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Abstract
Automatic speech processing applications often have to deal with the problem of aggregating local descriptors (i.e., representations
of input speech data corresponding to specific portions across the time dimension) and turning them into a single fixed-dimension
representation, known as global descriptor, on top of which downstream classification tasks can be performed. In this paper, we provide
an empirical assessment of different time pooling strategies when used with state-of-the-art representation learning models. In particular,
insights are provided as to when it is suitable to use simple statistics of local descriptors or when more sophisticated approaches are
needed. Here, language identification is used as a case study and a database containing ten oriental languages under varying test
conditions (short-duration test recordings, confusing languages, unseen languages) is used. Experiments are performed with classifiers
trained on top of global descriptors to provide insights on open-set evaluation performance and show that appropriate selection of such
pooling strategies yield embeddings able to outperform well-known benchmark systems as well as previously results based on attention
only.
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Figure 1: Mapping an input signal to a low-dimensional
space. Pooling across the time dimension combines a set of
local descriptors into a single global descriptor vector.

1. Introduction
Language identification (LID) from speech corresponds to
the task of identifying the spoken language from a given
speech example under the assumption that a single lan-
guage is present. LID is commonly tackled using similar
approaches as those employed for e.g., speaker verifica-
tion/recognition. Representative examples include the use
of low-dimensional language-dependent i-vectors (Dehak
et al., 2011b), which are similar to speaker-dependent i-
vectors used in speaker recognition (Dehak et al., 2011a).
These are obtained by first computing a generative model
of frame-level features, i.e., a universal background model
(UBM), followed by factor analysis performed on top of
statistics of latent variables in order to obtain a fixed-
dimension representation that is independent of the input
speech duration. Downstream tasks can then rely on these
representations rather than general-purpose features.
In recent years, following the success of deep learning,
generative modeling (Goodfellow et al., 2014) and deep
neural networks have become a popular alternative to i-

vectors. Commonly, such methods are employed to ei-
ther map features obtained from speech recordings directly
to low-dimensional representations (Zhong et al., 2017) or
to perform recognition in an end-to-end fashion (Rohdin
et al., 2017; Snyder et al., 2016), thus bypassing a sec-
ond classification stage. Representative examples include
the use of so-called x-vectors in speaker recognition (Sny-
der et al., 2017). In this case, feed-forward neural net-
works operating both at frame- and utterance-levels, per-
form statistical pooling of frame-level outputs so as to com-
pute low-dimensional embeddings from utterances of vary-
ing lengths. Model training in this case is performed as a
multi-class classification task over a closed-set of speakers;
scoring, in turn, is performed using probabilistic linear dis-
criminant analysis (PLDA) (Prince and Elder, 2007) using
the output of an inner layer as low-dimensional embedding.
More recently, other strategies based on artificial neural
networks have also been applied directly to learn speaker-
dependent representations using speaker recognition as a
training task. In this case, convolutional neural networks
have been proposed (Bhattacharya et al., 2017; Chung
et al., 2018), relying on 2-dimensional convolutions over
time-frequency speech representations. Specifically for
LID, approaches introduced in (Cai et al., 2018a) and (Cai
et al., 2018b) employ residual architectures and different
strategies for training, such as center-loss minimization
(Wen et al., 2016) and angular softmax (Liu et al., 2017),
both inspired by applications in face recognition.
Figure 1 illustrates the generic framework used when ap-
plying neural networks for language-dependent represen-
tation learning. After feature extraction, a representation
model maps these input features to a set of vectors which
will be referred to as local descriptors. A global descriptor
is lastly obtained by means of a temporal pooling strategy.
In this work, we focus on extending our previous findings
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Figure 2: Block diagram: from input features to local descriptors.

(Monteiro et al., 2019) by assessing the performance on
LID tasks of different strategies employed to perform pool-
ing across the time dimension, as represented by the red box
in Figure 1. We thus evaluate three such pooling methods
ranging from the simple use of a linear projection of first-
and second-order statistics to more complex learning-based
approaches. Evaluation is carried out under different scor-
ing strategies and varying conditions, such as using only
short-duration recordings, evaluating trials corresponding
to confusing languages, and including test recordings from
languages not represented within training data.
The remainder of this paper is organized as follows: in Sec-
tion 2 we provide a description of the modeling strategies
employed. The experimental setup is presented along with
results and discussion in Section 3, while conclusions are
finally drawn in Section 4.

2. System description
2.1. Mapping speech into local descriptors
A block diagram describing the first part of our model, con-
sisting of a mapping from features to local descriptors, is
shown in Figure 2. The considered features were 13 Mel-
frequency cepstral coefficients (MFCC), which are initially
input into a convolutional layer consisting of 16 filters with
dimension [13, 3], thus shrinking the MFFCs dimension to
1. Following that, a temporal convolutional neural net-
work is employed. We used the standard ResNet-50 and
apply convolutions across the time dimension only. The
convolutional stack’s output is a set of N local descriptors
Vi ∈ RK , where K is the number of filters in the last con-
volutional layer, set to 512 in our case. N is a function of
the input length T .

2.2. Temporal pooling strategies
Once local descriptors are obtained, the following step con-
sists of pooling them into a single global descriptor V .
Next, we describe the three temporal pooling strategies
evaluated herein:

1. Statistics pooling: Given a set of local descriptors Vi ∈
RK , i ∈ {1, 2, ..., N}, the global descriptor V will be
given by a linear projection of concatenated element-
wise estimates of first- and second-order statistics of
Vi:

V =W [µ(Vi) ∧ σ(Vi)], (1)

where the linear transformation W has its entries
learned jointly with the complete model. An illustra-
tion of the statistics pooling method is presented in
Figure 4-(a). The projection W yields a final dimen-
sion of 128 on V .

2. Attentive pooling: We employ an attention scheme
usually referred to as self-attention in order to weigh
local descriptors in a data-dependent fashion prior to
computing statistics, as indicated by the red block in
Figure 4-(b). A linear transformation A, shared across
time-steps i, is applied to each local descriptor Vi, re-
sulting in the set of scalars a1:N :

ai = tanh (AVi). (2)

A set of normalized weights summing up to 1 is then
obtained through the softmax operator:

wi =
eai∑N
i=1 e

ai

, (3)

and the global descriptor V is given by the projection
of concatenated statistics of weighted local descrip-
tors:

V =W [µ(wiVi) ∧ σ(wiVi)]. (4)
The entries of A are learned along with the complete
model. An illustration of the attentive pooling method
is presented in Figure 4-(b).

3. Recurrent attentive pooling: The most complex pool-
ing strategy considered herein consists in adding a re-
current block to the self-attention scheme described
above. The recurrent model is implemented as a two-
layered bi-directional LSTM (Hochreiter and Schmid-
huber, 1997) with hidden layer set to a size of 256.
The LSTM is used to: (i) summarize the set Vi into a
pooled descriptor given by the hidden layer at the last
time-stepH , and (ii) map the sequence Vi into another
sequence Ui, which provides an extra time modelling
mechanism. The self-attention previously described is
employed on top of Ui, and V is thus given by:

V =W [µ(wiUi) ∧ σ(wiUi) ∧H]. (5)

Note that in this setting the same attentive strategy is
performed on top of the sequence Ui output by the re-
current model. During the projection of statistics of
weighted descriptors, H is further concatenated. An
illustration of the recurrent attentive pooling method
is presented in Figure 4-(c).
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Figure 3: End-to-end scoring: the logit Si corresponding to the claimed language i is returned as a verification score.

2.3. Training
Training is performed under the multi-class classifica-
tion setting through minimization of the multi-class cross-
entropy loss measured with an extra softmax output layer
obtained through an affine projection of V . Additionally,
discriminability of global descriptors V with respect to spo-
ken language is further enforced through the minimization
of the triplet loss T given by:

T = softplus(d+ − d−), (6)

where d+ and d− correspond to the difference to 1 of the
cosine similarity measures between pairs of global descrip-
tors obtained from recordings of the same, and from differ-
ent languages, respectively. The softplus operator is such
that:

softplus(x) = log(1 + ex), x ∈ R. (7)

RMSProp (Tieleman and Hinton, 2012) is employed for up-
dating model’s parameters. Its smoothing constant is set
at 0.99, while the global learning rate starts at 0.001 and
is halved once the classification error rate, measured on a
validation set held out of training, plateaus for 30 epochs.
Minibatches of size 64 are constructed such that two ran-
dom recordings of each language are sampled sequentially
to form positive pairs, and a random recording from a dif-
ferent language is selected to compose the negative pair.
One epoch is considered finished when each language is
selected 1000 times to compose positive pairs. A budget of
500 epochs is used for each training run.
Recordings are further processed during training such that,
for recordings longer than 6 seconds, a random continuous
segment of 6 seconds duration is selected. Short-duration
training recordings are elongated with initial frames so as to
make them reach a minimum of 6 seconds duration, which
is done by simply taking a random chunk of all examples
across the minibatch. To further increase the diversity on
training samples, each minibatch has its length randomly
selected to lie between 3-6 seconds before feeding it to the
neural network. At test time, recordings are processed as
is, without any modification to their length1.

1Code is available at: https://github.com/
joaomonteirof/e2e_LID

Table 1: Dataset details for all languages.

Train Evaluation
Language #Speakers Utt./Speaker #Speakers Utt./Speaker
Cantonese 24 320 6 300
Mandarim 24 300 6 300
Indonesian 24 320 6 300
Japanese 24 320 6 300
Russian 24 300 6 300
Korean 24 300 6 300

Vietnamese 24 300 6 300
Kazakh 86 50 86 20
Tibetan 34 330 34 50
Uyghur 353 20 353 5

3. Experiments
3.1. Data description
Experiments are performed on the dataset introduced for
the AP18-OLR Challenge (Tang et al., 2018), consisting of
recordings from 10 oriental languages. Train, development
and evaluation data partitions were made available. We fur-
ther introduce multi-condition training data by augment-
ing the original train partition with supplementary noisy
speech, created by corrupting original recordings adding
reverberation (reverberation time varies from 0.25s - 0.75s)
and background noise such as music (signal-to-noise ratio,
SNR, within 5-15dB), and babble (SNR within 10-20dB).
Noise signals were taken from the MUSAN corpus (Snyder
et al., 2015) and the room impulse responses used to simu-
late reverberation effects were the same as those introduced
in (Ko et al., 2017). Further details regarding the employed
data are shown in Table 1.
Three evaluation conditions are considered, namely:

1. Short-duration: Only test recordings with less than
one second are evaluated.

2. Confusing languages: Claimed languages and test
recordings correspond to languages known to be con-
fusing: Cantonese, Korean, and Mandarin.

3. Unseen languages: Test recordings from languages
other than the ones represented within train data are
included.

A total of 214560, 22071, and 404160 trials were made
available for each of the evaluation conditions. By trial we
mean a pair claimed language/test recording, and the test
recording might or might not correspond to the claimed

https://github.com/joaomonteirof/e2e_LID
https://github.com/joaomonteirof/e2e_LID
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Figure 4: Different pooling strategies considered.

language, in which case trials are labeled target or non-
target, respectively. For the case of trials corresponding
to the third evaluation condition, non-target trials trials are
added in which case claimed languages are one of the 10
in Table 1 while the test recording correspond to an out-of-
distribution language, never presented to the model at train
time, and even so, models should be able to correctly clas-
sify such a trial as non-target.

3.2. Evaluation
Two metrics are employed for assessing performance of
studied models: the equal error rate (EER) and average cost
performance (Cavg). EER consists of the value of the false
acceptance rate at the threshold in which it matches the
false rejection rate, while Cavg averages the missing and
false alarm probabilities for each possible target/non-target
pair of languages. More details about both metrics can be
found in (Tang et al., 2018). We remark all reported results
in terms of both EER and Cavg were computed with the
official scripts released for the AP18-OLR challenge.
We start our evaluation by comparing performances of the
described models under an end-to-end scoring strategy. We
do so by simply using the output of the softmax layer cor-
responding to the claimed identity as a score for a given
trial, i.e. the softmax output corresponding to how likely
it is that a given recording belongs to a particular class is
directly used as a score indicating how likely a match be-
tween the test recording and the claimed language is. Such
score scheme is depicted in Figure 3. For performance

baseline, an extra model is evaluated corresponding to a
6-layered convolutional neural network followed by a 2-
layered bi-directional LSTM. Training in the case of the
baseline model is performed with the same approach as de-
scribed previously. By inspecting results reported in Table
2 for the short-duration case (Eval. 1), one can notice that
simple statistics pooling yields better identification perfor-
mance when compared to more complex methods which
rely on longer term dependencies. Statistics pooling and the
recurrent attentive setting present approximately the same
performance on the other evaluation conditions.
Next, we evaluate our models using scoring strategies
which would be valid in an open-set condition, i.e. if at
test time recordings from languages not presented to the
model during training were observed. We thus employ the
cosine similarity as well as PLDA to score trials consider-
ing as enrollment language models the average of global
descriptors V obtained over all test recordings of a given
language. Well-known i-vectors are included as a bench-
mark and are obtained by computing a 512-Gaussians full
covariance UBM on the training partition using the same
MFCC features as our models. Total variability analysis is
performed on top of UBM’s Baum-Welch statistics in order
to obtain a 400-dimensional i-vector extractor.
The first conclusion one can draw from results reported
in Table 3 is that the proposed method is always able to
outperform i-vectors by a large difference in both scoring
strategies considered. Moreover, for the case of cosine
scoring the recurrent attentive pooling attains the best per-
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Table 2: End-to-end evaluation.

Eval. 1 Eval. 2 Eval. 3
EER (%) Cavg EER (%) Cavg EER (%) Cavg

Conv-LSTM 24.00 0.2321 7.54 0.0738 7.57 0.0491
Statistics 10.85 0.1122 3.63 0.0358 4.23 0.0200

Attenntion 12.62 0.1246 6.80 0.0669 5.65 0.0315
LSTM+Att. 13.11 0.1285 3.41 0.0335 4.25 0.0222

Table 3: Cosine similarity and PLDA evaluation.

Eval. 1 Eval. 2 Eval. 3
EER (%) Cavg EER (%) Cavg EER (%) Cavg

Cosine

i-vector 18.02 0.1780 10.71 0.1069 7.77 0.0577
Statistics 14.52 0.1418 11.40 0.1071 5.25 0.0405
Attention 14.63 0.1432 9.81 0.0967 6.44 0.0463

LSTM+Att. 12.43 0.1216 3.89 0.0378 4.51 0.0284

PLDA

i-vector 17.50 0.1743 10.66 0.1059 7.51 0.0524
Statistics 11.22 0.1104 4.15 0.0419 4.15 0.0226
Attention 13.48 0.1328 8.28 0.0810 5.97 0.0369

LSTM+Att. 15.36 0.1455 3.37 0.0334 6.93 0.0268

formance among compared approaches. For PLDA, on the
other hand, that is only the case for the evaluation with
confusing languages (Eval. 2). Moreover, by comparing
results across Tables 2 and 3, we observe that end-to-end
evaluation of the statistics pooling approach performs bet-
ter (Eval. 1 and 2) or matches (Eval. 3) the performance ob-
tained when scoring with PLDA. For the recurrent attentive
pooling, in turn, cosine similarity and PLDA yield the best
results. End-to-end scoring attains the lowest EER across
all compared scoring methods when non-target unseen lan-
guages are included (Eval. 3). Self-attentive pooling, on the
other hand, achieves its better performance with end-to-end
scoring in all evaluation conditions.

Additionally, we evaluate the effect of pretraining the con-
volutional layers while using the simplest pooling strategy,
and later fine-tuning a more complex temporal pooling by
initializing the convolutional blocks with the weights and
biases provided by the previously trained model and re-
training utilizing the same train data. This is done with the
goal of giving focus during the second training phase to pa-
rameters related to the pooling modules since convolution
weights are initialized in a well-performing setting. Such
results are reported in Table 4 in which the performance for
each of the three evaluation conditions are compared with
all of the scoring strategies considered.

In most observed cases, pretraining with a simple pool-
ing strategy is observed to boost performance when com-
pared to completely training the convolutional blocks and
the pooling part altogether from scratch. The performance
improvement is particularly observed in the case of end-to-
end evaluation. Overall, when comparing results across Ta-
bles 2- 4, we observe that simple statistics pooling to be the
best performing model for short-duration recordings, while
in the case of confusing languages and trials containing test
recordings from unseen languages, the recurrent attentive
pooling was the one to achieve the lowest EER after fine-
tuning a model pretrained with statistics pooling. In the

case of cosine and PLDA scoring, pretraining does not al-
ways help improving performance. In fact, for such cases
the fine tuning is observed to actually degrade the EER of
previously trained models.

Finally, we present in Table 5 the identification perfor-
mance of our best systems, i.e. those pre-trained with
simple pooling strategies and then retrained after adding a
complex pooling scheme, alongside baselines systems for
a clear side-by-side comparison with other well-known ap-
proaches with different backends (or no backend at all for
the end-to-end cases).

The baseline systems correspond to the i-vector setting dis-
cussed in Table 3, evaluated with both cosine similarity and
PLDA, as well as the convolutional/recurrent end-to-end
approach used as a reference in Table 2, but this time co-
sine and PLDA evaluation is further reported for those sys-
tems. We additionally include what we refer to as Tandem,
consisting of principal components of Baum-Welch statis-
tics obtained from a GMM-UBM trained on top of tandem
features, in a similar setting to that described in (Alam et
al., 2016). In our case, however, we train the UBM with
MFCCs augmented with the phonetic posterior distribution
output by an acoustic model trained in advance. The acous-
tic model was implemented as a neural network trained on
the THCHS30 corpus, an open Chinese speech database
(Dong Wang, 2015).

Results corroborate our previous findings in that our pro-
posed systems outperform the baselines by a significant dif-
ference in all considered conditions. We remark that the
additional phonetic information appears to be helpful in the
short-duration case since the system based on tandem fea-
tures outperformed i-vectors in that evaluation, which indi-
cates such space might useful for training systems such as
the ones proposed herein. We intend to investigate that in
future work.
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Table 4: Effect of pretraining (labeled as “Pre” in the table) on system performance.

Eval. 1 Eval. 2 Eval. 3
EER (%) Cavg EER (%) Cavg EER (%) Cavg

End-to-end

Attention 12.62 0.1246 6.80 0.0669 5.65 0.0315
Pre+Attention 10.97 0.1108 4.34 0.0427 4.58 0.0226
LSTM+Att. 13.11 0.1285 3.41 0.0335 4.25 0.0222

Pre+LSTM+Att. 11.76 0.1149 3.34 0.032 4.00 0.0206

Cosine

Attention 14.63 0.1432 9.81 0.0967 6.44 0.0463
Pre+Attention 14.64 0.1418 11.70 0.1105 5.78 0.0451
LSTM+Att. 12.43 0.1216 3.89 0.0378 4.51 0.0284

Pre+LSTM+Att. 14.83 0.1376 4.68 0.0422 4.88 0.0334

PLDA

Attention 13.48 0.1328 8.28 0.0810 5.97 0.0369
Pre+Attention 17.63 0.1687 20.80 0.1976 20.61 0.0993
LSTM+Att. 15.36 0.1455 3.37 0.0334 6.93 0.0268

Pre+LSTM+Att. 12.99 0.126 3.95 0.0392 4.37 0.0240

Table 5: Performance comparison of proposed system (last six rows) and benchmarks based on equal error rate (%) and
average cost performance (Cavg).

Eval. 1 Eval. 2 Eval. 3
EER (%) Cavg EER (%) Cavg EER (%) Cavg

Benchmarks

i-vector+Cosine 18.02 0.1780 10.71 0.1069 7.77 0.0577
i-vector+PLDA 17.50 0.1743 10.66 0.1059 7.51 0.0524
Tandem+Cosine 15.73 0.1502 13.81 0.1387 8.98 0.0683
Tandem+PLDA 15.30 0.1461 13.33 0.1324 8.37 0.0596

Conv-LSTM+Cosine 20.10 0.1978 9.11 0.0840 7.78 0.0537
Conv-LSTM+PLDA 19.14 0.1896 8.78 0.0819 7.49 0.0490

Conv-LSTM 24.00 0.2321 7.54 0.0738 7.57 0.0491

Proposed - Cosine Statistics 14.52 0.1418 11.40 0.1071 5.25 0.0405
Pre+Attention 14.64 0.1418 11.70 0.1105 5.78 0.0451

Pre+LSTM+Att. 14.83 0.1376 4.68 0.0422 4.88 0.0334

Proposed - PLDA Statistics 11.22 0.1104 4.15 0.0419 4.15 0.0226
Pre+Attention 17.63 0.1687 20.80 0.1976 20.61 0.0993

Pre+LSTM+Att. 12.99 0.126 3.95 0.0392 4.37 0.0240

Proposed - End-to-End Statistics 10.85 0.1122 3.63 0.0358 4.23 0.0200
Pre+Attention 10.97 0.1108 4.34 0.0427 4.58 0.0226

Pre+LSTM+Att. 11.76 0.1149 3.34 0.0320 4.00 0.0206

4. Conclusion

In this work we tackled the problem of language identi-
fication from speech. Under this setting, most of the ap-
proaches based on artificial neural networks can be de-
scribed with two main components: (i) a representation
model which is intended to map speech features into lo-
cal descriptors, i.e. vectors representing parts of the input
signal across the time dimension, and (ii) a temporal pool-
ing strategy aimed at combining such local descriptors into
a single representation vector. We are particularly inter-
ested in evaluating and comparing the identification perfor-
mance of pooling strategies stacked over a sequence of 1-
dimensional convolutional layers across time. Experiments
are carried out using the data provided for the AP18-OLR
challenge which contains recordings from 10 oriental lan-
guages, and further provides 3 challenging evaluation con-
ditions.
Given that our considered models are able to outperform
well-known benchmark systems, we narrow our attention
to empirically evaluating differences in identification per-

formance given varying evaluation conditions as well as
scoring strategies. Our main conclusion is that the most
suitable pooling strategy depends on the evaluation setting,
as simple statistical pooling yielded the best performance
when short-duration test utterances are used at test time,
while more sophisticated strategies such as the recurrent
attentive scheme yielded the best performance with con-
fusing languages and unseen non-target trials. Moreover,
all the best observed identification performances were at-
tained under end-to-end scoring rather than with the use of
complex schemes such as PLDA. Pretraining with simple
pooling strategies and then fine tuning a model after adding
pooling blocks was also observed to improve performance.

For future investigation, we believe repeating the experi-
mental setting proposed here for automatic speaker verifi-
cation problems would be insightful, and hence we envision
doing so under varying evaluating conditions such as across
different languages between train and evaluation data.
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