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Abstract
Given the well-established usefulness of part-of-speech tag annotations in many syntactically oriented downstream NLP tasks, the
recently proposed notion of semantic tagging (Bjerva et al., 2016) aims at tagging words with tags informed by semantic distinctions,
which are likely to be useful across a range of semantic tasks. To this end, their annotation scheme distinguishes, for instance, privative
attributes from subsective ones. While annotated corpora exist, their size is limited and thus many words are out-of-vocabulary words.
In this paper, we study to what extent we can automatically predict the tags associated with unseen words. We draw on large-scale word
representation data to derive a large new Semantic Tag lexicon. Our experiments show that we can infer semantic tags for words with
high accuracy both monolingually and cross-lingually.
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1. Introduction
Lexical category distinctions have been studied since the
beginnings of linguistics. Traditional part-of-speech tag-
ging has focused on distinctions based on the grammatical
function of words, i.e., the syntactic role that words play
within a sentence.

Semantic Tags. In contrast, the recently proposed task of
Semantic Tagging (Bjerva et al., 2016) considers a set of
tags that are informed by semantic distinctions conjectured
to be pertinent for semantic parsing and other semantics-
driven tasks.
The annotation scheme distinguishes, for instance, priva-
tive attributes (PRI) such as former, fake from intersective
ones (IST) such as vegetarian, and subsective ones (SST)
such as skillful, making it easier for a system to discern
that a fake detective is not a detective. Different kinds of
named entities are distinguished (e.g., people, geopolitical
entities, artifacts, etc.), as in named entity recognition, in-
cluding temporal categories (e.g., there are separate tags for
decades, day of week, etc.). Moreover, there are dedicated
tags for different tenses of events (such as past tense ate),
tense & aspect markers (e.g., was in was reading), roles
(victim), implications (if, unless), greetings (hi, bye), and
many others. At the same time, more syntactically moti-
vated distinctions, such as between adjectives and adverbs,
are disregarded in this annotation scheme. In follow-up
work, Abzianidze and Bos (2017) presented an improved
tag set and showed that the tags exhibit the potential to ap-
ply cross-lingually.

Motivation. In terms of available data, the Parallel Mean-
ing Bank project (Abzianidze et al., 2017) provides a par-
allel corpus covering four languages (English, Dutch, Ger-
man, and Italian) with rich annotations based on Discourse
Representation Theory. At the lexical level, it includes se-
mantic tag annotations, which we rely on in our work.
However, due to the novelty of this task, the available anno-
tations are limited in quantity and consist of a mix of gold
and silver standard data. Just up to a few thousand sen-
tences per language have been manually annotated. Thus,
the vocabulary coverage of this data is limited in the sense

that, for many words, we do not know what tags may be
relevant for them.

Goals. In this paper, we study to what extent simple auto-
mated methods can be invoked to infer the associated tags
for previously unseen words. We aim at a lexical resource
that reveals the semantic tags associated with a much larger
set of words than given in the annotated corpus. The tag
distribution for a word can be viewed as an interpretable
vector representation.

Overview. We predict such interpretable representations
by drawing on the annotated seed corpus in conjunction
with information about word relatedness from larger-scale
word vector representation data.
Our experiments show that our method infers semantic tags
for unseen words with high accuracy for four languages.
This can finally be used to induce a large new Semantic
Tag lexicon, providing semantic tag vectors for millions
of words and names. Additionally, we can induce vectors
cross-lingually for numerous additional languages.

2. Related Work
Interpretable Lexical Representations. Brants (2000)
highlighted the importance of handling unknown words in
part-of-speech tagging. Our work has similar goals to the
research by Cucerzan and Yarowsky (2000) on estimat-
ing part-of-speech probabilities for unseen words based on
probabilities for known words.
Faruqui and Dyer (2015) consulted a range of lexical re-
sources to create non-distributional vectors that capture nu-
merous different properties of words. These vectors are
thus fairly high-dimensional.
Recent work has considered lower-dimensional inter-
pretable vectors focusing on particular aspects of words.
For instance, Dong and de Melo (2018b) induced vectors
that capture the sentiment polarity of words in different do-
mains, ?) developed interpretable vectors reflecting emo-
tional associations of words, and Shoeb et al. (2019) pro-
posed vectors reflecting associations with emojis.
In this paper, we seek to induce interpretable vectors re-
flecting semantic tag distributions.
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Cross-Lingual Lexical Representations. A number of
different cross-lingual projection approaches have been
proposed, from simple linear projection matrices (Mikolov
et al., 2013) to more powerful GAN-based techniques (Fu
et al., 2020). Such methods assume that one has already
obtained vector representations for two languages, which
subsequently need to be aligned, or that one has a parallel
corpus that can be exploited for joint training of bilingual
embeddings covering two languages (de Melo, 2017b).
In our work, we instead adopt the use of a translation dic-
tionary. Previous work has considered dictionary data from
a massively multilingual graph perspective (de Melo, 2015;
de Melo, 2017a). In this paper, we do not project dense
word vector representations but instead seek interpretable
tag distribution vectors, similar to the interpretable senti-
ment vectors considered by Dong and de Melo (2018a).
Rather than invoking a graph-based approach with mutual
interactions, we show that a single hop translation lookup
approach is sufficient to obtain high-quality predictions.

3. Method
In the following, in Section 3.1, we first describe our proce-
dure for inducing semantic tag vectors monolingually, for
unseen words within the same language. Subsequently, we
briefly describe an extension for cross-lingual prediction in
Section 3.2.

3.1. Creating Tag Vectors
Our procedure to create semantic tag vectors for unseen
words consists of a few simple steps. First, we consider an
annotated corpus labelled with semantic tags to extract the
distribution of tags for each word. Then we draw on large-
scale word vectors to be able to propagate information from
words observed in the corpus to new unseen words, based
on nearest neighbour retrieval. The semantic tag distribu-
tions of suitable neighbours are aggregated to infer a se-
mantic tag distribution for the new word.

3.1.1. Input
As input, we assume an annotated seed corpus C =
((w1, t1), . . . , (wL, tL)), in which word tokens wi have
been annotated with tags ti ∈ T from a global tag set T .
Here, the vocabulary of tokens V =

⋃
wi∈C{wi} contains

either just raw string tokens or (string,part-of-speech) tu-
ples. The latter will allow us to make predictions that ac-
count for the part-of-speech (POS) of a word, such that we
can also derive separate tag predictions for the noun bear
as opposed to the verb to bear, for example.

3.1.2. Seed Tag Vectors
Given this seed data, we first compute seed tag vectors vw

for w ∈ V as follows:

vw =
∑

(wi,ti)∈C:wi=w

e(ti) (1)

Here, e(t) is a function yielding a |T |-dimensional vector
with a one-hot encoding of tag t. The resulting semantic
tag vectors hence capture the distribution of a word’s tags
across the corpus. Each dimension of the vector space cor-
responds to a different semantic tag in T , and a seed vec-
tor’s entry in a given dimension reflects how often the word

was encountered in the corpus as being labelled with the
respective tag.

3.1.3. Neighbour Retrieval
Having computed such tag vector representations for each
word observed in our annotated corpus C, we now wish to
infer similar kinds of semantic tag vectors vw for unseen
input words w.
For this, we draw on a preexisting word embedding matrix
E providing regular word vector representations for words.
This data is entirely separate from the annotated seed cor-
pus. It will normally be derived from a corpus that is many
orders of magnitude larger.
Given a target word w, we first determine its k nearest
neighbours Nk(w) using the preexisting word embeddings
E as follows:

Nk(w) = σk(w,E,VE ∩ V) (2)

Here, σk is a function yielding a set of the k closest words
in the embedding space E with respect to a vocabulary.
In particular, it first retrieves the regular word vector uw

for the input word w in the word embedding space E, and
computes its k nearest neighbours in E in terms of the Eu-
clidean distance. However, for this, σk only considers the
subset of words that are in VE ∩V , i.e., those words that are
not only in the vocabulary VE ofE, but simultaneously also
in the annotated corpus vocabulary V . All other words are
disregarded, as we do not have tag information for them.
We study 2 different instantiations of σk.

Form-based Prediction. We consider an ordinary word
embedding table E that provides vectors for word forms,
without specifically accounting for the part-of-speech prop-
erties of words.

POS-aware Prediction. We invoke word embeddings E
trained to provide embeddings for specific lemma and part-
of-speech combinations. In this approach, σk retains only
those vocabulary items with a compatible part-of-speech
tag to w, while still seeking to achieve that |Nk(w)| = k
to the extent possible.

3.1.4. Tag Vector Induction
Finally, based on the neighbours, we predict semantic tag
vectors vw for unseen words w as

vw =
1

|Nk(w)|
∑

w′∈Nk(w)

uw uw′

‖uw‖ ‖uw′‖
vw′ . (3)

Here, the various vw′ are semantic tag vectors for the
k nearest neighbours in Nk, and their contribution is
weighted based on the cosine similarity of the correspond-
ing vectors uw as given by the preexisting embedding ma-
trix E. Importantly, vw′ are not normalized, and thus w′

observed more frequently in the seed data can contribute
to the prediction to a greater extent. Optionally, one may
normalize the predicted vectors such that they reflect a pre-
dicted probability distribution over T .

3.2. Cross-Lingual Induction
Our approach can also be extended for cross-lingual seman-
tic tag vector induction. We use the same vector computa-
tion as above but need to take one additional step. Given
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a non-English target word w0, we first retrieve a set of En-
glish translations

W = {w | (w0, w) ∈ T,w ∈ VE} (4)

from a translation dictionary T , which we assume provides
part-of-speech specific translations. In other words, during
this process, we only consider translations w that occur in
the vocabulary of our English embeddings E with a match-
ing part-of-speech tag. If |W | > 0, we can then obtain

vw0
=

1

|W |
∑
w∈W

vw, (5)

where the vw are tag vectors available as seed vectors or
computed using the monolingual method from Eq. 3.

4. Experiments
The merits of the above approach are evaluated in a series of
English language and cross-lingual experiments, including
detailed analyses for specific categories of words.

4.1. Data
Seed Corpus. We rely on version 2.1.0 of the Parallel
Meaning Bank (PMB) corpus (Abzianidze et al., 2017), of
which we consider the gold quality subsets, which are the
parts of the data that were fully verified by human annota-
tors. Statistics of this data are given in Table 1. The corpus
provides data for four languages: English, German, Italian,
and Dutch. Note that due to updates to the tagging scheme,
the tag inventory in the corpus differs in certain minor ways
from the definitions provided in the original papers.

Preexisting Embedding Matrix E. In terms of word
vectors, we rely on the standard Stanford GloVe 300-
dimensional word vectors (Pennington et al., 2014) as the
embeddings E for the Form-based Prediction approach
from Section 3.1.3. We use Sketch Engine English (Web,
2013, 20 billion tokens) Lemma + Part of Speech word
embeddings1 as E for the POS-aware Prediction approach.
The latter has a vocabulary size of 6,143,073.

Translations. As for our cross-lingual evaluations, we
rely on translations extracted from the 2018-11-20 English
edition of Wiktionary using a custom extraction frame-
work (de Melo, 2014). This data allows us to obtain En-
glish translations of non-English input words, for which we
search both possible translation directions.

4.2. Experimental Protocol
We tested our method on English as well as cross-lingually
using gold data from the PMB corpus. For English words,
besides the 90-dimensional semantic tag vector prediction
experiments, we also conducted experiments to predict
more general 15-dimensional coarse-grained tags for the
corpus (denoted as English (C)). These coarse-grained tags,
listed in Table 4, are provided along with the Universal Se-
mantic Tagging data as a high-level categorization of tags.
Due to the small size of the seed data, we rely on a leave-
one-out evaluation for each setting, i.e., we consider the

1https://embeddings.sketchengine.co.uk/

gold data as the ground truth and try to predict each word’s
ground truth tag vector separately, based only on other seed
words in the data, excluding the target word itself. In the
cross-lingual case, we predict tag vectors for non-English
using English tag vectors, but consider only non-English
tokens for which we have suitable English translations for
which we can obtain or predict such tag vectors.
We rely on the average cosine similarity score between the
ground truth vector and the predicted vector to quantify the
accuracy of our method.

4.3. Overall Results
4.3.1. Results for Form-based Prediction
For our Form-based Prediction approach, the experimental
results are given in Table 2. Our approach obtains reason-
ably high cosine similarities, but they are better for English
(C), i.e., at the coarse-grained level. The results are also
reasonably strong on cross-lingual mappings, despite the
fact that this involves relying on a translation dictionary,
which may bring in additional ambiguity and may result in
a skewed tag distribution if the set of available translations
is skewed towards particular word senses.
Figure 1 presents the average cosine similarity score for dif-
ferent k visually to make the trends more obvious. Recall
that k is the number of nearest neighbours used for σk when
predicting semantic tag vectors. Initially, increasing k helps
for more robustness, but particularly large k may lead to the
inclusion of semantically distant neighbours.

4.3.2. Results for POS-aware Prediction
For the POS-aware Prediction, the experimental results are
given in Table 3. Here, we find substantially improved
results over the Form-based approach. In fact, the fine-
grained English prediction with 90 tags becomes about as
accurate as the coarse-grained prediction. This suggests
that part-of-speech tags, despite their syntactic nature, aid
in discriminating between semantically ambiguous forms.
As plotted in Figure 2, we tend to observe improved scores
as k grows. Increasing k leads to more robust results than
when betting on just 1 or 2 neighbours, and the POS-based
method eliminates some of the semantically remote candi-
dates that the Form-based method might consider.
For our coarse-grained prediction in particular, we observe
that the prediction accuracy continuously increases as k in-
creases. We found that for most of the words in our test
data, the coarse-grained prediction works well and often
leads to an average cosine similarity of 1. For ambiguous
words, such as well, the neighbours we get often vary in
terms of their meaning. Therefore, more neighbours often
lead to a higher probability that the neighbours’ meaning
match the input’s meaning. For instance, the prediction ac-
curacy for the word well increases from 0.0 to 0.45 as we
increase k from 3 to 20.

4.4. Fine-Grained Analysis
4.4.1. Analysis per Coarse-Grained Semantic Tag
Table 4 reports separate averages for each coarse-grained
semantic tag while predicting fine-grained English word
tags using POS-aware Prediction with k = 3, We observe
that our method works particularly well on entities, which

https://embeddings.sketchengine.co.uk/
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Language Documents Sentences Tokens (Distinct)

English 4,555 4,567 2,7433 (4,039)
German 1,175 1,176 6,459 (1,823)
Italian 635 635 3,315 (1,075)
Dutch 586 587 3,354 (1,074)

Table 1: Parallel Meaning Bank Gold Data Statistics

Setup Language 1 2 3 4 5 10 20

Monolingual English 0.61 0.62 0.64 0.65 0.66 0.65 0.63
English (C) 0.79 0.78 0.79 0.79 0.79 0.77 0.74

Cross-lingual German 0.65 0.68 0.71 0.70 0.71 0.73 0.73
Dutch 0.62 0.67 0.67 0.67 0.69 0.68 0.67
Italian 0.62 0.65 0.66 0.67 0.67 0.68 0.68

Table 2: Form-based Prediction for different k

Setup Language 1 2 3 4 5 10 20

Monolingual English 0.76 0.77 0.78 0.78 0.78 0.77 0.78
English (C) 0.75 0.76 0.76 0.76 0.77 0.77 0.78

Cross-Lingual German 0.84 0.84 0.83 0.83 0.83 0.84 0.84
Dutch 0.86 0.84 0.84 0.85 0.84 0.84 0.83
Italian 0.82 0.84 0.82 0.83 0.83 0.86 0.86

Table 3: POS-aware Prediction results for different k

Tag Description Score Count

NAM named entities 0.77 497
UNE unnamed entities 0.87 1,594
TIM temporal entities 0.82 137
ATT attribute 0.82 607
DSC discourse 0.96 6
EVE events 0.51 1,271
ANA anaphoric 0.53 53
ACT speech act 0.00 11
COM comparative 0.31 33
DEM demonstrative 0.38 8
LOG logical 0.25 82
MOD modality 0.40 82
TNS tense 0.17 54
DXS deixis N/A 0
UNK unknown N/A 9

Table 4: Average Cosine Similarity Score per Coarse-
Grained Semantic Tag in Gold Data

constitute the majority of PMB’s gold data. These include
unnamed entities (UNE), named entities (NAM), and tempo-
ral entities (TIM). Our method further attains a high accu-
racy on attributes (ATT), including colors, degrees, scores,
and quantities, despite the fine-grained semantic distinc-
tions mentioned in Section 1. It fares slightly worse on
ANA (anaphoric) and EVE (events) such as untensed simple,
present simple, and past simple ones. These might not be
sufficiently well-distinguished in the regular word vectors.

POS Score Count

adverb 0.48 96
pronoun 0.65 36
preposition 0.85 46
adjective 0.85 404
noun 0.82 2,177
verb 0.58 1,237
other 0.57 237

Table 5: Average Cosine Similarity Score per Part-of-
Speech Tag in Gold Data

4.4.2. Analysis by Part-of-Speech

We also assessed the quality for different part-of-speech
tags of the ground truth English language fine-grained tag
vectors based on the PMB gold data. The break-down of
results for POS-aware Prediction with k = 3 is given in Ta-
ble 5. We find that our prediction method achieves a high
accuracy on nouns and adjectives, which make up 60% of
our testing dataset. It performs slightly worse on verbs and
other categories. We observed that this in part stems from
the fact that the corpus often just has a single occurrence of
a particular form of a verb, so the ground truth vectors for it
do not reflect the overall distribution of possible tags for the
word, but just a single observed tag. Hence, the scores un-
derestimate how well our method predicts the actual distri-
bution. The prediction is also poorer on a few other classes,
which, however, are extremely infrequent in the corpus.
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Figure 1: Cosine similarity score vs. k for Form-based Prediction (top: English, bottom: cross-lingual)

Language # Words

Finnish 80,831
Russian 79,939
German 72,574
Mandarin Chinese 60,209
French 57,164
Spanish 55,721
Portuguese 51,219
Italian 46,999
Dutch 41,455
Japanese 37,664
. . . . . .

All 1,523,736

Table 6: Coverage of Cross-Lingual Tag Vectors

4.4.3. Error Analysis
We observed that the principal reason for the poorer re-
sults of the Form-based approach in comparison with the
POS-aware one is that the nearest neighbour structure of
the GloVe vectors diverges from what is needed for seman-
tic tag distinctions. The neighbours computed from GloVe

vectors are the most similar words that could be put into a
similar context while neglecting the word order in the con-
text. Often, these are other forms of the same lemma.

For instance, the nearest neighbour of notice is notices.
While these are closely related, semantic tagging makes
fine-grained distinctions. The semantic tags assigned to
these two words may diverge due to the ambiguous part-
of-speech categories. Some occurrences of notices, for in-
stance, may be tagged as CON (concept), while some occur-
rences of notice may be classified as EXS (untensed sim-
ple). Evidently, part-of-speech information can aid in re-
solving much of this sort of ambiguity between seman-
tic tags. Hence, our exploration of POS-aware Prediction,
which accounts for it.

For our English POS-aware Prediction (k=3), we further
analyzed our results by generating a 90 × 90-dimensional
confusion matrix. Among a total of 4,039 distinct words
in the gold data, words tagged with NOW (present tense) are
predicted as NIL (empty semantics) 1,022 times, HAS (pos-
sessive pronoun) is predicted as NIL 331 times, and NIL is
predicted as DEF (definite) 557 times.
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Figure 2: Cosine similarity score vs. k for POS-aware Prediction (top: English, bottom: cross-lingual)

4.5. Generating a Large Dataset
To create a large semantic tagging resource for English
words, we apply POS-aware Prediction with k = 3 for all
words in the vocabulary of the Sketch Engine POS-specific
word embeddings. As a result, we obtain semantic tag vec-
tors for 6,143,073 word forms from their English vocab-
ulary. Note that a significant portion of these are named
entities. However, the Universal Semantic Tag scheme ex-
plicitly considers a sizeable number of different categories
of named entities, and in Table 4, we saw that the prediction
quality for them (NAM) is fairly high.
For our cross-lingual tagging, we apply the same approach
for all words in our Wiktionary-based translation data.
Our resulting resource contains a total of 370 languages
and 1,523,736 word forms with valid semantic tag vec-
tors. Among the 370 languages, 121 have at least 1,000
word forms and 61 have 5,000. The languages with the
largest coverage are given in Table 6. We previously saw
that cross-lingual prediction works fairly well using the
POS-aware Prediction approach in conjunction with a POS-
specific translation dictionary. While the set of languages
that we operate on here is much more typologically diverse

than the 4 Indo-European languages considered in Table 3,
we conjecture that the quality depends primarily on the ac-
curacy of the translation resource (de Melo and Weikum,
2009).

5. Conclusion
Universal Semantic Tags are a promising new way of com-
prehensively labeling words with regard to salient semantic
characteristics, making fine-grained distinctions neglected
in other tagging schemes.
Our work shows the feasibility of predicting tag distribution
vectors for unseen words. We induce a lexicon of Univer-
sal Semantic Tag vectors for a large set of word forms both
in English and across many other languages. Abdou et al.
(2018) demonstrated the usefulness of such semantic tags
in several downstream tasks via multi-task learning, includ-
ing on the Stanford NLI corpus, SICK, POS tagging, and
dependency tagging. Hence, we envision our data being
useful in a wide range of tasks that benefit from semantic
information about words. Our lexical data is available for
download from http://semantictags.nlproc.org/.

http://semantictags.nlproc.org/
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