing size, because data augmentation is likely to have an in-
significant effect if it is only by a very small percentage; on
the contrary, we aim to propose a method that is easily scal-
able to any size of the dataset, considering that NMT has
proven to reach great improvement with increased training
size. Secondly, the method used in MWE_iob_small is
the most flexible of all other methods because it can po-
tentially account for discontinuous MWEs. Thirdly, while
we use a naive MWE identification technique, this method
has a potential for improvement if more fine-grained iden-
tification methods are applied to the preprocessing of the
data.
As a baseline for this method, which we refer to as Baseline
(big), we learn BPE and train a model with the same hy-
perparameters as in 6.1. on the much bigger, 2M sentence
dataset train_big, described in detail in Section 5.1. We
then apply the processing steps explained in Section 6.3.2.
(factored MWE representation with IOB notation) to this
dataset, learn and apply BPE and train the model again with
the same parameters. We call the system MWE_iob_big.

7. Results and discussion
In Table 3, we report the results obtained by our systems ac-
cording to detokenised case-sensitive BLEU score (BLEU),
Score_mwe (S_mwe) and human evaluation (Hum) on the
different test sets. As explained in Section 4., Score_mwe
and human evaluation on test_mwe are calculated on the
annotated subset identified as test_100.

Dataset test_ted test_mwe

BLEU S_mwe BLEU S_mwe
(t_100)

Hum
(t_100)

B.line small 21.34 6.42 3.53 1.3 0.1
Dictionary 22.37 6.48 6.64 2.83 0.62
Backtrans. 22.61 6.5 8.62 3.88 1.20
Wordwithsp. 22.25 6.44 8.62 3.8 1.26
IOB_small 22.58 6.43 5.46 3.31 0.76
B.line big 26.36 6.38 13.01 4.39 2.08
IOB_big 26.78 6.88 14.44 5.89 3.24

Table 3: Experiment results. The best results on each test
set for each setting (high and low resource) are boldfaced.

All proposed methods outperform their baseline, with
MWE_backtrans scoring best on every test set according
to all metrics in a low resource setting. The improvement on
BLEU score generally indicates that, under a low resource
setting (small), our methods can make the overall quality
of automatic translation better (by approx. 1 point in gen-
eral language, and up to 5 points on the MWE targeted test
set). In fact, while the improvement on the general lan-
guage test_ted is not marked, we observe a substantial
improvement in both BLEU and Score_mwe in translating
the test_mwe. The extremely low figures for the base-
line model on this dataset (which are hardly better than
random translation) indicate that it is particularly hard for
the NMT system to translate idiosyncratic, genuinely non-
compositionalMWEs like the ones included in test_mwe,

especially when the system is not trained with in–domain
text similar to that of the test set.
As for the higher resource setting (big), as expected, the
baseline (big) model outperforms all models trained on the
small dataset. MWE_iob_big, in turn, improves the base-
line by 0.42 and 1.13 BLEU points on the test_ted and
the test_mwe datasets, respectively, indicating that the
proposed method is beneficial both on general and MWE
translation. This is confirmed by the improvements in the
Score_mwe measure by 0.05 and 0.15 respectively.
The human annotation confirms such improvements over the
small and big baselines, which are evenmoremarked than in
automatic measures. The (Pearson) correlation between the
average system scores of the individual human annotators
was found to be high (between 0.95 and 0.99) as was the
correlation between the average of all human scores and
Score_mwe on test_100 (0.95), as displayed in Figure 1.

Figure 1: Human evaluation (y) and Score_mwe (x) results
on the different translation systems.
Human evaluation and the Score_mwe generally agree in
ranking the systems except for the best performing one in
the low resource setting, where MWE_wordwithspaces
scored best according to the annotators while automatic
metrics favoured MWE_backtrans. However, the differ-
ence between the two systems on all test sets are really not
marked. We believe that the general agreement between
the Score_mwe metric and the human evaluation in mea-
suring the improvement of the systems over the baseline
(and between each other) indicates both that our methods
are specifically addressing MWEs, and that the Score_mwe
is good at capturing how well a system is translating MWEs
specifically.
In order to further verify that the improvements achieved
involve genuinely idiosyncratic expressions (and does not
pertain to general translation improvement only), we
carry out manual inspection of several instances of the
MWE_iob_big output. In Table 4, we report some trans-
lation examples which we compare both with the baseline
and with MWE_backtrans.
In some instances (Example 1), where MWE_iob_big pro-
duces a correct translation, MWE_backtransmay capture
the overall meaning of theMWEbut produce partially incor-
rect, literal translations (“costo di” instead of “costo della”,
missing the idiosyncratic combined article “la”), and also
produces a wrong agreement between the subject and the
past participle “cresciuta” (with feminine -a instead of mas-
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Example 1 Text
Source
(test_mwe) the cost of living has scaled up again

Backtrans E il costo di vita è cresciuta qui
Baseline (big) il costo della vita è diminuito di nuovo la mia
IOB_big il costo della vita è diventato sempre più alto
Example 2 Text
Source
(test_mwe) I have to account for every penny I spend

Backtrans devo discutere con tutti i miei piedi
Baseline (big) devo tenere conto di ogni centesimo ...
IOB_big devo rendere conto di ogni centesimo ...

Table 4: Manual inspection of example translations
for MWE_iob_big, compared to Baseline (big) and
MWE_backtrans. In blue, the original sourceMWE. Un-
derlined is MWE translation. in green correct translations,
in red incorrect translations.

culine -o). On the other hand, the baseline mistranslates
scaled up with “diminuito” (lit. lowered), producing al-
most the opposite meaning. As exemplified in Example 2,
MWE_iob_big is generally good at identifying MWEs on
the source side and produces natural sounding expressions
on the target side, such as “rendere conto di”, which is in
turn a MWE in Italian.

8. Conclusions and further work
In this work, we argued that MWEs are a relevant phe-
nomenon in natural languages and that neural machine
translation systems do not generally handle them well. We
showed that explicitly addressingMWEs can improve trans-
lation quality, and presented several methods to integrate
such information and evaluate results, according to differ-
ent resource availability (both in a low-resource and in a
high-resource setting). The datasets we exploited are not
freely available, neither for Italian nor other languages, and
we take it as future work to extend this with automatically
detected MWEs through open–source toolkits. We evalu-
ated our findingswith standardmeasures and through human
judgments. We devised a specific score to assess the quality
of MWE translation (Score_mwe) which, unlike previous
metrics, does not require phrase alignment, and which cor-
relates with human judgments. Along with the code used
in all the stages of the work, we also make available our
training sets annotated for MWEs, as well as corpus-based
lists of MWEs, for reproduction and extension studies5.
In terms of our findings, we have shown that, in a low-
resource setting, augmenting the training data with MWE-
targeted monolingual text, as in the MWE_backtrans
method, by as little as 2% proved beneficial both in terms
of general translation quality and MWE translation quality
specifically. This is congruent with the the fact that NMT
architectures perform better when exposed to a larger lin-
guistic context – which they can model well – and MWEs
make no exception in this respect. In our experiments we
relied on a monolingual dictionary as a source of text: a

5 Available at github.com/azaninello/MWE_NMT

natural extension of this method will be using identification
techniques on the target language to extract more monolin-
gual data from raw text, and augment the training data with
that.
If monolingual data are not available, using syn-
thetic lemmatized MWE source-target pairs, as in the
MWE_dictionary method, proved less effective than
identifying MWEs only on the source side, and in some
cases hurt translation by producing ungrammatical forms.
Thus, if only lemmatized lists are available, it is ad-
visable to only exploit one side of the (lemmatized) bi-
text to train a simple identification method and annotate
MWEs on the source. When doing so in a low-resource
setting, annotating MWEs as single tokens, as in the
MWE_wordwithspaces approach, ensures better results
than the IOB tagging methods like the one leveraged in
MWE_iob_small.
However, a word-with-spaces approach is limited to contin-
uous MWEs, which do not cover the whole spectrum of the
phenomenon, and is less likely to scale on a high-resource
setting. In the MWE_iob_big method, we devised a flexi-
ble method for annotating MWEs on the source side, which
consistently improved general and MWE translation qual-
ity and markedly outperformed its baseline according to all
metrics. A natural extension of this method will be using a
more sophisticated MWE identification method to also in-
clude discontinuous MWEs or MWEs appearing in marked
configurations (such as topicalized or passive forms).
In conclusion, we believe that efforts should be made in the
direction of improving the existingMWE identification sys-
tems. Recent approaches have experimented on developing
MWE identification methods using neural networks (Ghar-
bieh et al., 2017) (Klyueva et al., 2017), which however
are supervised and thus heavily rely on the availability of
annotated resources. In the future, it may be interesting to
verify whether it is possible to automatically induce MWE
identification with neural networks in an unsupervised fash-
ion, for example modelling the internal compositionality of
an expression by embedding it as a whole, and compare
its vector representation with that of its single components.
If such techniques prove successful, it may be possible to
integrate them into a neural machine translation architec-
ture, for instance by making MWE identification part of the
training objective.
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